Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the structure of the title compound, {[Rh2(C2H3O2)4(C7H18N2O)]·0.5C4H8O}n or {[Rh2(O2CMe)4(Hbdmap)]·0.5C4H8O}n, where Hbdmap is 1,3-bis­(dimethyl­amino)propan-2-ol, each Hbdmap ligand is coordinated to two [Rh2(O2CMe)4] units by two N atoms, resulting in a polymeric chain structure. The observed coordination mode of the Hbdmap mol­ecule is unprecedented.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106040972/sk3054sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106040972/sk3054Isup2.hkl
Contains datablock I

CCDC reference: 628506

Comment top

A vast amount of interest has been devoted to the dirhodium(II) carboxylates since 1960 with respect to their structure, reactivity and electronic properties. X-ray diffraction studies have revealed dimeric `lantern' or `paddlewheel' structures, which also possess a metal–metal bond. The interest in dirhodium(II) carboxylates has been maintained in recent years especially by their potential practical applications as antitumor agents and as catalysts in organic synthesis. The ability of dirhodium(II) carboxylates to form [Rh2(O2CR)4Ln] (n = 1 or 2) complexes with the ligands (L) in axial positions is well established (Boyar & Robinson, 1983; Cotton et al., 1999). The largest class of such compounds are diadducts with discrete structure. Additionally, polymeric structures comprising axial ligands with two binding sites are also known (Cotton et al., 1999, and references therein; Kim et al., 2001). It is known that dirhodium(II) carboxylates interact with DNA, this possibly being the reason for their cytotoxic effect. Moreover, it is proposed that they can interact, through vacant axial positions, with adenine (at N7) but not with N9-substituted guanine and N1-substituted cytosine, this selectivity being due to intramolecular interligand interactions associated with the octahedral coordination environment about the Rh atom (Aoki & Yamazaki, 1984; Aoki & Salam, 2001, 2002). It is also reported that they can react, through equatorial positions, with guanine as well as adenine by displacing carboxylate ligands (Chifotides & Dunbar, 2005).

1,3-Bis(dimethylamino)-2-propanol (Hbdmap) has two amino groups and one hydroxyl group which can be deprotonated readily. Several complexes with deprotonated bdmap or zwitterionic Hbdmap (see first scheme below) as a ligand for metal ions have been isolated and structurally characterized. By far the highest in number of complexes with this ligand are copper(II) complexes (Wang et al., 1992, 1993; Wang, 1996; El Fallah et al., 2004) but the complexes with Zr (Fleeting et al., 1999), B (Huskens et al., 1998), Ga (Sun et al., 1999), Si (Lo et al., 2004), Bi (Breeze et al., 1996), Y (Guillon et al., 2000), Zn (Demsar et al., 2002) and Li (Henderson et al., 1995) are also known. Additionally, several heterometallic complexes that contain two different metal ions in the structure are also known. The reason for extensive work in the field is also possible interesting magnetic properties of the products or isolation of precursors for preparation of superconductors (Wang, 1998; Wang et al., 1994, 1995). However, no structure was found where the Hbdmap molecule is bonded as a ligand to a dimetal carboxylate core.

The molecular structure of (I) (Figs. 1 and 2) consists of a zigzag chain of dirhodium(II,II)–tetraacetate bridged by the Hbdmap molecule as a ligand. The chains run along the b axis with van der Waals interactions between the chains. The disordered tetrahydrofuran (THF) molecules occupy the vacancies in the structure. It is interesting to note that in the reaction of dicopper(II) acetate with Hbdmap a tetranuclear complex, [Cu4(OAc)6(bdmap)2(H2O)6]n, was isolated (Wang et al., 1992). Obviously, after coordination of anionic bdmap in this reaction, the dicopper–dicarboxylate core was converted to a polynuclear structure, where bdmap acts as a tridentate ligand. In our reaction between dirhodium(II,II) acetate and Hbdmap, the isolated product is structurally completely different. The basic dirhodium dicarboxylate core remains intact, with an Rh···Rh distance of 2.4085 (5) Å, but Hbdmap is coordinated only in axial positions, through its terminal N atoms, to form a polymeric structure. A unique role of the Hbdmap hydroxy group was observed in this structure – it is not involved in coordination but it participates in intramolecular O—H···O hydrogen bonding involving the O atom from the Hbdmap ligand and an O atom from the dirhodium–dicarboxylate core (Table 2 and Fig. 1). The coordination of the Hbdmap molecule in the title compound represents, to the best of our knowledge, a new coordination mode of this ligand.

Experimental top

The reaction was carried out under nitrogen atmosphere by using standard Schlenk line techniques. In a Schlenk flask, Rh2(O2CCH3)4 (52.4 mg) was suspended in THF (4.0 ml) and Hbdmap (17.0 mg) was added. The green suspension was stirred for 24 h. The resulting pink solution was filtered to remove traces of undissolved Rh2(O2CCH3)4. Pink crystals formed during slow evaporation of the solvent in vacuo.

Refinement top

All H atoms were positioned geometrically, fixing the C—H bond lengths at 0.98, 0.99 and 1.00 Å for CH3, CH2 and CH groups, respectively and constrained to ride on their parent atom with Uiso(H) = 1.2Ueq(C) [or 1.5Ueq(C) for methyl]. The H atom attached to the O atom was constrained to ride on their parent atom with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O). The solvent THF molecule is disordered at two sets of positions, which are related by a center of symmetry. The occupancy factor for each of O10, C20, C30 and C50 from the THF solvent molecule was set to 0.5 in the refinement.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atom-numbering scheme. Non-hydroxy H atoms and solvent THF molecules have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond. [Symmetry codes: (i) −x + 1, y + 1/2, −z + 3/2; (ii) −x + 1, y − 1/2, −z + 3/2.]
[Figure 2] Fig. 2. The disordered THF molecules and polymeric chains in the structure of (I), viewed along the a axis.
catena-Poly-[tetrakis(µ-acetato-O,O')- µ-1,3-bis(dimethylamino)-2-propanol-N,N'-dirhodium(II) tetrahydrofuran hemisolvate] top
Crystal data top
[Rh2(C2H3O2)4(C7H18N2O)]·C4H8OF(000) = 1264
Mr = 624.28Dx = 1.706 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5556 reflections
a = 8.4443 (2) Åθ = 2.6–27.5°
b = 18.0873 (4) ŵ = 1.41 mm1
c = 15.9154 (3) ÅT = 150 K
β = 90.3330 (9)°Block, pink
V = 2430.79 (9) Å30.10 × 0.05 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
5542 independent reflections
Radiation source: fine-focus sealed tube4012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 0.055 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1010
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 2323
Tmin = 0.872, Tmax = 0.933l = 2020
10601 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0172P)2 + 4.6899P]
where P = (Fo2 + 2Fc2)/3
5542 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.70 e Å3
4 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Rh2(C2H3O2)4(C7H18N2O)]·C4H8OV = 2430.79 (9) Å3
Mr = 624.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4443 (2) ŵ = 1.41 mm1
b = 18.0873 (4) ÅT = 150 K
c = 15.9154 (3) Å0.10 × 0.05 × 0.05 mm
β = 90.3330 (9)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5542 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
4012 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.933Rint = 0.037
10601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.70 e Å3
5542 reflectionsΔρmin = 0.56 e Å3
307 parameters
Special details top

Experimental. 203 frames in 5 sets of ω scans at fixed χ = 55°. Rotation/frame = 1.7 °. Crystal-detector distance = 35 mm. Measuring time = 420 s/°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.28446 (3)0.375565 (18)0.826721 (17)0.02483 (9)
Rh20.30434 (3)0.245496 (18)0.796142 (17)0.02492 (9)
N10.2494 (4)0.50027 (19)0.85537 (18)0.0293 (7)
N20.6730 (4)0.62051 (18)0.72995 (19)0.0296 (7)
O10.5075 (3)0.36781 (15)0.87917 (15)0.0300 (6)
O20.5235 (3)0.24621 (16)0.85069 (16)0.0311 (6)
O30.3800 (3)0.39636 (16)0.71136 (15)0.0303 (6)
O40.4013 (3)0.27488 (16)0.68345 (15)0.0295 (6)
O50.0651 (3)0.37459 (16)0.77431 (16)0.0326 (6)
O60.0817 (3)0.25249 (16)0.74585 (15)0.0306 (6)
O70.1886 (3)0.34630 (16)0.93859 (15)0.0322 (6)
O80.2052 (3)0.22439 (16)0.90993 (15)0.0304 (6)
O90.6747 (4)0.50686 (19)0.8801 (2)0.0501 (8)
H90.66400.46160.89060.075*
C10.5771 (5)0.3056 (2)0.8814 (2)0.0297 (9)
C20.4164 (4)0.3423 (3)0.6649 (2)0.0308 (9)
C30.0113 (4)0.3139 (3)0.7460 (2)0.0307 (9)
C40.1682 (4)0.2788 (2)0.9567 (2)0.0280 (9)
C50.7361 (5)0.3020 (3)0.9251 (3)0.0430 (11)
H5A0.72080.30330.98610.065*
H5B0.80090.34420.90790.065*
H5C0.78980.25590.90970.065*
C60.4848 (5)0.3593 (3)0.5792 (2)0.0371 (10)
H6A0.60000.35290.58100.056*
H6B0.45940.41040.56380.056*
H6C0.43910.32550.53750.056*
C70.1545 (5)0.3169 (3)0.7082 (3)0.0445 (12)
H7A0.14790.33050.64870.067*
H7B0.21750.35390.73810.067*
H7C0.20490.26830.71340.067*
C80.0971 (5)0.2613 (2)1.0399 (2)0.0337 (10)
H8A0.03600.21541.03570.051*
H8B0.02710.30181.05700.051*
H8C0.18160.25521.08190.051*
C90.1167 (5)0.5069 (3)0.9147 (3)0.0444 (11)
H9A0.14400.48160.96730.067*
H9B0.02180.48410.89020.067*
H9C0.09600.55920.92610.067*
C100.2062 (5)0.5398 (3)0.7775 (2)0.0380 (10)
H10A0.11140.51720.75270.057*
H10B0.29390.53670.73760.057*
H10C0.18470.59180.79050.057*
C110.3933 (5)0.5335 (2)0.8937 (3)0.0377 (10)
H11A0.42000.50610.94570.045*
H11B0.36970.58520.90970.045*
C120.5381 (5)0.5330 (2)0.8355 (3)0.0369 (10)
H120.51650.49990.78640.044*
C130.5733 (5)0.6109 (2)0.8041 (3)0.0381 (10)
H13A0.47060.63530.79230.046*
H13B0.62380.63840.85090.046*
C140.6023 (6)0.5855 (3)0.6543 (3)0.0485 (12)
H14A0.59840.53180.66220.073*
H14B0.66700.59720.60510.073*
H14C0.49470.60450.64570.073*
C150.8329 (6)0.5896 (3)0.7415 (3)0.0526 (13)
H15A0.87780.60720.79470.079*
H15B0.90050.60540.69500.079*
H15C0.82680.53550.74240.079*
O100.1093 (10)0.4286 (6)0.5369 (5)0.083 (3)0.50
C200.049 (3)0.4515 (15)0.550 (2)0.094 (8)0.50
H20A0.12300.41630.52380.113*0.50
H20B0.07260.45380.61130.113*0.50
C300.064 (2)0.5262 (10)0.5116 (10)0.091 (5)0.50
H30A0.17070.53280.48670.109*0.50
H30B0.04700.56560.55390.109*0.50
C400.062 (3)0.5279 (14)0.4447 (16)0.083 (8)0.50
H40A0.13170.57170.45160.099*0.50
H40B0.01510.52920.38800.099*0.50
C500.1532 (18)0.4582 (9)0.4577 (7)0.081 (4)0.50
H50A0.26830.46850.45630.097*0.50
H50B0.12860.42240.41260.097*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.02437 (15)0.03204 (18)0.01808 (14)0.00239 (13)0.00026 (11)0.00009 (13)
Rh20.02366 (15)0.03252 (19)0.01858 (15)0.00020 (13)0.00001 (11)0.00178 (13)
N10.0297 (17)0.035 (2)0.0231 (15)0.0034 (15)0.0036 (13)0.0004 (15)
N20.0319 (18)0.032 (2)0.0245 (16)0.0014 (15)0.0021 (13)0.0034 (14)
O10.0289 (14)0.0339 (17)0.0272 (13)0.0009 (13)0.0041 (11)0.0010 (12)
O20.0275 (14)0.0332 (17)0.0325 (14)0.0033 (13)0.0031 (11)0.0006 (13)
O30.0345 (15)0.0363 (17)0.0201 (13)0.0023 (12)0.0045 (11)0.0032 (12)
O40.0327 (15)0.0348 (17)0.0211 (13)0.0001 (12)0.0034 (11)0.0043 (12)
O50.0260 (14)0.0418 (18)0.0299 (14)0.0054 (13)0.0004 (11)0.0004 (13)
O60.0248 (14)0.0423 (18)0.0246 (13)0.0039 (13)0.0023 (11)0.0034 (13)
O70.0385 (16)0.0386 (18)0.0194 (13)0.0039 (13)0.0038 (11)0.0004 (12)
O80.0361 (16)0.0342 (17)0.0208 (13)0.0004 (12)0.0020 (11)0.0004 (12)
O90.0487 (19)0.049 (2)0.0521 (19)0.0019 (16)0.0110 (15)0.0146 (17)
C10.026 (2)0.037 (3)0.026 (2)0.0003 (18)0.0021 (16)0.0008 (18)
C20.025 (2)0.043 (3)0.0246 (19)0.0004 (18)0.0012 (16)0.0020 (19)
C30.022 (2)0.052 (3)0.0183 (19)0.0009 (19)0.0023 (15)0.0031 (18)
C40.026 (2)0.036 (3)0.0226 (19)0.0002 (17)0.0021 (16)0.0048 (17)
C50.034 (2)0.049 (3)0.046 (3)0.002 (2)0.014 (2)0.000 (2)
C60.040 (2)0.048 (3)0.0236 (19)0.000 (2)0.0041 (17)0.0015 (19)
C70.026 (2)0.072 (4)0.035 (2)0.002 (2)0.0040 (18)0.000 (2)
C80.042 (2)0.038 (3)0.0211 (19)0.001 (2)0.0051 (17)0.0023 (17)
C90.047 (3)0.043 (3)0.043 (2)0.009 (2)0.016 (2)0.001 (2)
C100.041 (2)0.038 (3)0.034 (2)0.006 (2)0.0046 (19)0.0042 (19)
C110.045 (3)0.034 (3)0.034 (2)0.002 (2)0.0029 (19)0.0028 (19)
C120.038 (2)0.039 (3)0.034 (2)0.001 (2)0.0004 (18)0.0026 (19)
C130.045 (3)0.037 (3)0.032 (2)0.001 (2)0.0026 (19)0.0014 (19)
C140.073 (3)0.039 (3)0.033 (2)0.007 (2)0.000 (2)0.001 (2)
C150.046 (3)0.043 (3)0.069 (3)0.011 (2)0.006 (3)0.009 (3)
O100.074 (6)0.119 (8)0.057 (5)0.001 (5)0.002 (4)0.040 (5)
C200.107 (19)0.052 (12)0.123 (19)0.014 (10)0.022 (14)0.004 (11)
C300.108 (15)0.094 (14)0.070 (11)0.014 (10)0.006 (10)0.017 (10)
C400.108 (17)0.088 (19)0.051 (10)0.001 (11)0.018 (10)0.035 (12)
C500.080 (10)0.117 (13)0.045 (7)0.014 (9)0.010 (6)0.016 (8)
Geometric parameters (Å, º) top
Rh1—O12.060 (3)C7—H7A0.9800
Rh1—O32.045 (2)C7—H7B0.9800
Rh1—O52.028 (3)C7—H7C0.9800
Rh1—O72.030 (3)C8—H8A0.9800
Rh1—N12.321 (3)C8—H8B0.9800
Rh1—Rh22.4085 (5)C8—H8C0.9800
Rh2—O22.040 (3)C9—H9A0.9800
Rh2—O42.046 (2)C9—H9B0.9800
Rh2—O62.043 (3)C9—H9C0.9800
Rh2—O82.036 (2)C10—H10A0.9800
Rh2—N2i2.307 (3)C10—H10B0.9800
N1—C91.475 (5)C10—H10C0.9800
N1—C101.475 (5)C11—C121.538 (6)
N1—C111.483 (5)C11—H11A0.9900
N2—C131.464 (5)C11—H11B0.9900
N2—C141.482 (5)C12—C131.526 (6)
N2—C151.472 (5)C12—H121.0000
N2—Rh2ii2.307 (3)C13—H13A0.9900
O1—C11.269 (5)C13—H13B0.9900
O2—C11.263 (5)C14—H14A0.9800
O3—C21.265 (5)C14—H14B0.9800
O4—C21.261 (5)C14—H14C0.9800
O5—C31.270 (5)C15—H15A0.9800
O6—C31.260 (5)C15—H15B0.9800
O7—C41.266 (5)C15—H15C0.9800
O8—C41.275 (5)O10—C201.412 (19)
O9—C121.431 (5)O10—C501.417 (12)
O9—H90.8400C20—C301.493 (18)
C1—C51.510 (5)C20—H20A0.9900
C2—C61.515 (5)C20—H20B0.9900
C3—C71.521 (5)C30—C401.51 (3)
C4—C81.491 (5)C30—H30A0.9900
C5—H5A0.9800C30—H30B0.9900
C5—H5B0.9800C40—C501.491 (17)
C5—H5C0.9800C40—H40A0.9900
C6—H6A0.9800C40—H40B0.9900
C6—H6B0.9800C50—H50A0.9900
C6—H6C0.9800C50—H50B0.9900
O5—Rh1—O789.46 (11)H7A—C7—H7B109.5
O5—Rh1—O389.81 (10)C3—C7—H7C109.5
O7—Rh1—O3175.43 (12)H7A—C7—H7C109.5
O5—Rh1—O1175.58 (12)H7B—C7—H7C109.5
O7—Rh1—O189.71 (10)C4—C8—H8A109.5
O3—Rh1—O190.67 (10)C4—C8—H8B109.5
O5—Rh1—N188.40 (11)H8A—C8—H8B109.5
O7—Rh1—N191.67 (11)C4—C8—H8C109.5
O3—Rh1—N192.82 (11)H8A—C8—H8C109.5
O1—Rh1—N195.96 (11)H8B—C8—H8C109.5
O5—Rh1—Rh288.45 (8)N1—C9—H9A109.5
O7—Rh1—Rh287.20 (8)N1—C9—H9B109.5
O3—Rh1—Rh288.27 (8)H9A—C9—H9B109.5
O1—Rh1—Rh287.18 (8)N1—C9—H9C109.5
N1—Rh1—Rh2176.66 (8)H9A—C9—H9C109.5
O8—Rh2—O289.96 (10)H9B—C9—H9C109.5
O8—Rh2—O688.74 (10)N1—C10—H10A109.5
O2—Rh2—O6175.57 (11)N1—C10—H10B109.5
O8—Rh2—O4175.75 (11)H10A—C10—H10B109.5
O2—Rh2—O490.26 (10)N1—C10—H10C109.5
O6—Rh2—O490.72 (10)H10A—C10—H10C109.5
O8—Rh2—N2i90.65 (11)H10B—C10—H10C109.5
O2—Rh2—N2i90.38 (11)N1—C11—C12113.7 (3)
O6—Rh2—N2i93.87 (11)N1—C11—H11A108.8
O4—Rh2—N2i93.59 (11)C12—C11—H11A108.8
O8—Rh2—Rh188.51 (8)N1—C11—H11B108.8
O2—Rh2—Rh188.39 (8)C12—C11—H11B108.8
O6—Rh2—Rh187.34 (8)H11A—C11—H11B107.7
O4—Rh2—Rh187.26 (8)O9—C12—C13108.0 (4)
N2i—Rh2—Rh1178.51 (8)O9—C12—C11110.2 (3)
C10—N1—C9108.3 (3)C13—C12—C11110.4 (4)
C10—N1—C11110.3 (3)O9—C12—H12109.4
C9—N1—C11109.1 (3)C13—C12—H12109.4
C10—N1—Rh1109.7 (2)C11—C12—H12109.4
C9—N1—Rh1107.6 (3)N2—C13—C12119.2 (4)
C11—N1—Rh1111.7 (2)N2—C13—H13A107.5
C13—N2—C15112.7 (3)C12—C13—H13A107.5
C13—N2—C14111.9 (3)N2—C13—H13B107.5
C15—N2—C14107.7 (4)C12—C13—H13B107.5
C13—N2—Rh2ii108.1 (2)H13A—C13—H13B107.0
C15—N2—Rh2ii108.5 (3)N2—C14—H14A109.5
C14—N2—Rh2ii107.8 (2)N2—C14—H14B109.5
C1—O1—Rh1119.6 (2)H14A—C14—H14B109.5
C1—O2—Rh2119.5 (2)N2—C14—H14C109.5
C2—O3—Rh1118.8 (3)H14A—C14—H14C109.5
C2—O4—Rh2119.9 (2)H14B—C14—H14C109.5
C3—O5—Rh1118.5 (3)N2—C15—H15A109.5
C3—O6—Rh2119.2 (3)N2—C15—H15B109.5
C4—O7—Rh1120.5 (2)H15A—C15—H15B109.5
C4—O8—Rh2118.6 (3)N2—C15—H15C109.5
C12—O9—H9109.5H15A—C15—H15C109.5
O2—C1—O1125.3 (3)H15B—C15—H15C109.5
O2—C1—C5117.2 (4)C20—O10—C50105.4 (16)
O1—C1—C5117.5 (4)O10—C20—C30106.8 (19)
O4—C2—O3125.8 (3)O10—C20—H20A110.4
O4—C2—C6116.5 (4)C30—C20—H20A110.4
O3—C2—C6117.6 (4)O10—C20—H20B110.4
O6—C3—O5126.5 (4)C30—C20—H20B110.4
O6—C3—C7117.7 (4)H20A—C20—H20B108.6
O5—C3—C7115.8 (4)C20—C30—C40104.2 (17)
O7—C4—O8125.2 (3)C20—C30—H30A110.9
O7—C4—C8117.6 (4)C40—C30—H30A110.9
O8—C4—C8117.1 (4)C20—C30—H30B110.9
C1—C5—H5A109.5C40—C30—H30B110.9
C1—C5—H5B109.5H30A—C30—H30B108.9
H5A—C5—H5B109.5C50—C40—C30104.4 (14)
C1—C5—H5C109.5C50—C40—H40A110.9
H5A—C5—H5C109.5C30—C40—H40A110.9
H5B—C5—H5C109.5C50—C40—H40B110.9
C2—C6—H6A109.5C30—C40—H40B110.9
C2—C6—H6B109.5H40A—C40—H40B108.9
H6A—C6—H6B109.5O10—C50—C40108.2 (14)
C2—C6—H6C109.5O10—C50—H50A110.1
H6A—C6—H6C109.5C40—C50—H50A110.1
H6B—C6—H6C109.5O10—C50—H50B110.1
C3—C7—H7A109.5C40—C50—H50B110.1
C3—C7—H7B109.5H50A—C50—H50B108.4
O5—Rh1—Rh2—O889.10 (10)N1—Rh1—O5—C3178.2 (3)
O7—Rh1—Rh2—O80.44 (11)Rh2—Rh1—O5—C30.7 (3)
O3—Rh1—Rh2—O8178.96 (10)O8—Rh2—O6—C388.6 (3)
O1—Rh1—Rh2—O890.29 (10)O4—Rh2—O6—C387.2 (3)
O5—Rh1—Rh2—O2179.10 (10)N2i—Rh2—O6—C3179.1 (3)
O7—Rh1—Rh2—O289.56 (10)Rh1—Rh2—O6—C30.0 (3)
O3—Rh1—Rh2—O291.04 (10)O5—Rh1—O7—C487.7 (3)
O1—Rh1—Rh2—O20.29 (10)O1—Rh1—O7—C488.0 (3)
O5—Rh1—Rh2—O60.29 (10)N1—Rh1—O7—C4176.0 (3)
O7—Rh1—Rh2—O689.25 (10)Rh2—Rh1—O7—C40.8 (3)
O3—Rh1—Rh2—O690.15 (10)O2—Rh2—O8—C488.2 (3)
O1—Rh1—Rh2—O6179.10 (10)O6—Rh2—O8—C487.6 (3)
O5—Rh1—Rh2—O490.56 (10)N2i—Rh2—O8—C4178.5 (3)
O7—Rh1—Rh2—O4179.90 (10)Rh1—Rh2—O8—C40.2 (3)
O3—Rh1—Rh2—O40.70 (10)Rh2—O2—C1—O12.5 (5)
O1—Rh1—Rh2—O490.05 (10)Rh2—O2—C1—C5176.8 (3)
O5—Rh1—N1—C1054.0 (2)Rh1—O1—C1—O22.9 (5)
O7—Rh1—N1—C10143.4 (2)Rh1—O1—C1—C5176.4 (3)
O3—Rh1—N1—C1035.7 (2)Rh2—O4—C2—O31.9 (5)
O1—Rh1—N1—C10126.7 (2)Rh2—O4—C2—C6178.2 (2)
O5—Rh1—N1—C963.6 (3)Rh1—O3—C2—O41.0 (5)
O7—Rh1—N1—C925.8 (3)Rh1—O3—C2—C6179.1 (3)
O3—Rh1—N1—C9153.3 (3)Rh2—O6—C3—O50.5 (5)
O1—Rh1—N1—C9115.7 (3)Rh2—O6—C3—C7179.9 (2)
O5—Rh1—N1—C11176.6 (2)Rh1—O5—C3—O60.9 (5)
O7—Rh1—N1—C1193.9 (2)Rh1—O5—C3—C7179.5 (2)
O3—Rh1—N1—C1186.9 (2)Rh1—O7—C4—O80.9 (5)
O1—Rh1—N1—C114.1 (2)Rh1—O7—C4—C8180.0 (2)
O7—Rh1—O1—C185.6 (3)Rh2—O8—C4—O70.4 (5)
O3—Rh1—O1—C189.8 (3)Rh2—O8—C4—C8179.5 (2)
N1—Rh1—O1—C1177.3 (3)C10—N1—C11—C1258.5 (4)
Rh2—Rh1—O1—C11.6 (3)C9—N1—C11—C12177.3 (4)
O8—Rh2—O2—C187.6 (3)Rh1—N1—C11—C1263.8 (4)
O4—Rh2—O2—C188.1 (3)N1—C11—C12—O9133.1 (4)
N2i—Rh2—O2—C1178.3 (3)N1—C11—C12—C13107.6 (4)
Rh1—Rh2—O2—C10.9 (3)C15—N2—C13—C1260.2 (5)
O5—Rh1—O3—C288.6 (3)C14—N2—C13—C1261.3 (5)
O1—Rh1—O3—C287.0 (3)Rh2ii—N2—C13—C12179.8 (3)
N1—Rh1—O3—C2177.0 (3)O9—C12—C13—N277.6 (5)
Rh2—Rh1—O3—C20.2 (3)C11—C12—C13—N2161.8 (4)
O2—Rh2—O4—C289.9 (3)C50—O10—C20—C3034 (3)
O6—Rh2—O4—C285.8 (3)O10—C20—C30—C4025 (4)
N2i—Rh2—O4—C2179.7 (3)C20—C30—C40—C507 (4)
Rh1—Rh2—O4—C21.5 (3)C20—O10—C50—C4029.7 (16)
O7—Rh1—O5—C386.6 (3)C30—C40—C50—O1013 (2)
O3—Rh1—O5—C388.9 (3)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O10.842.162.884 (4)145

Experimental details

Crystal data
Chemical formula[Rh2(C2H3O2)4(C7H18N2O)]·C4H8O
Mr624.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.4443 (2), 18.0873 (4), 15.9154 (3)
β (°) 90.3330 (9)
V3)2430.79 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.872, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
10601, 5542, 4012
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.078, 1.05
No. of reflections5542
No. of parameters307
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.56

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Rh1—O12.060 (3)Rh2—O82.036 (2)
Rh1—O32.045 (2)Rh2—N2i2.307 (3)
Rh1—O52.028 (3)N1—C91.475 (5)
Rh1—O72.030 (3)N1—C101.475 (5)
Rh1—N12.321 (3)N1—C111.483 (5)
Rh1—Rh22.4085 (5)N2—C131.464 (5)
Rh2—O22.040 (3)N2—C141.482 (5)
Rh2—O42.046 (2)N2—C151.472 (5)
Rh2—O62.043 (3)O9—C121.431 (5)
O5—Rh1—O789.46 (11)N1—Rh1—Rh2176.66 (8)
O5—Rh1—O389.81 (10)O2—Rh2—O6175.57 (11)
O5—Rh1—N188.40 (11)O6—Rh2—O490.72 (10)
O7—Rh1—N191.67 (11)O2—Rh2—Rh188.39 (8)
Symmetry code: (i) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O10.842.162.884 (4)145
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds