Download citation
Download citation
link to html
Mol­ecules of 1-acetyl-3-ferrocenyl-5-methyl-1H-pyrazole, [Fe(C5H5)(C11H11N2O)], form a centrosymmetric dimer generated by a combination of one C-H...[pi](pyrazole) and one C-H...[pi](cyclo­penta­dienyl) inter­action. The dimers are linked by C-H...[pi] inter­actions, involving the pyrazole rings as acceptors, into layers parallel to (10\overline{1}). Mol­ecules of 1-acetyl-5-ferrocenyl-3-(2-pyrid­yl)-1H-pyrazole, [Fe(C5H5)(C15H12N3O)], are linked by C-H...O inter­actions into a chain running in the [010] direction. Two chains of this type passing through each unit cell are connected by O...[pi](pyridyl) inter­actions into an [010] double chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106043599/sk3053sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106043599/sk3053Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106043599/sk3053IIsup3.hkl
Contains datablock II

CCDC references: 632914; 632915

Comment top

Recently pyrazole-based compounds have attracted much attention because their set of donor atoms, N3 and N2E (E = O and S), are used as important ligands to model the active sites of metalloenzymes and to recogize metal ions (Gross & Vahrenkamp, 2005; Scarpellini et al., 2005; Miranda et al., 2005). Some of their complexes can be used as catalysts and potential drugs (Ajellal et al., 2006; Porchia et al., 2005).

Acylation of tautomeric 3(5)-ferrocenyl-5(3)-methyl-1H-pyrazole with acetyl chloride afforded the first title compound, (I) (Shi et al., 2006) while 5(3)-ferrocenyl-3(5)-(2-pyridyl)-1H-pyrazole synthesized in our group after acylation of the pyrazolyl NH group generated the second title compound, (II). Since 3-(2-pyridyl)-1H-pyrazole acts as a multifunctional ligand having several coordination modes (Hu et al., 2006) and exhibiting plentiful coordination chemistry from dinuclearity to multinuclearity (Lam et al., 1997), compound (II) is expected to afford an interesting coordination chemistry via the set of N2O donor atoms, viz. one pyridyl N atom, one pyrazolyl N atom and one carbonyl O atom, whereas (I) can act as an NO bidentate organometallic ligand on coordination to a metal ion. In view of the redox activity and nonlinear optical property of the ferrocenyl group, compounds (I) and (II) are also expected to have potential uses as new materials. For the fully unequivocal characterization, crystal structures of title compounds have been determined (Figs. 1 and 2).

As in N,N'-butanedioylbis(5-ferrocenyl-3-methyl-1H-pyrazole), the bond lengths of each pyrazole ring in (I) and (II) indicate electron delocalization (Shi et al., 2005; Tables 1 and 3). The dihedral angles between the pyrazole ring and, respectively, the corresponding substituted cyclopentadienyl ring and the corresponding acetyl plane are 21.52 (11) and 2.9 (3)° for (I), and 28.7 (2) and 9.7 (4)° for (II). Furthermore, for (II), the pyrazole ring and the pyridine ring make a dihedral angle of 4.47 (18)°. As expected, the small dihedral angle of 0.65 (13)° for (I) and 1.4 (2)° for (II) between the unsubstituted cyclopentadienyl ring and the substituted cyclopentadienyl ring indicates that the two cyclopentadienyl rings are parallel to each other. The C3–Cg2–Cg3–C10 torsion angle of 6.43 (15)° for (I) and 5.6 (3)° for (II), where Cg2 and Cg3 are the centroids of rings C1–C5 and C6–C10, indicates that the two cyclopentadienyl rings of the ferrocenyl group in each of (I) and (II) are nearly in an eclipsed conformation, as was previously observed in a ferrocene-containing compound (Erasmus et al., 1996).

Interestingly, the above dihedral angles and the C10—C11 bond lengths for (I) and C10—C11 and C13—C14 bond lengths for (II) (which are shorter than the value of 1.48 Å for a Csp2—Csp2 single bond) suggest that each pyrazole ring of (I) and (II) is slightly conjugated with the corresponding substituted cyclopentadienyl ring and the pyridine ring (Tables 1 and 3).

Although compounds (I) and (II) both crystallize in space group P21/n, their packing modes are different. Since the pyrazole ring electrons are delocalized, an intermolecular three-center C—H···(N)2 hydrogen bond indicates that there exists a C—H···π interaction involving the pyrazole ring in the crystalline state of (I) (Glidewell et al., 2005; Sylvestre et al., 2005; Table 3). Atoms C2 and C16 in the molecule at (x, y, z) act as hydrogen-bond donors, via atoms H2 and H16B, to the pyrazole ring N1/N2/C11–C13 and the unsubstituted cyclopentadienyl ring C1–C5 in the corresponding molecule at (1 − x, 1 − y, 1 − z), so leading to the formation of a centrosymmetric dimer (Fig. 3). The dimer is linked into a [010] double chain with the 21 screw axis along (3/4, y, 3/4) by hydrogen bonds in which atom C9 in the substituted cyclopentadienyl ring of the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H9, to the pyrazole ring N1/N2/C11–C13 in the corresponding molecule at (3/2 − x, −1/2 + y, 3/2 − z), and the pyrazole ring in the molecule at (x, y, z) acts as a hydrogen-bond acceptor and atom C9 in the corresponding molecule at (3/2 − x, 1/2 + y, 3/2 − z) as a hydrogen-bond donor.

In contrast, intermolecular C—H···O interactions are present in the crystalline state of (II) and the N atoms in (II) do not participate in hydrogen-bond formation (Table 4). Atom C8 in the substituted cyclopentadienyl ring of the molecule at (x, y, z) acts as a hydrogen-bond donor, via atom H8, to atom O1 in the corresponding molecule at (3/2 − x, 1/2 + y, 3/2 − z), and atom O1 in the molecule at (x, y, z) acts in turn as a hydrogen-bond acceptor and atom C8 in the corresponding molecule at (3/2 − x, −1/2 + y, 3/2 − z) as a hydrogen-bond donor (Fig. 4). Via the intermolecular C—H···O hydrogen bonds, molecules of (II) form a [010] chain and generate a 21 screw axis along (3/4, y, 3/4). Two chains of this type through each unit cell are linked by O···π contact interactions (Jara et al., 2006; Spek, 2003) into a [010] double chain [O1···Cg4i = 3.913 (3) Å, C19···Cg4i = 3.864 (3) Å and C19—O1···Cg4i = 78.9 (2)°; symmetry code: (i) 1 − x, 1 − y, 1 − z; Cg4 is the centroid of ring N3/C14–C18].

Experimental top

To a solution of 3(5)-ferrocenyl-5(3)-methyl-1H-pyrazole (1.33 g, 5 mmol) and Et3N (1.423 g, 14 mmol) in 10 ml of THF was added dropwise acetyl chloride (1 ml, 14 mmol) in 5 ml of THF at ambient temperature. The reaction mixture was stirred for 1 h. After removal of the solvent, the resulting solid was washed with water, air-dried and recrystallized from dichloromethane and petroleum ether to afford the orange title compound (I) (yield 62.2%; m.p. 440.15–441.15 K). Analysis calculated for C16H16FeN2O: C 62.36, H 5.23, N 9.09%; found: C 62.15, H 5.28, N 9.32%. IR (KBr, cm−1): 1721 (vs, OC). UV (λmax, in DMF, nm): 256.00 (2.68 × 104, B band), 328.00 (0.05 × 104, R band). 1H NMR (CDCl3, p.p.m.): δ 6.200 (1H, s, CH), 4.694, 4.332 (s, 2H, s, 2H, C5H4), 4.102 (s, 5H, C5H5), 2.704 (s, 3H, COCH3), 2.603 (s, 3H, CH3). The similar reaction of 5(3)-ferrocenyl-3(5)-(2-pyridinyl)-1H-pyrazole (1.646 g, 5 mmol), acetyl chloride (2 ml, 28 mmol) and Et3N (3.036 g, 30 mmol), via chromatography on silica gel with dichloromethane as an eluant, gave the red title compound (II) (yield 47.2%; m.p. 423.65–424.45 K). Analysis calculated for C20H17FeN3O: C 64.71, H 4.62, N 11.32%; found: C 64.71, H 4.57, N 11.46%. IR (KBr, cm−1): 1724 (vs, CO). UV (λmax, in DMF, nm): 278.00 (2.32 × 104, B band), 374.00 (0.1 × 104, K band), 451.00 (0.046 × 104, d–d band). 1H NMR (600 MHz, CDCl3, p.p.m.): δ 8.703–8.699, 8.123–8.110, 7.810–7.784, 7.329–7.309 (d, 1H, d, 1H, t, 1H, q, 1H, C5H4N), 7.200 (s, 1H, CH), 4.745, 4.364 (s, 2H, s, 2H, C5H4), 4.170 (s, 5H, C5H5), 2.809 (s, 3H, CH3).

Refinement top

All H atoms bonded to parent atoms were located in difference maps and were treated as riding atoms, with C—H distances of 0.95 Å (pyrazolyl CH), 0.98 Å (CH3) and 1.00 Å (Cp CH) at 193 K for (I), and C—H distances of 0.93–0.96 Å at 295 K for (II), and with Uiso(H) values of 1.2Ueq(C), or 1.5Ueq(C) for the methyl group(s). The H atoms of the C20 methyl group in (II) were modelled as six equally spaced half H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2001) for (I); CAD-4 Software (Enraf–Nonius, 1989) for (II). Cell refinement: CrystalClear for (I); CAD-4 Software for (II). Data reduction: CrystalStructure (Rigaku, 2001) for (I); XCAD4 (Harms & Wocadlo, 1995) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a [010] chain. Atoms marked with an asterisk (*), hash (#) or dollar sign ($) are at the symmetry positions (3/2 − x, −1/2 + y, 3/2 − z), (1 − x, 1 − y, 1 − z) and (−3/2 + x, 1/2 − y, −3/2 + z), respectively. For clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of a [010] chain. Atoms marked with an asterisk (*), hash (#), dollar sign ($) or ampersand (&) are at the symmetry positions (3/2 − x, 1/2 + y, 3/2 − z), (3/2 − x, −1/2 + y, 3/2 − z), (1 − x, 1 − y, 1 − z) and (−3/2 + x, 1/2 − y, −3/2 + z), respectively. For clarity, H atoms not involved in the motifs shown have been omitted.
(I) 1-Acetyl-3-ferrocenyl-5-methyl-1H-pyrazole top
Crystal data top
[Fe(C5H5)(C11H11N2O)]F(000) = 640
Mr = 308.16Dx = 1.477 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 5863 reflections
a = 11.8781 (18) Åθ = 3.1–27.5°
b = 7.2993 (10) ŵ = 1.08 mm1
c = 16.088 (2) ÅT = 193 K
β = 96.353 (5)°Block, orange
V = 1386.3 (3) Å30.50 × 0.35 × 0.16 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
3178 independent reflections
Radiation source: fine-focus sealed tube2964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 7.31 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1514
Absorption correction: multi-scan
(Jacobson, 1998)
k = 99
Tmin = 0.613, Tmax = 0.846l = 2020
14815 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.841P]
where P = (Fo2 + 2Fc2)/3
3178 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Fe(C5H5)(C11H11N2O)]V = 1386.3 (3) Å3
Mr = 308.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8781 (18) ŵ = 1.08 mm1
b = 7.2993 (10) ÅT = 193 K
c = 16.088 (2) Å0.50 × 0.35 × 0.16 mm
β = 96.353 (5)°
Data collection top
Rigaku Mercury
diffractometer
3178 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2964 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.846Rint = 0.024
14815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.11Δρmax = 0.44 e Å3
3178 reflectionsΔρmin = 0.38 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.76919 (2)0.46668 (3)0.539625 (15)0.02227 (9)
O10.33436 (12)0.8684 (2)0.77219 (10)0.0458 (4)
N10.49087 (12)0.7683 (2)0.71718 (9)0.0258 (3)
N20.57258 (12)0.8046 (2)0.66449 (9)0.0251 (3)
C160.40302 (19)1.0581 (3)0.66757 (16)0.0431 (5)
H16A0.33601.13320.67360.065*
H16B0.40141.01750.60940.065*
H16C0.47161.13060.68300.065*
C150.40317 (16)0.8953 (3)0.72333 (13)0.0330 (4)
C140.43764 (19)0.5238 (3)0.81953 (14)0.0418 (5)
H14A0.47210.41070.84330.063*
H14B0.36310.49630.78970.063*
H14C0.42910.61120.86460.063*
C130.51180 (15)0.6049 (3)0.76014 (11)0.0279 (4)
C120.60871 (16)0.5371 (3)0.73392 (11)0.0280 (4)
H120.64610.42650.75170.034*
C110.64284 (14)0.6641 (2)0.67475 (10)0.0238 (3)
C100.74240 (15)0.6537 (2)0.62975 (10)0.0243 (3)
C90.84107 (15)0.5459 (3)0.65479 (12)0.0293 (4)
H90.85300.46640.70560.035*
C80.91870 (16)0.5703 (3)0.59469 (13)0.0357 (5)
H80.99480.51110.59570.043*
C70.86901 (18)0.6922 (3)0.53264 (13)0.0363 (5)
H70.90400.73330.48210.044*
C60.76016 (17)0.7435 (2)0.55352 (12)0.0301 (4)
H60.70570.82750.52060.036*
C50.79989 (19)0.2131 (3)0.49373 (15)0.0431 (5)
H50.87390.14660.50080.052*
C40.7141 (2)0.2041 (3)0.54861 (15)0.0477 (6)
H40.71680.12980.60100.057*
C30.62432 (19)0.3174 (3)0.51574 (15)0.0459 (6)
H30.55210.33840.54090.055*
C20.65368 (19)0.3968 (3)0.44176 (14)0.0442 (5)
H20.60600.48410.40520.053*
C10.76194 (19)0.3326 (3)0.42772 (13)0.0407 (5)
H10.80440.36630.37960.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02582 (14)0.01771 (14)0.02343 (14)0.00012 (9)0.00350 (10)0.00205 (9)
O10.0358 (8)0.0518 (10)0.0520 (9)0.0084 (7)0.0150 (7)0.0079 (8)
N10.0238 (7)0.0278 (8)0.0255 (7)0.0013 (6)0.0014 (6)0.0055 (6)
N20.0259 (7)0.0252 (7)0.0239 (7)0.0003 (6)0.0017 (6)0.0045 (6)
C160.0367 (11)0.0350 (11)0.0572 (14)0.0117 (9)0.0034 (10)0.0012 (10)
C150.0265 (9)0.0345 (10)0.0370 (10)0.0031 (8)0.0015 (8)0.0122 (8)
C140.0413 (12)0.0478 (13)0.0386 (11)0.0015 (10)0.0148 (9)0.0052 (10)
C130.0292 (9)0.0316 (10)0.0223 (8)0.0009 (8)0.0000 (7)0.0027 (7)
C120.0300 (9)0.0284 (9)0.0253 (9)0.0038 (7)0.0010 (7)0.0014 (7)
C110.0263 (8)0.0231 (8)0.0212 (8)0.0007 (7)0.0011 (6)0.0052 (7)
C100.0272 (8)0.0216 (8)0.0234 (8)0.0001 (7)0.0003 (6)0.0043 (7)
C90.0260 (9)0.0360 (10)0.0251 (9)0.0031 (8)0.0009 (7)0.0045 (7)
C80.0226 (9)0.0427 (11)0.0424 (11)0.0043 (8)0.0056 (8)0.0111 (9)
C70.0429 (11)0.0297 (10)0.0392 (11)0.0110 (9)0.0171 (9)0.0050 (8)
C60.0420 (11)0.0159 (8)0.0327 (9)0.0018 (7)0.0051 (8)0.0005 (7)
C50.0458 (12)0.0258 (10)0.0583 (14)0.0052 (9)0.0087 (10)0.0168 (10)
C40.0772 (17)0.0209 (9)0.0470 (13)0.0139 (11)0.0165 (12)0.0036 (9)
C30.0376 (11)0.0403 (12)0.0627 (15)0.0174 (10)0.0179 (10)0.0252 (11)
C20.0457 (12)0.0409 (12)0.0423 (12)0.0007 (10)0.0119 (10)0.0164 (10)
C10.0508 (12)0.0390 (11)0.0340 (10)0.0124 (10)0.0124 (9)0.0168 (9)
Geometric parameters (Å, º) top
Fe1—C12.0424 (19)C15—C161.489 (3)
Fe1—C22.036 (2)C16—H16A0.9800
Fe1—C32.037 (2)C16—H16B0.9800
Fe1—C42.036 (2)C16—H16C0.9800
Fe1—C52.040 (2)C10—C61.427 (3)
Fe1—C62.0374 (18)C10—C91.432 (3)
Fe1—C72.0390 (19)C9—H91.0000
Fe1—C82.0402 (19)C8—C91.419 (3)
Fe1—C92.0363 (18)C7—C81.416 (3)
Fe1—C102.0421 (17)C8—H81.0000
O1—C151.211 (2)C7—H71.0000
N1—N21.383 (2)C6—C71.422 (3)
N1—C131.387 (2)C6—H61.0000
N1—C151.406 (2)C1—C51.409 (3)
C11—N21.321 (2)C5—C41.422 (3)
C10—C111.455 (2)C5—H51.0000
C11—C121.420 (3)C4—H41.0000
C12—C131.362 (3)C3—C41.405 (4)
C12—H120.9500C3—C21.402 (3)
C13—C141.492 (3)C3—H31.0000
C14—H14A0.9800C2—C11.410 (3)
C14—H14B0.9800C2—H21.0000
C14—H14C0.9800C1—H11.0000
C2—Fe1—C467.94 (10)C6—C10—C9107.45 (16)
C2—Fe1—C9162.52 (9)C6—C10—C11127.54 (16)
C4—Fe1—C9107.98 (9)C9—C10—C11125.00 (16)
C2—Fe1—C340.27 (10)C6—C10—Fe169.35 (10)
C4—Fe1—C340.37 (10)C9—C10—Fe169.23 (10)
C9—Fe1—C3125.73 (9)C11—C10—Fe1125.95 (12)
C2—Fe1—C6107.11 (9)C7—C6—C10107.87 (17)
C4—Fe1—C6154.80 (9)C7—C6—Fe169.65 (11)
C9—Fe1—C668.91 (8)C10—C6—Fe169.71 (10)
C3—Fe1—C6119.84 (9)C7—C6—H6126.1
C2—Fe1—C7120.39 (10)C10—C6—H6126.1
C4—Fe1—C7163.26 (10)Fe1—C6—H6126.1
C9—Fe1—C768.47 (8)C8—C7—C6108.54 (17)
C3—Fe1—C7154.90 (10)C8—C7—Fe169.73 (11)
C6—Fe1—C740.82 (8)C6—C7—Fe169.53 (11)
C2—Fe1—C8155.31 (10)C8—C7—H7125.7
C4—Fe1—C8126.13 (10)C6—C7—H7125.7
C9—Fe1—C840.75 (8)Fe1—C7—H7125.7
C3—Fe1—C8163.09 (10)C7—C8—C9107.91 (17)
C6—Fe1—C868.80 (8)C7—C8—Fe169.64 (11)
C7—Fe1—C840.63 (9)C9—C8—Fe169.48 (11)
C2—Fe1—C567.98 (9)C7—C8—H8126.0
C4—Fe1—C540.84 (9)C9—C8—H8126.0
C9—Fe1—C5120.88 (9)Fe1—C8—H8126.0
C3—Fe1—C568.14 (9)C8—C9—C10108.23 (17)
C6—Fe1—C5162.40 (9)C8—C9—Fe169.77 (11)
C7—Fe1—C5125.74 (9)C10—C9—Fe169.66 (10)
C8—Fe1—C5108.16 (9)C8—C9—H9125.9
C2—Fe1—C10124.89 (8)C10—C9—H9125.9
C4—Fe1—C10120.16 (8)Fe1—C9—H9125.9
C9—Fe1—C1041.11 (7)C2—C3—C4108.2 (2)
C3—Fe1—C10107.26 (8)C2—C3—Fe169.81 (12)
C6—Fe1—C1040.94 (7)C4—C3—Fe169.77 (12)
C7—Fe1—C1068.69 (7)C2—C3—H3125.9
C8—Fe1—C1068.92 (7)C4—C3—H3125.9
C5—Fe1—C10155.72 (9)Fe1—C3—H3125.9
C2—Fe1—C140.46 (9)C3—C2—C1108.4 (2)
C4—Fe1—C168.22 (9)C3—C2—Fe169.92 (12)
C9—Fe1—C1155.60 (9)C1—C2—Fe170.03 (12)
C3—Fe1—C167.98 (9)C3—C2—H2125.8
C6—Fe1—C1125.06 (9)C1—C2—H2125.8
C7—Fe1—C1107.84 (8)Fe1—C2—H2125.8
C8—Fe1—C1120.67 (8)C5—C1—C2107.8 (2)
C5—Fe1—C140.38 (9)C5—C1—Fe169.73 (12)
C10—Fe1—C1162.08 (9)C2—C1—Fe169.51 (11)
N2—C11—C10121.01 (16)C5—C1—H1126.1
N2—C11—C12111.56 (16)C2—C1—H1126.1
C10—C11—C12127.41 (16)Fe1—C1—H1126.1
N2—N1—C13111.77 (14)C1—C5—C4107.8 (2)
N2—N1—C15119.51 (16)C1—C5—Fe169.89 (11)
C13—N1—C15128.68 (16)C4—C5—Fe169.41 (11)
C11—N2—N1104.55 (14)C1—C5—H5126.1
O1—C15—N1119.84 (19)C4—C5—H5126.1
O1—C15—C16124.36 (19)Fe1—C5—H5126.1
N1—C15—C16115.80 (18)C3—C4—C5107.8 (2)
C11—C12—C13106.50 (16)C3—C4—Fe169.86 (12)
C13—C12—H12126.8C5—C4—Fe169.75 (12)
C11—C12—H12126.8C3—C4—H4126.1
N1—C13—C14125.05 (17)C5—C4—H4126.1
C12—C13—N1105.62 (16)Fe1—C4—H4126.1
C12—C13—C14129.30 (19)C13—C14—H14A109.5
C15—C16—H16A109.5C13—C14—H14B109.5
C15—C16—H16B109.5H14A—C14—H14B109.5
H16A—C16—H16B109.5C13—C14—H14C109.5
C15—C16—H16C109.5H14A—C14—H14C109.5
H16A—C16—H16C109.5H14B—C14—H14C109.5
H16B—C16—H16C109.5
C12—C11—N2—N10.47 (18)C11—C10—C9—Fe1120.06 (17)
C10—C11—N2—N1179.22 (14)C2—Fe1—C9—C8161.5 (3)
C13—N1—N2—C110.28 (18)C4—Fe1—C9—C8124.97 (14)
C15—N1—N2—C11178.32 (15)C3—Fe1—C9—C8166.10 (13)
N2—N1—C15—O1176.59 (17)C6—Fe1—C9—C881.60 (13)
C13—N1—C15—O11.1 (3)C7—Fe1—C9—C837.64 (13)
N2—N1—C15—C163.0 (2)C5—Fe1—C9—C882.08 (15)
C13—N1—C15—C16179.31 (18)C10—Fe1—C9—C8119.47 (17)
N2—C11—C12—C130.5 (2)C1—Fe1—C9—C848.2 (3)
C10—C11—C12—C13179.15 (16)C2—Fe1—C9—C1042.1 (3)
C11—C12—C13—N10.29 (19)C4—Fe1—C9—C10115.56 (12)
C11—C12—C13—C14177.47 (19)C3—Fe1—C9—C1074.43 (14)
N2—N1—C13—C120.01 (19)C6—Fe1—C9—C1037.87 (11)
C15—N1—C13—C12177.79 (17)C7—Fe1—C9—C1081.84 (12)
N2—N1—C13—C14177.86 (17)C8—Fe1—C9—C10119.47 (17)
C15—N1—C13—C144.3 (3)C5—Fe1—C9—C10158.45 (11)
N2—C11—C10—C622.8 (3)C1—Fe1—C9—C10167.67 (18)
C12—C11—C10—C6158.66 (18)C4—Fe1—C3—C2119.41 (19)
N2—C11—C10—C9158.29 (17)C9—Fe1—C3—C2165.60 (12)
C12—C11—C10—C920.2 (3)C6—Fe1—C3—C281.24 (15)
N2—C11—C10—Fe1113.26 (17)C7—Fe1—C3—C247.6 (2)
C12—C11—C10—Fe168.2 (2)C8—Fe1—C3—C2161.8 (3)
C2—Fe1—C10—C675.14 (14)C5—Fe1—C3—C281.28 (15)
C4—Fe1—C10—C6158.00 (13)C10—Fe1—C3—C2124.05 (13)
C9—Fe1—C10—C6119.06 (16)C1—Fe1—C3—C237.59 (14)
C3—Fe1—C10—C6115.91 (13)C2—Fe1—C3—C4119.41 (19)
C7—Fe1—C10—C637.82 (11)C9—Fe1—C3—C474.99 (15)
C8—Fe1—C10—C681.55 (12)C6—Fe1—C3—C4159.34 (13)
C5—Fe1—C10—C6169.12 (19)C7—Fe1—C3—C4166.97 (18)
C1—Fe1—C10—C644.3 (3)C8—Fe1—C3—C442.4 (3)
C2—Fe1—C10—C9165.80 (13)C5—Fe1—C3—C438.13 (13)
C4—Fe1—C10—C982.94 (14)C10—Fe1—C3—C4116.54 (13)
C3—Fe1—C10—C9125.03 (13)C1—Fe1—C3—C481.82 (14)
C6—Fe1—C10—C9119.06 (16)C4—C3—C2—C10.3 (2)
C7—Fe1—C10—C981.24 (12)Fe1—C3—C2—C159.69 (14)
C8—Fe1—C10—C937.52 (12)C4—C3—C2—Fe159.39 (15)
C5—Fe1—C10—C950.1 (2)C4—Fe1—C2—C337.51 (14)
C1—Fe1—C10—C9163.3 (2)C9—Fe1—C2—C342.2 (4)
C2—Fe1—C10—C1146.94 (19)C6—Fe1—C2—C3116.23 (14)
C4—Fe1—C10—C1135.92 (19)C7—Fe1—C2—C3158.72 (13)
C9—Fe1—C10—C11118.9 (2)C8—Fe1—C2—C3167.42 (19)
C3—Fe1—C10—C116.17 (18)C5—Fe1—C2—C381.73 (15)
C6—Fe1—C10—C11122.1 (2)C10—Fe1—C2—C374.72 (16)
C7—Fe1—C10—C11159.89 (17)C1—Fe1—C2—C3119.4 (2)
C8—Fe1—C10—C11156.38 (17)C4—Fe1—C2—C181.85 (15)
C5—Fe1—C10—C1168.8 (3)C9—Fe1—C2—C1161.6 (3)
C1—Fe1—C10—C1177.8 (3)C3—Fe1—C2—C1119.4 (2)
C9—C10—C6—C70.5 (2)C6—Fe1—C2—C1124.41 (14)
C11—C10—C6—C7179.52 (17)C7—Fe1—C2—C181.92 (15)
Fe1—C10—C6—C759.42 (13)C8—Fe1—C2—C148.1 (3)
C9—C10—C6—Fe158.95 (12)C5—Fe1—C2—C137.63 (14)
C11—C10—C6—Fe1120.11 (18)C10—Fe1—C2—C1165.92 (12)
C2—Fe1—C6—C7116.96 (13)C3—C2—C1—C50.2 (2)
C4—Fe1—C6—C7168.6 (2)Fe1—C2—C1—C559.42 (14)
C9—Fe1—C6—C781.06 (13)C3—C2—C1—Fe159.62 (14)
C3—Fe1—C6—C7158.91 (13)C2—Fe1—C1—C5119.1 (2)
C8—Fe1—C6—C737.23 (12)C4—Fe1—C1—C538.03 (14)
C5—Fe1—C6—C746.0 (3)C9—Fe1—C1—C547.6 (3)
C10—Fe1—C6—C7119.09 (16)C3—Fe1—C1—C581.70 (15)
C1—Fe1—C6—C776.12 (15)C6—Fe1—C1—C5166.47 (13)
C2—Fe1—C6—C10123.95 (12)C7—Fe1—C1—C5124.66 (14)
C4—Fe1—C6—C1049.5 (3)C8—Fe1—C1—C582.06 (15)
C9—Fe1—C6—C1038.03 (10)C10—Fe1—C1—C5159.6 (2)
C3—Fe1—C6—C1082.00 (13)C4—Fe1—C1—C281.09 (16)
C7—Fe1—C6—C10119.09 (16)C9—Fe1—C1—C2166.73 (19)
C8—Fe1—C6—C1081.86 (12)C3—Fe1—C1—C237.43 (15)
C5—Fe1—C6—C10165.1 (3)C6—Fe1—C1—C274.41 (16)
C1—Fe1—C6—C10164.79 (11)C7—Fe1—C1—C2116.22 (15)
C10—C6—C7—C80.5 (2)C8—Fe1—C1—C2158.82 (14)
Fe1—C6—C7—C858.98 (14)C5—Fe1—C1—C2119.1 (2)
C10—C6—C7—Fe159.45 (12)C10—Fe1—C1—C240.4 (3)
C2—Fe1—C7—C8159.06 (12)C2—C1—C5—C40.0 (2)
C4—Fe1—C7—C843.1 (3)Fe1—C1—C5—C459.30 (14)
C9—Fe1—C7—C837.74 (11)C2—C1—C5—Fe159.28 (14)
C3—Fe1—C7—C8167.36 (18)C2—Fe1—C5—C137.70 (14)
C6—Fe1—C7—C8119.98 (17)C4—Fe1—C5—C1119.0 (2)
C5—Fe1—C7—C875.58 (15)C9—Fe1—C5—C1159.17 (12)
C10—Fe1—C7—C882.05 (12)C3—Fe1—C5—C181.27 (15)
C1—Fe1—C7—C8116.61 (13)C6—Fe1—C5—C139.3 (3)
C2—Fe1—C7—C680.96 (14)C7—Fe1—C5—C174.72 (16)
C4—Fe1—C7—C6163.1 (3)C8—Fe1—C5—C1116.30 (14)
C9—Fe1—C7—C682.24 (12)C10—Fe1—C5—C1164.85 (17)
C3—Fe1—C7—C647.4 (2)C2—Fe1—C5—C481.28 (16)
C8—Fe1—C7—C6119.98 (17)C9—Fe1—C5—C481.85 (16)
C5—Fe1—C7—C6164.44 (12)C3—Fe1—C5—C437.71 (15)
C10—Fe1—C7—C637.93 (11)C6—Fe1—C5—C4158.3 (3)
C1—Fe1—C7—C6123.41 (12)C7—Fe1—C5—C4166.31 (14)
C6—C7—C8—C90.3 (2)C8—Fe1—C5—C4124.72 (15)
Fe1—C7—C8—C959.15 (14)C10—Fe1—C5—C445.9 (3)
C6—C7—C8—Fe158.86 (14)C1—Fe1—C5—C4119.0 (2)
C2—Fe1—C8—C747.6 (3)C2—C3—C4—C50.3 (2)
C4—Fe1—C8—C7165.90 (12)Fe1—C3—C4—C559.70 (15)
C9—Fe1—C8—C7119.28 (17)C2—C3—C4—Fe159.41 (15)
C3—Fe1—C8—C7161.4 (3)C1—C5—C4—C30.2 (2)
C6—Fe1—C8—C737.40 (11)Fe1—C5—C4—C359.76 (14)
C5—Fe1—C8—C7124.18 (13)C1—C5—C4—Fe159.60 (14)
C10—Fe1—C8—C781.44 (12)C2—Fe1—C4—C337.42 (13)
C1—Fe1—C8—C781.70 (14)C9—Fe1—C4—C3124.48 (13)
C2—Fe1—C8—C9166.84 (19)C6—Fe1—C4—C345.9 (3)
C4—Fe1—C8—C974.82 (15)C7—Fe1—C4—C3160.6 (3)
C3—Fe1—C8—C942.1 (3)C8—Fe1—C4—C3165.96 (13)
C6—Fe1—C8—C981.88 (12)C5—Fe1—C4—C3118.8 (2)
C7—Fe1—C8—C9119.28 (17)C10—Fe1—C4—C381.16 (15)
C5—Fe1—C8—C9116.54 (13)C1—Fe1—C4—C381.18 (15)
C10—Fe1—C8—C937.84 (11)C2—Fe1—C4—C581.38 (15)
C1—Fe1—C8—C9159.02 (12)C9—Fe1—C4—C5116.72 (14)
C7—C8—C9—C100.0 (2)C3—Fe1—C4—C5118.8 (2)
Fe1—C8—C9—C1059.25 (13)C6—Fe1—C4—C5164.74 (18)
C7—C8—C9—Fe159.25 (14)C7—Fe1—C4—C541.8 (4)
C6—C10—C9—C80.3 (2)C8—Fe1—C4—C575.25 (16)
C11—C10—C9—C8179.38 (17)C10—Fe1—C4—C5160.04 (13)
Fe1—C10—C9—C859.32 (13)C1—Fe1—C4—C537.62 (14)
C6—C10—C9—Fe159.03 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i1.002.853.408 (2)116
C9—H9···Cg1ii1.002.643.567 (2)154
C16—H16B···Cg2i0.982.963.704 (3)133
C9—H9···N1ii1.002.563.380 (3)139
C9—H9···N2ii1.002.483.457 (3)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2.
(II) 1-Acetyl-5-ferrocenyl-3-(2-pyridyl)-1H-pyrazole top
Crystal data top
[Fe(C5H5)(C15H12N3O)]F(000) = 768
Mr = 371.22Dx = 1.486 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4790 (15) ÅCell parameters from 25 reflections
b = 8.9290 (18) Åθ = 9–15°
c = 24.942 (3) ŵ = 0.92 mm1
β = 94.84 (3)°T = 295 K
V = 1659.7 (5) Å3Plate, orange-red
Z = 40.21 × 0.13 × 0.11 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2548 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 26.0°, θmin = 1.6°
ω/2θ scansh = 09
Absorption correction: empirical
ψ scan (North et al., 1968)
k = 010
Tmin = 0.830, Tmax = 0.901l = 3030
3503 measured reflections3 standard reflections every 200 reflections
3247 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0431P)2 + 1.3303P]
where P = (Fo2 + 2Fc2)/3
3247 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Fe(C5H5)(C15H12N3O)]V = 1659.7 (5) Å3
Mr = 371.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4790 (15) ŵ = 0.92 mm1
b = 8.9290 (18) ÅT = 295 K
c = 24.942 (3) Å0.21 × 0.13 × 0.11 mm
β = 94.84 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2548 reflections with I > 2σ(I)
Absorption correction: empirical
ψ scan (North et al., 1968)
Rint = 0.023
Tmin = 0.830, Tmax = 0.9013 standard reflections every 200 reflections
3503 measured reflections intensity decay: none
3247 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.10Δρmax = 0.44 e Å3
3247 reflectionsΔρmin = 0.47 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.49868 (6)0.68302 (5)0.694494 (17)0.03029 (15)
O10.6454 (4)0.2218 (3)0.62279 (10)0.0596 (8)
N10.6860 (3)0.4194 (3)0.56772 (10)0.0325 (6)
N20.7244 (4)0.4587 (3)0.51654 (10)0.0365 (6)
N30.8451 (4)0.8314 (3)0.47962 (12)0.0498 (8)
C10.2711 (5)0.7693 (4)0.72156 (16)0.0502 (10)
H10.21790.73850.75210.060*
C20.2345 (5)0.7113 (4)0.66945 (16)0.0524 (10)
H20.15260.63590.65950.063*
C30.3429 (5)0.7869 (5)0.63499 (16)0.0569 (11)
H30.34630.77000.59830.068*
C40.4455 (6)0.8928 (4)0.66593 (18)0.0592 (11)
H40.52800.95890.65310.071*
C50.4023 (5)0.8820 (4)0.71965 (17)0.0538 (10)
H50.45130.93870.74850.065*
C60.5565 (4)0.4605 (4)0.69085 (13)0.0358 (7)
H60.47780.38590.67770.043*
C70.5791 (5)0.5114 (4)0.74460 (13)0.0423 (8)
H70.51870.47480.77300.051*
C80.7082 (5)0.6271 (4)0.74821 (14)0.0431 (8)
H80.74750.67970.77920.052*
C90.7672 (4)0.6486 (4)0.69637 (13)0.0361 (7)
H90.85100.71900.68720.043*
C100.6755 (4)0.5432 (3)0.66028 (12)0.0311 (7)
C110.7038 (4)0.5412 (3)0.60287 (12)0.0317 (7)
C120.7553 (4)0.6570 (4)0.57238 (13)0.0385 (8)
H120.77870.75450.58400.046*
C130.7668 (4)0.6020 (4)0.51996 (13)0.0344 (7)
C140.8167 (4)0.6848 (4)0.47246 (12)0.0361 (7)
C150.8343 (5)0.6147 (5)0.42391 (14)0.0521 (10)
H150.81560.51210.42030.063*
C160.8796 (6)0.6983 (5)0.38125 (15)0.0618 (11)
H160.89210.65330.34820.074*
C170.9063 (5)0.8491 (5)0.38766 (16)0.0568 (11)
H170.93570.90840.35900.068*
C180.8889 (6)0.9099 (5)0.43675 (16)0.0584 (11)
H180.90851.01220.44100.070*
C190.6552 (4)0.2652 (4)0.57789 (14)0.0382 (8)
C200.6403 (6)0.1652 (4)0.52993 (15)0.0529 (10)
H20A0.65190.22350.49810.079*0.50
H20B0.52570.11620.52730.079*0.50
H20C0.73390.09140.53350.079*0.50
H20D0.62240.06380.54120.079*0.50
H20E0.74860.17120.51190.079*0.50
H20F0.54040.19600.50580.079*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0272 (2)0.0299 (2)0.0347 (2)0.0008 (2)0.00769 (17)0.0019 (2)
O10.101 (2)0.0343 (14)0.0460 (15)0.0008 (14)0.0212 (15)0.0024 (11)
N20.0365 (15)0.0411 (16)0.0330 (14)0.0028 (13)0.0090 (12)0.0003 (12)
N10.0341 (14)0.0306 (14)0.0337 (14)0.0000 (11)0.0080 (11)0.0005 (11)
N30.063 (2)0.0408 (17)0.0485 (17)0.0008 (15)0.0199 (15)0.0026 (14)
C10.040 (2)0.051 (2)0.062 (2)0.0088 (17)0.0211 (18)0.0130 (19)
C20.0307 (18)0.058 (2)0.069 (3)0.0082 (17)0.0027 (17)0.015 (2)
C30.054 (2)0.068 (3)0.047 (2)0.026 (2)0.0012 (18)0.006 (2)
C40.053 (2)0.038 (2)0.087 (3)0.0099 (19)0.009 (2)0.019 (2)
C50.052 (2)0.038 (2)0.072 (3)0.0089 (18)0.010 (2)0.0173 (19)
C60.0372 (17)0.0286 (16)0.0427 (19)0.0020 (14)0.0107 (15)0.0004 (14)
C100.0288 (15)0.0301 (16)0.0347 (16)0.0056 (13)0.0053 (13)0.0006 (13)
C90.0264 (15)0.0408 (18)0.0414 (18)0.0024 (14)0.0048 (13)0.0043 (15)
C80.041 (2)0.051 (2)0.0354 (17)0.0055 (16)0.0036 (15)0.0079 (16)
C70.053 (2)0.0412 (19)0.0340 (18)0.0085 (17)0.0128 (15)0.0062 (15)
C110.0279 (15)0.0297 (16)0.0385 (17)0.0036 (13)0.0081 (13)0.0031 (13)
C120.0426 (19)0.0313 (17)0.0432 (18)0.0013 (14)0.0121 (15)0.0018 (14)
C130.0314 (16)0.0364 (18)0.0362 (17)0.0028 (14)0.0071 (13)0.0003 (14)
C140.0313 (16)0.0416 (18)0.0361 (17)0.0042 (15)0.0074 (13)0.0030 (15)
C150.069 (3)0.050 (2)0.0379 (19)0.004 (2)0.0114 (18)0.0032 (17)
C160.075 (3)0.075 (3)0.038 (2)0.007 (2)0.0143 (19)0.002 (2)
C170.055 (2)0.068 (3)0.049 (2)0.000 (2)0.0136 (19)0.017 (2)
C180.065 (3)0.048 (2)0.064 (3)0.001 (2)0.018 (2)0.013 (2)
C190.0368 (18)0.0340 (17)0.044 (2)0.0039 (14)0.0053 (15)0.0026 (15)
C200.066 (2)0.037 (2)0.055 (2)0.0003 (18)0.0032 (19)0.0118 (18)
Geometric parameters (Å, º) top
Fe1—C12.035 (3)C6—C101.426 (4)
Fe1—C22.037 (4)C6—H60.9300
Fe1—C32.032 (4)C7—H70.9300
Fe1—C42.032 (4)C8—C71.412 (5)
Fe1—C52.036 (4)C8—H80.9300
Fe1—C62.037 (3)C9—C81.414 (5)
Fe1—C72.036 (3)C9—H90.9300
Fe1—C82.036 (3)C10—C91.436 (4)
Fe1—C92.028 (3)C10—C111.465 (4)
Fe1—C102.056 (3)C11—C121.358 (4)
O1—C191.193 (4)C12—C131.406 (4)
N1—N21.378 (3)C12—H120.9300
N1—C111.396 (4)C13—C141.471 (4)
N1—C191.422 (4)C14—C151.379 (5)
N2—C131.319 (4)C15—C161.366 (5)
N3—C141.336 (4)C15—H150.9300
N3—C181.342 (4)C16—C171.368 (6)
C1—C21.404 (5)C16—H160.9300
C1—H10.9300C17—C181.356 (5)
C2—C31.403 (6)C17—H170.9300
C2—H20.9300C18—H180.9300
C3—C41.407 (6)C19—C201.489 (5)
C3—H30.9300C20—H20A0.9600
C4—C51.408 (6)C20—H20B0.9600
C4—H40.9300C20—H20C0.9600
C1—C51.410 (5)C20—H20D0.9600
C5—H50.9300C20—H20E0.9600
C6—C71.412 (4)C20—H20F0.9600
C9—Fe1—C4108.18 (16)Fe1—C5—H5126.0
C9—Fe1—C3126.27 (15)C7—C6—C10108.1 (3)
C4—Fe1—C340.51 (16)C7—C6—Fe169.65 (19)
C9—Fe1—C1154.70 (14)C10—C6—Fe170.29 (17)
C4—Fe1—C167.84 (17)C7—C6—H6126.0
C3—Fe1—C168.00 (16)C10—C6—H6126.0
C9—Fe1—C768.36 (14)Fe1—C6—H6125.7
C4—Fe1—C7161.49 (17)C6—C10—C9106.9 (3)
C3—Fe1—C7155.98 (17)C6—C10—C11131.6 (3)
C1—Fe1—C7107.05 (15)C9—C10—C11121.3 (3)
C9—Fe1—C5120.03 (15)C6—C10—Fe168.93 (17)
C4—Fe1—C540.49 (16)C9—C10—Fe168.38 (17)
C3—Fe1—C568.33 (17)C11—C10—Fe1124.3 (2)
C1—Fe1—C540.52 (15)C8—C9—C10108.4 (3)
C7—Fe1—C5124.16 (15)C8—C9—Fe169.96 (19)
C9—Fe1—C840.72 (13)C10—C9—Fe170.45 (17)
C4—Fe1—C8125.02 (17)C8—C9—H9125.8
C3—Fe1—C8162.67 (17)C10—C9—H9125.8
C1—Fe1—C8119.57 (15)Fe1—C9—H9125.4
C7—Fe1—C840.57 (14)C7—C8—C9107.8 (3)
C5—Fe1—C8106.50 (16)C7—C8—Fe169.70 (19)
C9—Fe1—C2163.48 (14)C9—C8—Fe169.32 (18)
C4—Fe1—C267.79 (17)C7—C8—H8126.1
C3—Fe1—C240.35 (16)C9—C8—H8126.1
C1—Fe1—C240.35 (15)Fe1—C8—H8126.4
C7—Fe1—C2120.67 (16)C8—C7—C6108.8 (3)
C5—Fe1—C268.10 (16)C8—C7—Fe169.7 (2)
C8—Fe1—C2154.81 (16)C6—C7—Fe169.78 (19)
C9—Fe1—C668.89 (13)C8—C7—H7125.6
C4—Fe1—C6156.89 (16)C6—C7—H7125.6
C3—Fe1—C6121.56 (16)Fe1—C7—H7126.5
C1—Fe1—C6124.80 (15)C12—C11—N1104.9 (3)
C7—Fe1—C640.58 (13)C12—C11—C10127.5 (3)
C5—Fe1—C6161.23 (15)N1—C11—C10127.5 (3)
C8—Fe1—C668.63 (14)C11—C12—C13107.3 (3)
C2—Fe1—C6108.14 (15)C11—C12—H12126.4
C9—Fe1—C1041.16 (12)C13—C12—H12126.4
C4—Fe1—C10121.88 (15)N2—C13—C12111.5 (3)
C3—Fe1—C10108.86 (14)N2—C13—C14120.7 (3)
C1—Fe1—C10162.38 (14)C12—C13—C14127.8 (3)
C7—Fe1—C1068.33 (13)N3—C14—C15122.4 (3)
C5—Fe1—C10156.14 (15)N3—C14—C13115.7 (3)
C8—Fe1—C1068.77 (13)C15—C14—C13121.9 (3)
C2—Fe1—C10126.11 (14)C16—C15—C14119.0 (4)
C6—Fe1—C1040.78 (12)C16—C15—H15120.5
C13—N2—N1104.8 (3)C14—C15—H15120.5
N2—N1—C11111.5 (3)C15—C16—C17119.4 (4)
N2—N1—C19117.5 (3)C15—C16—H16120.3
C11—N1—C19130.6 (3)C17—C16—H16120.3
C14—N3—C18116.9 (3)C18—C17—C16118.4 (4)
C2—C1—C5108.3 (4)C18—C17—H17120.8
C2—C1—Fe169.9 (2)C16—C17—H17120.8
C5—C1—Fe169.8 (2)N3—C18—C17124.0 (4)
C2—C1—H1125.9N3—C18—H18118.0
C5—C1—H1125.9C17—C18—H18118.0
Fe1—C1—H1126.0O1—C19—N1120.4 (3)
C3—C2—C1108.2 (4)O1—C19—C20123.6 (3)
C3—C2—Fe169.6 (2)N1—C19—C20116.1 (3)
C1—C2—Fe169.7 (2)C19—C20—H20A109.5
C3—C2—H2125.9C19—C20—H20B109.5
C1—C2—H2125.9H20A—C20—H20B109.5
Fe1—C2—H2126.3C19—C20—H20C109.5
C2—C3—C4107.7 (4)H20A—C20—H20C109.5
C2—C3—Fe170.0 (2)H20B—C20—H20C109.5
C4—C3—Fe169.7 (2)C19—C20—H20D109.5
C2—C3—H3126.2H20A—C20—H20D141.1
C4—C3—H3126.2H20B—C20—H20D56.3
Fe1—C3—H3125.7H20C—C20—H20D56.3
C3—C4—C5108.5 (4)C19—C20—H20E109.5
C3—C4—Fe169.8 (2)H20A—C20—H20E56.3
C5—C4—Fe169.9 (2)H20B—C20—H20E141.1
C3—C4—H4125.7H20C—C20—H20E56.3
C5—C4—H4125.7H20D—C20—H20E109.5
Fe1—C4—H4126.2C19—C20—H20F109.5
C4—C5—C1107.3 (4)H20A—C20—H20F56.3
C4—C5—Fe169.6 (2)H20B—C20—H20F56.3
C1—C5—Fe169.7 (2)H20C—C20—H20F141.1
C4—C5—H5126.3H20D—C20—H20F109.5
C1—C5—H5126.3H20E—C20—H20F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.543.416 (4)158
Symmetry code: (i) x+3/2, y+1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Fe(C5H5)(C11H11N2O)][Fe(C5H5)(C15H12N3O)]
Mr308.16371.22
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)193295
a, b, c (Å)11.8781 (18), 7.2993 (10), 16.088 (2)7.4790 (15), 8.9290 (18), 24.942 (3)
β (°) 96.353 (5) 94.84 (3)
V3)1386.3 (3)1659.7 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.080.92
Crystal size (mm)0.50 × 0.35 × 0.160.21 × 0.13 × 0.11
Data collection
DiffractometerRigaku Mercury
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Empirical
ψ scan (North et al., 1968)
Tmin, Tmax0.613, 0.8460.830, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
14815, 3178, 2964 3503, 3247, 2548
Rint0.0240.023
(sin θ/λ)max1)0.6490.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.078, 1.11 0.046, 0.109, 1.10
No. of reflections31783247
No. of parameters184226
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.380.44, 0.47

Computer programs: CrystalClear (Rigaku, 2001), CAD-4 Software (Enraf–Nonius, 1989), CrystalClear, CAD-4 Software, CrystalStructure (Rigaku, 2001), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) for (I) top
O1—C151.211 (2)C10—C111.455 (2)
N1—N21.383 (2)C11—C121.420 (3)
N1—C131.387 (2)C12—C131.362 (3)
N1—C151.406 (2)C13—C141.492 (3)
C11—N21.321 (2)C15—C161.489 (3)
N2—C11—C10121.01 (16)O1—C15—N1119.84 (19)
N2—C11—C12111.56 (16)O1—C15—C16124.36 (19)
C10—C11—C12127.41 (16)N1—C15—C16115.80 (18)
N2—N1—C13111.77 (14)C11—C12—C13106.50 (16)
N2—N1—C15119.51 (16)N1—C13—C14125.05 (17)
C13—N1—C15128.68 (16)C12—C13—N1105.62 (16)
C11—N2—N1104.55 (14)C12—C13—C14129.30 (19)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i1.002.853.408 (2)116
C9—H9···Cg1ii1.002.643.567 (2)154
C16—H16B···Cg2i0.982.963.704 (3)133
C9—H9···N1ii1.002.563.380 (3)139
C9—H9···N2ii1.002.483.457 (3)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2.
Selected bond lengths (Å) for (II) top
O1—C191.193 (4)C10—C111.465 (4)
N1—N21.378 (3)C11—C121.358 (4)
N1—C111.396 (4)C12—C131.406 (4)
N1—C191.422 (4)C13—C141.471 (4)
N2—C131.319 (4)C19—C201.489 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.543.416 (4)158
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds