organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Three substituted (Z)-5-benzyl­­idene-2-thioxo­thia­zolidin-4-ones: hydrogen-bonded dimers that can be effectively isolated or linked into chains either by aromatic ππ stacking inter­actions or by dipolar carbon­yl–carbonyl inter­actions

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 15 May 2006; accepted 16 May 2006; online 15 June 2006)

In each of the isomeric compounds (Z)-5-(2-fluoro­benzyl­idene)-2-thioxothia­zolidin-4-one, C10H6FNOS2, (I)[link], and (Z)-5-(4-fluoro­benzyl­idene)-2-thioxothia­zolidin-4-one, C10H6FNOS2, (II)[link], there is a very wide C—C—C angle (ca 130°) at the methine C atom linking the two rings. In each isomer, paired N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric R22(8) dimers; the hydrogen-bonded dimers are linked into chains by an aromatic ππ stacking inter­action in isomer (I)[link] and by an anti­parallel dipolar carbonyl–carbonyl inter­action in isomer (II)[link]. (Z)-5-(3,4,5-Trimethoxy­benzyl­idene)-2-thioxothia­zolidin-4-one, C13H13NO4S2, (III)[link], which crystallizes with Z′ = 2 in the space group P[\overline{1}], shows the same very wide angle at the bridging methine C atom; the two independent mol­ecules are linked into an isolated dimer having no crystallographic symmetry.

Comment

We report here the structures of three substituted (Z)-5-benzyl­idene-2-thioxothia­zolidin-4-ones, namely two isomers of (Z)-5-(fluoro­benzyl­idene)-2-thioxothia­zolidin-4-one, (I)[link] and (II)[link] (Figs. 1[link] and 2[link]), and (Z)-5-(3,4,5-trimethoxy­benzyl­idene)-2-thioxothia­zolidin-4-one, (III)[link] (Fig. 3[link]), and we briefly compare these with the structures of the four analogues (IV)–(VII)[link] (see scheme), which have been reported recently (Delgado et al., 2005[Delgado, P., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o477-o482.]). As for compounds (IV)–(VII)[link], compounds (I)–(III)[link] have been prepared by condensation of 2-thioxothia­zolidin-4-one (rhodanine) with a substituted benzaldehyde using microwave radiation in a solvent-free system.

[Scheme 1]

The mol­ecules of compounds (I)–(III)[link] are all effectively planar, as shown by the values of the Cx5—Cx57—Cx51—Cx52 torsion angle, where x is nil for compounds (I)[link] and (II)[link], and x = 1 or 2, respectively, for the two independent mol­ecules in compound (III)[link] (Table 1[link]); this angle defines the rotation of the aryl ring relative to the rest of the mol­ecule. In each isomer, the Cx5—Cx57—Cx51 angle is very large, ca 130°, and these angles, together with the exocyclic angles at Cx5 and Cx51, are consistent with the occurrence of a repulsive intra­molecular inter­action between atoms Sx1 and Hx56 (Table 2[link]). This behaviour closely mimics that in the analogues (IV)–(VII). In each of the mol­ecules in (III)[link], the meth­oxy groups at Cx53 and Cx55 have their C atoms almost coplanar with the adjacent aryl rings (Table 1[link]), but those at Cx54 have the C atoms well removed from this plane for steric reasons.

The supra­molecular structures of compounds (I)–(III)[link] are very simple. In the isomers (I)[link] and (II)[link], the mol­ecules are linked by paired N—H⋯O hydrogen bonds (Table 2[link]) into centrosymmetric R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimers; in each isomer, the asymmetric unit was selected such that the dimer containing the reference mol­ecule is centred at ([1\over2], [1\over2], [1\over2]) (Figs. 4[link] and 5[link]). The structures of (I)[link] and (II)[link] differ, however, in the manner in which the hydrogen-bonded dimers are linked into chains. In (III)[link], the two independent mol­ecules are again linked into a dimer but this does not exhibit even approximate centrosymmetry. There are no direction-specific inter­actions between the dimeric units in (III)[link].

The hydrogen-bonded dimers in (I)[link] are linked by an aromatic ππ stacking inter­action. The aryl rings in the mol­ecules at (x, y, z) and (2 − x, −y, 1 − z), which lie, respectively, in the R22(8) dimers centred at ([1\over2], [1\over2], [1\over2]) and ([3\over2], −[1\over2], [1\over2]), are strictly parallel, with an inter­planar spacing of 3.366 (2) Å; the ring-centroid separation is 3.692 (2) Å, corresponding to an almost ideal ring offset of 1.515 (2) Å. Propagation by inversion of this inter­action links the dimers into chains running parallel to the [1[\overline{1}]0] direction (Fig. 6[link]).

In (II)[link], the hydrogen-bonded dimers are linked by an anti­parallel carbonyl–carbonyl inter­action, which is centrosymmetric. The mol­ecules at (x, y, z) and (−x, 1 − y, 1 − z) are components of the dimers centred at ([1\over2], [1\over2], [1\over2]) and (−[1\over2], [1\over2], [1\over2]), respectively; their carbonyl groups are anti­parallel, with a C⋯Oii distance of 3.181 (4) Å and an O—C⋯Oii angle of 100.5 (2)° [symmetry code: (ii) −x, −y + 1, −z + 1], producing a slightly sheared inter­action of type II[link] (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]), which links the dimers into chains running parallel to the [100] direction (Fig. 7[link]).

We note very briefly the different patterns of supra­molecular aggregation in the analogues (IV)–(VII)[link] (Delgado et al., 2005[Delgado, P., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o477-o482.]). In (IV)[link], which crystallizes with Z′ = 2 in the space group P21/n, the two independent mol­ecules are linked by N—H⋯O bonds into a dimer, as in (III)[link], but these dimers are not isolated; instead they are linked by C—H⋯π(arene) hydrogen bonds into sheets. Compound (V)[link] is effectively isomorphous with (III)[link] and the mol­ecules form centrosymmetric dimers, which are linked into chains by a dipolar carbonyl–carbonyl inter­action. No dimers formed by paired N—H⋯O hydrogen bonds are discernible in the structure of (VI); instead the mol­ecules are linked into chains of rings by a combination of N—H⋯S and C—H⋯O hydrogen bonds. In (VII), the usual R22(8) dimers are formed and these are linked into chains of rings by C—H⋯S hydrogen bonds. Thus, within the extended series (I)–(VII)[link], it is apparent that rather modest changes to the peripheral substituents can have a significant influence on the overall supra­molecular aggregation.

[Figure 1]
Figure 1
A mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A mol­ecule of (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The two independent mol­ecules of (III)[link], showing the atom-labelling scheme and the N—H⋯O hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
Part of the crystal structure of (I)[link], showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 5]
Figure 5
Part of the crystal structure of (II), showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of (I)[link], showing the formation of a π-stacked [1[\overline{1}]0] chain of hydrogen-bonded dimers. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of (II)[link], showing the formation of a [100] chain of hydrogen-bonded dimers linked by dipolar carbonyl–carbonyl inter­actions. For the sake of clarity, H atoms bonded to C atoms have been omitted.

Experimental

Equimolar quantities (1 mmol of each component) of 2-thioxothia­zolidin-4-one and the appropriate substituted benzaldehyde were placed in open Pyrex glass vessels in the absence of any solvent and irradiated in a domestic microwave oven for 3 min (at 600 W); the reactions were monitored by thin-layer chromatography. The reaction mixtures were extracted with ethanol; after removal of this solvent, the products were recrystallized from dimethyl­formamide to give crystals suitable for single-crystal X-ray diffraction. (I)[link]: orange crystals, m.p. 438 K, yield 53%; MS (70 eV) m/z (%): 239 (4, M+), 152 (100), 108 (2). (II)[link]: orange crystals, m.p. 495 K, yield 88%; MS (70 eV) m/z (%): 239 (24, M+), 152 (100), 107 (20). (III)[link]: orange crystals, m.p. 474 K, yield 85%; MS (70 eV) m/z (%): 313 (18, M+2), 312 (11, M+1), 311(88, M+), 224 [100, (M – C2HNOS)+], 209 (94), 181 (16), 166 (9).

Compound (I)[link]

Crystal data
  • C10H6FNOS2

  • Mr = 239.28

  • Monoclinic, P 21 /c

  • a = 11.1848 (4) Å

  • b = 7.7651 (4) Å

  • c = 12.3611 (5) Å

  • β = 107.417 (3)°

  • V = 1024.35 (8) Å3

  • Z = 4

  • Dx = 1.552 Mg m−3

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 298 (2) K

  • Plate, orange

  • 0.36 × 0.32 × 0.04 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.869, Tmax = 0.980

  • 9920 measured reflections

  • 2337 independent reflections

  • 1768 reflections with I > 2σ(I)

  • Rint = 0.042

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.04

  • 2337 reflections

  • 141 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0479P)2 + 0.3103P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Compound (II)[link]

Crystal data
  • C10H6FNOS2

  • Mr = 239.28

  • Monoclinic, P 21 /c

  • a = 4.9173 (2) Å

  • b = 19.8906 (10) Å

  • c = 10.4976 (6) Å

  • β = 92.929 (3)°

  • V = 1025.41 (9) Å3

  • Z = 4

  • Dx = 1.550 Mg m−3

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 298 (2) K

  • Lath, orange

  • 0.60 × 0.35 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.753, Tmax = 0.942

  • 7246 measured reflections

  • 2287 independent reflections

  • 1430 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.110

  • S = 1.09

  • 2287 reflections

  • 137 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0211P)2 + 1.095P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0071 (17)

Compound (III)[link]

Crystal data
  • C13H13NO4S2

  • Mr = 311.36

  • Triclinic, [P \overline 1]

  • a = 10.3432 (4) Å

  • b = 10.9105 (4) Å

  • c = 13.4621 (4) Å

  • α = 100.399 (2)°

  • β = 91.572 (2)°

  • γ = 110.301 (2)°

  • V = 1394.72 (9) Å3

  • Z = 4

  • Dx = 1.483 Mg m−3

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 120 (2) K

  • Plate, orange

  • 0.10 × 0.08 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.988

  • 29714 measured reflections

  • 6377 independent reflections

  • 3786 reflections with I > 2σ(I)

  • Rint = 0.106

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.119

  • S = 1.00

  • 6377 reflections

  • 367 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0539P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond angles and torsion angles (°) for compounds (I)–(III)

Parameter (I) (II) (III) (III)
x nil nil 1 2
Cx5—Cx57—Cx51 129.25 (17) 130.6 (3) 131.3 (3) 130.6 (3)
Sx1—Cx5—Cx57 130.48 (14) 130.1 (2) 130.0 (2) 130.2 (2)
Cx4—Cx5—Cx57 120.50 (17) 121.1 (3) 120.8 (2) 120.9 (2)
Cx52—Cx51—Cx56 115.44 (16) 118.6 (3) 119.4 (2) 117.8 (2)
Cx57—Cx51—Cx56 124.47 (17) 123.6 (3) 123.0 (2) 123.0 (2)
Cx5—Cx57—Cx51—Cx52 −174.60 (19) 179.9 (3) 179.9 (3) 179.5 (3)
Cx52—Cx53—Ox53—Cx58 5.1 (4) −15.8 (4)
Cx53—Cx54—Ox54—Cx59 −77.3 (3) −48.1 (3)
Cx54—Cx55—Ox55—Cx50 −179.3 (2) 174.3 (2)

Table 2
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I)–(III)

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) C56—H56⋯S1 0.93 2.51 3.226 (2) 134
  N3—H3⋯O4i 0.86 2.00 2.843 (2) 168
           
(II) C56—H56⋯S1 0.93 2.51 3.230 (3) 135
  N3—H3⋯O4i 0.87 2.00 2.831 (3) 159
           
(III) C156—H156⋯S11 0.95 2.50 3.237 (2) 134
  N13—H13⋯O24 0.88 1.95 2.814 (3) 168
  C256—H256⋯S21 0.95 2.49 3.227 (2) 134
  N23—H23⋯O14 0.88 1.96 2.807 (3) 162
Symmetry code: (i) - x+1, - y+1, - z+1.

For each of (I)[link] and (II)[link], the space group P21/c was uniquely assigned from the systematic absences. Crystals of (III)[link] are triclinic; the space group P[\overline{1}] was selected and confirmed by the subsequent structure analysis. All H atoms were located in difference maps. H atoms bonded to C atoms were treated as riding atoms, with C—H distances of 0.93 Å for (I)[link] and (II)[link], and 0.95 (aromatic) and 0.98 Å (methyl) for (III)[link], and with Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(methyl C);H atoms bonded to N atoms were allowed to ride at the distances found from the difference maps [N—H = 0.86–0.88 Å with Uiso(H) = 1.2Ueq(N)].

For all compounds, data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We report here the structures of three substituted (Z)-5-(benzylidene)-2-thioxothiazolidin-4-ones, namely two isomers of (Z)-5-(fluorobenzylidene)-2-thioxothiazolidin-4-one, (I) and (II) (Figs. 1 and 2), and (Z)-5-(3,4,5-trimethoxybenzylidene)-2-thioxothiazolidin-4-one, (III) (Fig. 3), and we briefly compare these with the structures of the four analogues (IV)–(VII) which have been reported recently (Delgado et al., 2005). As for compounds (IV)–(VII), the title compounds (I)-(III) have been prepared by condensation of 2-thioxothiazolidin-4-one (rhodanine) with a substituted benzaldehyde using microwave radiation in a solvent-free system.

The molecules of compounds (I)–(III) are both effectively planar, as shown by the values of the Cx5—Cx57—Cx51—Cx52 torsion angle, where x = nil for compounds (I) and (II), and x = 1 or 2, respectively, for the two independent molecules in compound (III) (Table 1); this angle defines the rotation of the aryl ring relative to the rest of the molecule. In each isomer the Cx5—Cx57—Cx51 angle is very large, ca 130°, and these angles, together with the exocyclic angles at Cx5 and Cx51, are consistent with the occurrence of a repulsive intramolecular interaction between Sx1 and Hx56 (Table 2). This behaviour closely mimics that in the analogues (IV)–(VII). In each of the molecules in (III), the methoxy groups at Cx53 and Cx55 have their C atoms almost coplanar with the adjacent aryl rings (Table 1), but those at Cx54 have the C atoms well removed from this plane for steric reasons.

The supramolecular structures of compounds (I)–(III) are very simple. In the isomers (I) and (II) the molecules are linked by paired N—H···O hydrogen bonds (Table 2) into centrosymmetric R22(8) (Bernstein et al., 1995) dimers; in each isomer the asymmetric unit was selected such that the dimer containing the reference molecule is centred at (1/2, 1/2, 1/2) (Figs. 4 and 5). The structures of (I) and (II) differ, however, in the manner in which the hydrogen-bonded dimers are linked into chains. In compound (III), the two independent molecules are again linked into a dimer but this does not exhibit even approximate centrosymmetry. There are no direction-specific interactions between the dimeric units in compound (III).

The hydrogen-bonded dimers in (I) are linked by an aromatic ππ stacking interaction. The aryl rings in the molecules at (x, y, z) and (2 − x, −y, 1 − z), which lie, respectively, in the R22(8) dimers centred at (1/2, 1/2, 1/2) and (3/2, −1/2, 1/2) are strictly parallel, with an interplanar spacing of 3.366 (2) Å; the ring-centroid separation is 3.692 (2) Å, corresponding to an almost ideal ring offset of 1.515 (2) Å. Propagation by inversion of this interaction links the dimers into chains running parallel to the [110] direction (Fig. 6).

In compound (II), the hydrogen-bonded dimers are linked by an antiparallel carbonyl–carbonyl interaction, which is centrosymmetric. The molecules at (x, y, z) and (−x, 1 − y, 1 − z) are components of the dimers centred at (1/2, 1/2, 1/2) and (−1/2, 1/2, 1/2), respectively; their carbonyl groups are antiparallel, with a C···Oi distance of 3.181 (4) Å and an O—C···Oi angle of 100.5 (2)° [symmetry code: (i) −x, 1 − y, 1 − z], producing a slightly sheared interaction of type (II) (Allen et al., 1998), which links the dimers into chains running parallel to the [100] direction (Fig. 7).

We note very briefly the different patterns of supramolecular aggregation in the analogues (IV)–(VII) (Delgado et al., 2005). In compound (IV), which crystallizes with Z' = 2 in space group P21/n, the two independent molecules are linked by N—H···O bonds into a dimer, as in (III), but these dimers are not isolated; instead they are linked by C—H···π(arene) hydrogen bonds into sheets. Compound (V) is effectively isomorphous with (III) and the molecules form centrosymmetric dimers, which are linked into chains by a dipolar carbonyl–carbonyl interaction. No dimers formed by paired N—H···O hydrogen bonds are discernible in the structure of (VI); instead the molecules are linked into chains of rings by a combination of N—H···S and C—H···O hydrogen bonds. In (VII), the usual R22(8) dimers are formed and these are linked into chains of rings by C—H···S hydrogen bonds. Thus within the extended series (I)–(VII) it is apparent that rather modest changes to the peripheral substituents can have a significant influence on the overall supramolecular aggregation.

Experimental top

Equimolar quantities (1 mmol of each component) of 2-thioxothiazolidin-4-one and the appropriate substituted benzaldehyde were placed in open Pyrex glass vessels in the absence of any solvent and irradiated in a domestic microwave oven for 3 min (at 600 W); the reactions were monitored by thin-layer chromatography. The reaction mixtures were extracted with ethanol; after removal of this solvent, the products were recrystallized from dimethylformamide to give crystals suitable for single-crystal X-ray diffraction. (I) orange crystals, m.p. 438 K, yield 53%; MS (70 eV) m/z (%) 239 (4, M+), 152 ?(100), 108? (2). (II) orange crystals, m.p. 495 K, yield 88%; MS (70 eV) m/z (%) 239 (24, M+), 152? (100), 107?(20). (III) orange crystals, m.p. 474 K, yield 85%; MS (70 eV) m/z (%) 313 (18, M+2), 312 (11, M+1), 311(88, M+), 224 [100, (M– C2HNOS)+], 209?(94), 181 (16), 166 (9).

Refinement top

For each of (I) and (II) the space group P21/c was uniquely assigned from the systematic absences. Crystals of (III) are triclinic; the space group P1 was selected, and confirmed by the subsequent structure analysis. All H atoms were located in difference maps. H atoms bonded to C atoms were treated as riding atoms with distances C—H 0.93 Å for (I) and (II), and 0.95 and 0.98 Å for (III), and with Uiso(H) values of 1.2 or 1.5 times Ueq(C); H atoms bonded to N atoms were allowed to ride at the distances found from the difference maps [N—H = 0.86–0.88 Å with Uiso(H) = 1.2Ueq(N)].

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: Sir2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The two independent molecules of (III), showing the atom-labelling scheme and the N—H···O hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 5] Fig. 5. Part of the crystal structure of II) showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity the H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (I), showing the formation of a π-stacked [110] chain of hydrogen-bonded dimers. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of (II), showing the formation of a [100] chain of hydrogen-bonded dimers linked by dipolar carbonyl–carbonyl interactions. For the sake of clarity, H atoms bonded to C atoms have been omitted.
(I) (Z)-5-(2-fluorobenzylidene)-2-thioxothaolidin-2-one top
Crystal data top
C10H6FNOS2F(000) = 488
Mr = 239.28Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2337 reflections
a = 11.1848 (4) Åθ = 3.1–27.5°
b = 7.7651 (4) ŵ = 0.50 mm1
c = 12.3611 (5) ÅT = 298 K
β = 107.417 (3)°Plate, orange
V = 1024.35 (8) Å30.36 × 0.32 × 0.04 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2337 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1214
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 109
Tmin = 0.869, Tmax = 0.980l = 1612
9920 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.3103P]
where P = (Fo2 + 2Fc2)/3
2337 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H6FNOS2V = 1024.35 (8) Å3
Mr = 239.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1848 (4) ŵ = 0.50 mm1
b = 7.7651 (4) ÅT = 298 K
c = 12.3611 (5) Å0.36 × 0.32 × 0.04 mm
β = 107.417 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2337 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1768 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.980Rint = 0.042
9920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2337 reflectionsΔρmin = 0.32 e Å3
141 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77713 (4)0.41358 (7)0.32725 (4)0.04646 (17)
S20.55447 (5)0.59484 (9)0.17861 (5)0.0631 (2)
F521.02797 (13)0.09006 (18)0.72332 (10)0.0683 (4)
O40.64154 (13)0.3975 (2)0.57676 (12)0.0597 (4)
N30.58930 (13)0.4942 (2)0.39335 (14)0.0455 (4)
C20.62862 (16)0.5068 (2)0.29922 (17)0.0441 (4)
C40.66675 (16)0.4158 (2)0.48794 (17)0.0432 (4)
C50.78410 (16)0.3595 (2)0.46621 (16)0.0397 (4)
C510.99811 (15)0.2238 (2)0.54620 (15)0.0379 (4)
C521.07477 (18)0.1314 (3)0.63747 (16)0.0449 (4)
C531.19345 (19)0.0782 (3)0.64488 (19)0.0525 (5)
C541.24000 (18)0.1142 (3)0.5559 (2)0.0547 (5)
C551.16815 (17)0.2025 (3)0.46334 (19)0.0527 (5)
C561.04901 (16)0.2572 (3)0.45890 (17)0.0460 (5)
C570.87484 (16)0.2811 (2)0.54795 (16)0.0409 (4)
H30.51780.53500.39330.055*
H570.85520.25850.61510.041 (5)*
H531.24130.01840.70820.064 (7)*
H541.32020.07840.55850.066 (7)*
H551.19960.22640.40340.067 (7)*
H561.00150.31700.39550.055 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0347 (2)0.0600 (3)0.0463 (3)0.0085 (2)0.0146 (2)0.0011 (2)
C20.0307 (8)0.0441 (10)0.0544 (11)0.0019 (8)0.0083 (8)0.0051 (8)
S20.0413 (3)0.0787 (4)0.0625 (4)0.0055 (3)0.0050 (3)0.0140 (3)
N30.0283 (7)0.0515 (10)0.0571 (10)0.0055 (7)0.0135 (7)0.0029 (8)
C40.0336 (9)0.0458 (10)0.0519 (11)0.0024 (8)0.0155 (8)0.0051 (8)
O40.0448 (7)0.0840 (12)0.0575 (9)0.0167 (7)0.0260 (7)0.0056 (8)
C50.0326 (8)0.0421 (9)0.0469 (10)0.0013 (8)0.0155 (8)0.0053 (8)
C570.0377 (9)0.0432 (10)0.0446 (10)0.0017 (8)0.0163 (8)0.0032 (8)
C510.0320 (8)0.0388 (9)0.0414 (10)0.0021 (7)0.0091 (7)0.0043 (7)
C520.0452 (10)0.0473 (10)0.0398 (10)0.0019 (9)0.0092 (8)0.0049 (8)
F520.0711 (8)0.0922 (10)0.0428 (7)0.0174 (7)0.0189 (6)0.0098 (6)
C530.0416 (10)0.0504 (11)0.0544 (12)0.0085 (9)0.0027 (9)0.0023 (10)
C540.0302 (9)0.0508 (12)0.0794 (15)0.0051 (8)0.0105 (10)0.0066 (11)
C550.0367 (10)0.0595 (13)0.0659 (13)0.0025 (9)0.0212 (9)0.0022 (10)
C560.0338 (9)0.0527 (11)0.0522 (11)0.0063 (8)0.0139 (8)0.0054 (9)
Geometric parameters (Å, º) top
S1—C51.7471 (19)C51—C561.387 (2)
S1—C21.7487 (18)C51—C521.394 (3)
C2—N31.365 (2)C52—F521.355 (2)
C2—S21.624 (2)C52—C531.367 (3)
N3—C41.372 (3)C53—C541.379 (3)
N3—H30.86C53—H530.93
C4—O41.221 (2)C54—C551.369 (3)
C4—C51.482 (2)C54—H540.93
C5—C571.345 (3)C55—C561.384 (2)
C57—C511.455 (2)C55—H550.93
C57—H570.93C56—H560.93
C5—S1—C293.12 (9)C56—C51—C57124.47 (17)
N3—C2—S2127.32 (14)C52—C51—C57120.08 (16)
N3—C2—S1109.32 (14)F52—C52—C53118.11 (18)
S2—C2—S1123.36 (12)F52—C52—C51117.88 (16)
C2—N3—C4118.43 (15)C53—C52—C51124.01 (19)
C2—N3—H3120.6C52—C53—C54118.44 (19)
C4—N3—H3120.9C52—C53—H53120.7
O4—C4—N3124.16 (16)C54—C53—H53120.9
O4—C4—C5125.73 (18)C55—C54—C53120.05 (18)
N3—C4—C5110.11 (16)C55—C54—H54119.8
C57—C5—C4120.50 (17)C53—C54—H54120.1
C57—C5—S1130.48 (14)C54—C55—C56120.3 (2)
C4—C5—S1109.02 (13)C54—C55—H55119.9
C5—C57—C51129.25 (17)C56—C55—H55119.8
C5—C57—H57115.2C55—C56—C51121.76 (18)
C51—C57—H57115.5C55—C56—H56119.1
C56—C51—C52115.44 (16)C51—C56—H56119.1
C5—S1—C2—N30.19 (15)C5—C57—C51—C566.7 (3)
C5—S1—C2—S2179.10 (13)C5—C57—C51—C52174.60 (19)
S2—C2—N3—C4179.38 (15)C56—C51—C52—F52177.76 (17)
S1—C2—N3—C40.1 (2)C57—C51—C52—F523.4 (3)
C2—N3—C4—O4179.91 (18)C56—C51—C52—C531.4 (3)
C2—N3—C4—C50.4 (2)C57—C51—C52—C53177.47 (19)
O4—C4—C5—C570.2 (3)F52—C52—C53—C54177.62 (18)
N3—C4—C5—C57179.22 (17)C51—C52—C53—C541.5 (3)
O4—C4—C5—S1179.99 (17)C52—C53—C54—C550.5 (3)
N3—C4—C5—S10.55 (19)C53—C54—C55—C560.5 (3)
C2—S1—C5—C57179.32 (19)C54—C55—C56—C510.6 (3)
C2—S1—C5—C40.42 (14)C52—C51—C56—C550.3 (3)
C4—C5—C57—C51176.72 (18)C57—C51—C56—C55178.51 (19)
S1—C5—C57—C513.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.862.002.843 (2)168
C56—H56···S10.932.513.226 (2)134
Symmetry code: (i) x+1, y+1, z+1.
(II) (Z)-5-(4-fluorobenzylidene)-2-thioxothaolidin-2-one top
Crystal data top
C10H6FNOS2F(000) = 488
Mr = 239.28Dx = 1.550 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2287 reflections
a = 4.9173 (2) Åθ = 3.6–27.5°
b = 19.8906 (10) ŵ = 0.50 mm1
c = 10.4976 (6) ÅT = 298 K
β = 92.929 (3)°Lath, orange
V = 1025.41 (9) Å30.60 × 0.35 × 0.12 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2287 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
ϕ and ω scansh = 56
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2525
Tmin = 0.753, Tmax = 0.942l = 1013
7246 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.082H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0211P)2 + 1.095P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2287 reflectionsΔρmax = 0.31 e Å3
137 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (17)
Crystal data top
C10H6FNOS2V = 1025.41 (9) Å3
Mr = 239.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.9173 (2) ŵ = 0.50 mm1
b = 19.8906 (10) ÅT = 298 K
c = 10.4976 (6) Å0.60 × 0.35 × 0.12 mm
β = 92.929 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2287 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1430 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.942Rint = 0.053
7246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
2287 reflectionsΔρmin = 0.27 e Å3
137 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09085 (14)0.50772 (4)0.18496 (8)0.0407 (3)
S20.27590 (19)0.38918 (5)0.17203 (11)0.0585 (3)
F541.0271 (4)0.75575 (11)0.0713 (2)0.0693 (7)
O40.2516 (4)0.56639 (11)0.5020 (2)0.0420 (6)
N30.2897 (4)0.48323 (13)0.3535 (2)0.0354 (6)
C20.1782 (5)0.45690 (16)0.2424 (3)0.0364 (8)
C40.1741 (5)0.54003 (16)0.4010 (3)0.0326 (7)
C50.0537 (5)0.56341 (15)0.3145 (3)0.0313 (7)
C510.4126 (5)0.65280 (15)0.2672 (3)0.0331 (7)
C520.5213 (6)0.71123 (17)0.3166 (3)0.0488 (9)
C530.7278 (7)0.74614 (18)0.2514 (4)0.0552 (10)
C540.8236 (6)0.72169 (18)0.1359 (3)0.0452 (9)
C550.7269 (6)0.66447 (18)0.0836 (3)0.0469 (9)
C560.5198 (6)0.63011 (17)0.1496 (3)0.0422 (8)
C570.1918 (5)0.61927 (15)0.3396 (3)0.0338 (7)
H30.43940.46310.37940.043*
H570.13800.64020.41600.041*
H520.45360.72720.39520.059*
H530.79950.78520.28510.066*
H550.79830.64890.00530.056*
H560.45070.59110.11470.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0365 (4)0.0431 (5)0.0412 (5)0.0036 (3)0.0109 (3)0.0059 (4)
C20.0318 (14)0.0370 (19)0.0400 (19)0.0028 (13)0.0012 (13)0.0007 (15)
S20.0548 (5)0.0492 (6)0.0700 (7)0.0099 (4)0.0105 (5)0.0200 (5)
N30.0286 (11)0.0401 (16)0.0368 (15)0.0057 (11)0.0052 (10)0.0014 (13)
C40.0270 (13)0.0377 (19)0.0330 (18)0.0010 (13)0.0003 (12)0.0048 (15)
O40.0393 (11)0.0500 (15)0.0356 (13)0.0088 (10)0.0098 (10)0.0048 (11)
C50.0279 (13)0.0361 (18)0.0296 (17)0.0019 (12)0.0031 (12)0.0017 (14)
C570.0324 (14)0.0378 (19)0.0307 (17)0.0018 (13)0.0032 (12)0.0003 (15)
F540.0589 (12)0.0675 (15)0.0787 (17)0.0202 (11)0.0233 (11)0.0161 (13)
C510.0284 (13)0.0332 (18)0.0372 (18)0.0015 (12)0.0027 (12)0.0035 (14)
C540.0344 (15)0.047 (2)0.054 (2)0.0034 (15)0.0074 (15)0.0155 (18)
C520.0445 (17)0.046 (2)0.054 (2)0.0059 (16)0.0145 (16)0.0095 (18)
C530.0512 (19)0.042 (2)0.071 (3)0.0125 (17)0.0120 (18)0.007 (2)
C550.0451 (17)0.056 (2)0.038 (2)0.0045 (17)0.0107 (15)0.0038 (18)
C560.0417 (16)0.046 (2)0.038 (2)0.0068 (15)0.0034 (14)0.0003 (16)
Geometric parameters (Å, º) top
S1—C21.748 (3)F54—C541.360 (3)
S1—C51.756 (3)C51—C521.391 (4)
C2—N31.367 (4)C51—C561.393 (4)
C2—S21.621 (3)C54—C551.360 (5)
N3—C41.370 (4)C54—C531.367 (5)
N3—H30.87C52—C531.382 (4)
C4—O41.226 (3)C52—H520.93
C4—C51.481 (4)C53—H530.93
C5—C571.336 (4)C55—C561.383 (4)
C57—C511.455 (4)C55—H550.93
C57—H570.93C56—H560.93
C2—S1—C592.91 (14)C52—C51—C57118.6 (3)
N3—C2—S2126.3 (2)C56—C51—C57123.6 (3)
N3—C2—S1109.7 (2)C55—C54—F54118.6 (3)
S2—C2—S1124.05 (18)C55—C54—C53123.0 (3)
C2—N3—C4118.1 (2)F54—C54—C53118.4 (3)
C2—N3—H3112.8C53—C52—C51121.4 (3)
C4—N3—H3128.8C53—C52—H52119.3
O4—C4—N3123.4 (2)C51—C52—H52119.3
O4—C4—C5126.1 (3)C54—C53—C52118.1 (3)
N3—C4—C5110.5 (2)C54—C53—H53120.9
C57—C5—C4121.1 (3)C52—C53—H53120.9
C57—C5—S1130.1 (2)C54—C55—C56118.3 (3)
C4—C5—S1108.8 (2)C54—C55—H55120.8
C5—C57—C51130.6 (3)C56—C55—H55120.8
C5—C57—H57114.7C55—C56—C51121.3 (3)
C51—C57—H57114.7C55—C56—H56119.3
C52—C51—C56117.8 (3)C51—C56—H56119.3
C5—S1—C2—N31.2 (2)S1—C5—C57—C511.5 (5)
C5—S1—C2—S2179.0 (2)C5—C57—C51—C52179.9 (3)
S2—C2—N3—C4178.0 (2)C5—C57—C51—C561.0 (5)
S1—C2—N3—C42.2 (3)C56—C51—C52—C530.4 (5)
C2—N3—C4—O4177.3 (3)C57—C51—C52—C53178.8 (3)
C2—N3—C4—C52.2 (4)C55—C54—C53—C520.7 (6)
O4—C4—C5—C572.5 (5)F54—C54—C53—C52179.9 (3)
N3—C4—C5—C57178.0 (3)C51—C52—C53—C540.1 (6)
O4—C4—C5—S1178.4 (3)F54—C54—C55—C56179.9 (3)
N3—C4—C5—S11.1 (3)C53—C54—C55—C560.9 (6)
C2—S1—C5—C57179.0 (3)C54—C55—C56—C510.4 (5)
C2—S1—C5—C40.1 (2)C52—C51—C56—C550.2 (5)
C4—C5—C57—C51177.4 (3)C57—C51—C56—C55178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C56—H56···S10.932.513.230 (3)135
N3—H3···O4i0.872.002.831 (3)159
Symmetry code: (i) x+1, y+1, z+1.
(III) (Z)-5-(3,4,5-Trimethoxybenzylidene)-2-thioxothaolidin-2-one top
Crystal data top
C13H13NO4S2Z = 4
Mr = 311.36F(000) = 648
Triclinic, P1Dx = 1.483 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3432 (4) ÅCell parameters from 6377 reflections
b = 10.9105 (4) Åθ = 2.7–27.5°
c = 13.4621 (4) ŵ = 0.39 mm1
α = 100.399 (2)°T = 120 K
β = 91.572 (2)°Plate, orange
γ = 110.301 (2)°0.10 × 0.08 × 0.03 mm
V = 1394.72 (9) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
6377 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.952, Tmax = 0.988l = 1717
29714 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0539P)2]
where P = (Fo2 + 2Fc2)/3
6377 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C13H13NO4S2γ = 110.301 (2)°
Mr = 311.36V = 1394.72 (9) Å3
Triclinic, P1Z = 4
a = 10.3432 (4) ÅMo Kα radiation
b = 10.9105 (4) ŵ = 0.39 mm1
c = 13.4621 (4) ÅT = 120 K
α = 100.399 (2)°0.10 × 0.08 × 0.03 mm
β = 91.572 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
6377 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3786 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.988Rint = 0.106
29714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
6377 reflectionsΔρmin = 0.42 e Å3
367 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.88927 (7)1.14205 (7)0.93278 (5)0.02349 (18)
S120.88234 (8)1.14023 (7)0.71059 (5)0.02956 (19)
O140.71179 (19)0.76133 (18)0.88920 (12)0.0254 (4)
N130.7868 (2)0.9277 (2)0.79756 (14)0.0208 (5)
C120.8492 (3)1.0620 (3)0.80518 (18)0.0225 (6)
C140.7672 (3)0.8801 (3)0.88691 (18)0.0205 (6)
C150.8220 (3)0.9912 (3)0.97520 (18)0.0197 (6)
C1570.8165 (3)0.9684 (3)1.07014 (18)0.0201 (6)
C1510.8672 (3)1.0580 (3)1.16742 (18)0.0185 (6)
C1520.8448 (3)1.0027 (3)1.25423 (18)0.0206 (6)
C1530.8926 (3)1.0830 (3)1.34957 (18)0.0211 (6)
O1530.87569 (19)1.03880 (18)1.43900 (12)0.0271 (5)
C1580.8139 (3)0.8987 (3)1.4343 (2)0.0302 (7)
C1540.9635 (3)1.2197 (3)1.36037 (18)0.0204 (6)
O1541.01952 (17)1.29983 (17)1.45341 (12)0.0231 (4)
C1550.9863 (3)1.2757 (3)1.27333 (18)0.0189 (6)
C1590.9202 (3)1.3319 (3)1.51525 (19)0.0272 (7)
O1551.05683 (18)1.41070 (17)1.29121 (12)0.0242 (4)
C1501.0806 (3)1.4715 (3)1.20455 (19)0.0270 (7)
C1560.9384 (3)1.1951 (3)1.17770 (18)0.0205 (6)
S210.57903 (7)0.34519 (7)0.58269 (5)0.02293 (18)
C220.5770 (3)0.4278 (3)0.70628 (18)0.0200 (6)
S220.52094 (8)0.35185 (7)0.79946 (5)0.0296 (2)
N230.6282 (2)0.5620 (2)0.71191 (15)0.0198 (5)
C240.6698 (2)0.6082 (3)0.62460 (18)0.0185 (6)
O240.71258 (18)0.72673 (17)0.62060 (12)0.0223 (4)
C250.6511 (3)0.4955 (2)0.53957 (18)0.0177 (6)
C2570.6865 (2)0.5166 (3)0.44703 (18)0.0190 (6)
C2510.6724 (3)0.4227 (3)0.35233 (17)0.0177 (6)
C2520.7184 (3)0.4747 (3)0.26660 (18)0.0208 (6)
C2530.7018 (3)0.3897 (3)0.17292 (18)0.0212 (6)
O2530.75011 (19)0.43225 (18)0.08640 (12)0.0284 (5)
C2580.7887 (3)0.5719 (3)0.0867 (2)0.0370 (8)
C2540.6374 (3)0.2523 (3)0.16284 (18)0.0208 (6)
O2540.61905 (19)0.16169 (18)0.07461 (12)0.0278 (5)
C2590.5633 (3)0.1858 (3)0.01633 (19)0.0287 (7)
C2550.5947 (3)0.2002 (3)0.24972 (18)0.0195 (6)
O2550.53508 (19)0.06435 (17)0.23400 (12)0.0257 (4)
C2500.5024 (3)0.0074 (3)0.32222 (19)0.0304 (7)
C2560.6117 (3)0.2846 (3)0.34292 (18)0.0206 (6)
H130.75990.87310.73800.025*
H1570.77160.87751.07400.024*
H1520.79660.90961.24780.025*
H18A0.71880.86611.40210.045*
H18B0.81280.88101.50320.045*
H18C0.86770.85281.39450.045*
H19A0.87691.38241.48160.041*
H19B0.96691.38581.58130.041*
H19C0.84881.24931.52510.041*
H10A1.14061.43651.16220.040*
H10B1.12561.56831.22690.040*
H10C0.99201.45111.16520.040*
H1560.95401.23321.11900.025*
H230.63470.61780.76950.024*
H2570.72740.60790.44290.023*
H2520.76100.56840.27240.025*
H28A0.71300.60170.10860.055*
H28B0.80730.58740.01810.055*
H28C0.87220.62220.13350.055*
H29A0.50230.23620.00170.043*
H29B0.51030.10030.06140.043*
H29C0.63930.23710.05110.043*
H20A0.58670.03430.36840.046*
H20B0.46390.09020.30190.046*
H20C0.43420.03900.35670.046*
H2560.58180.24840.40100.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0321 (4)0.0175 (4)0.0181 (3)0.0061 (3)0.0020 (3)0.0025 (3)
C120.0272 (16)0.0233 (17)0.0187 (14)0.0122 (14)0.0021 (11)0.0027 (12)
S120.0422 (5)0.0256 (4)0.0210 (4)0.0101 (4)0.0051 (3)0.0085 (3)
N130.0297 (13)0.0178 (13)0.0121 (11)0.0063 (11)0.0011 (9)0.0007 (9)
C140.0210 (15)0.0207 (16)0.0204 (14)0.0082 (13)0.0047 (11)0.0036 (12)
O140.0358 (12)0.0189 (12)0.0172 (9)0.0054 (10)0.0045 (8)0.0014 (8)
C150.0209 (15)0.0151 (15)0.0210 (14)0.0051 (12)0.0022 (11)0.0012 (11)
C1570.0212 (15)0.0170 (15)0.0207 (14)0.0050 (12)0.0034 (11)0.0038 (11)
C1510.0188 (14)0.0191 (16)0.0165 (13)0.0061 (12)0.0027 (11)0.0024 (11)
C1520.0235 (15)0.0151 (15)0.0200 (14)0.0031 (12)0.0008 (11)0.0032 (11)
C1530.0238 (15)0.0239 (16)0.0161 (13)0.0087 (13)0.0017 (11)0.0054 (11)
O1530.0377 (12)0.0229 (11)0.0154 (9)0.0033 (9)0.0010 (8)0.0059 (8)
C1580.0348 (18)0.0301 (19)0.0241 (15)0.0057 (15)0.0053 (13)0.0132 (13)
C1540.0188 (15)0.0224 (16)0.0169 (13)0.0059 (13)0.0009 (11)0.0010 (11)
O1540.0225 (10)0.0268 (11)0.0146 (9)0.0059 (9)0.0005 (8)0.0027 (8)
C1550.0193 (14)0.0153 (15)0.0204 (14)0.0044 (12)0.0023 (11)0.0032 (11)
C1590.0343 (17)0.0270 (17)0.0203 (14)0.0139 (14)0.0003 (12)0.0010 (12)
O1550.0302 (11)0.0179 (11)0.0208 (10)0.0043 (9)0.0034 (8)0.0028 (8)
C1500.0321 (17)0.0169 (16)0.0278 (15)0.0027 (14)0.0006 (13)0.0070 (12)
C1560.0253 (15)0.0211 (16)0.0160 (13)0.0090 (13)0.0007 (11)0.0047 (11)
S210.0317 (4)0.0167 (4)0.0185 (3)0.0065 (3)0.0042 (3)0.0031 (3)
C220.0239 (15)0.0218 (16)0.0153 (13)0.0098 (13)0.0008 (11)0.0031 (11)
S220.0444 (5)0.0247 (4)0.0219 (4)0.0120 (4)0.0096 (3)0.0102 (3)
N230.0276 (13)0.0165 (13)0.0139 (11)0.0078 (11)0.0020 (9)0.0002 (9)
C240.0165 (14)0.0227 (17)0.0166 (13)0.0073 (13)0.0013 (11)0.0045 (12)
O240.0294 (11)0.0160 (11)0.0188 (9)0.0052 (9)0.0033 (8)0.0025 (8)
C250.0175 (14)0.0135 (14)0.0193 (13)0.0032 (12)0.0011 (11)0.0019 (11)
C2570.0162 (14)0.0165 (15)0.0227 (14)0.0039 (12)0.0002 (11)0.0041 (11)
C2510.0183 (14)0.0178 (15)0.0157 (13)0.0056 (12)0.0007 (10)0.0022 (11)
C2520.0219 (15)0.0174 (15)0.0218 (14)0.0053 (12)0.0018 (11)0.0044 (11)
C2530.0240 (15)0.0283 (17)0.0133 (13)0.0112 (13)0.0042 (11)0.0049 (12)
O2530.0376 (12)0.0249 (12)0.0179 (10)0.0048 (10)0.0072 (8)0.0047 (8)
C2580.051 (2)0.032 (2)0.0282 (16)0.0102 (16)0.0138 (14)0.0138 (14)
C2540.0238 (15)0.0210 (16)0.0163 (13)0.0087 (13)0.0005 (11)0.0001 (11)
O2540.0444 (13)0.0261 (11)0.0144 (9)0.0170 (10)0.0004 (8)0.0002 (8)
C2590.0346 (18)0.0318 (18)0.0190 (14)0.0136 (15)0.0030 (12)0.0010 (12)
C2550.0203 (14)0.0160 (16)0.0190 (14)0.0047 (12)0.0033 (11)0.0003 (11)
O2550.0359 (12)0.0177 (11)0.0193 (10)0.0058 (9)0.0006 (8)0.0010 (8)
C2500.0412 (19)0.0187 (16)0.0278 (15)0.0065 (14)0.0032 (14)0.0048 (13)
C2560.0240 (15)0.0253 (17)0.0151 (13)0.0109 (13)0.0033 (11)0.0066 (11)
Geometric parameters (Å, º) top
S11—C121.747 (3)S21—C221.748 (2)
S11—C151.757 (3)S21—C251.761 (3)
C12—N131.364 (3)C22—N231.359 (3)
C12—S121.637 (3)C22—S221.637 (2)
N13—C141.387 (3)N23—C241.383 (3)
N13—H130.88N23—H230.88
C14—O141.228 (3)C24—O241.225 (3)
C14—C151.473 (4)C24—C251.475 (3)
C15—C1571.345 (3)C25—C2571.345 (3)
C157—C1511.446 (3)C257—C2511.453 (3)
C157—H1570.95C257—H2570.95
C151—C1561.398 (4)C251—C2561.397 (4)
C151—C1521.398 (3)C251—C2521.399 (3)
C152—C1531.385 (3)C252—C2531.391 (3)
C152—H1520.95C252—H2520.95
C153—O1531.370 (3)C253—O2531.374 (3)
C153—C1541.392 (4)C253—C2541.392 (4)
O153—C1581.426 (3)O253—C2581.435 (3)
C158—H18A0.98C258—H28A0.98
C158—H18B0.98C258—H28B0.98
C158—H18C0.98C258—H28C0.98
C154—O1541.372 (3)C254—O2541.363 (3)
C154—C1551.406 (3)C254—C2551.407 (3)
O154—C1591.436 (3)O254—C2591.443 (3)
C155—O1551.369 (3)C259—H29A0.98
C155—C1561.390 (3)C259—H29B0.98
C159—H19A0.98C259—H29C0.98
C159—H19B0.98C255—O2551.367 (3)
C159—H19C0.98C255—C2561.383 (3)
O155—C1501.429 (3)O255—C2501.433 (3)
C150—H10A0.98C250—H20A0.98
C150—H10B0.98C250—H20B0.98
C150—H10C0.98C250—H20C0.98
C156—H1560.95C256—H2560.95
C12—S11—C1592.79 (12)C22—S21—C2592.91 (12)
N13—C12—S12126.18 (19)N23—C22—S22126.26 (19)
N13—C12—S11110.00 (18)N23—C22—S21109.76 (17)
S12—C12—S11123.82 (17)S22—C22—S21123.98 (16)
C12—N13—C14117.7 (2)C22—N23—C24118.1 (2)
C12—N13—H13121.2C22—N23—H23120.9
C14—N13—H13121.2C24—N23—H23120.9
O14—C14—N13123.3 (2)O24—C24—N23123.3 (2)
O14—C14—C15126.4 (2)O24—C24—C25126.3 (2)
N13—C14—C15110.3 (2)N23—C24—C25110.4 (2)
C157—C15—C14120.8 (2)C257—C25—C24120.9 (2)
C157—C15—S11130.0 (2)C257—C25—S21130.2 (2)
C14—C15—S11109.22 (18)C24—C25—S21108.83 (17)
C15—C157—C151131.3 (3)C25—C257—C251130.6 (3)
C15—C157—H157114.4C25—C257—H257114.7
C151—C157—H157114.4C251—C257—H257114.7
C156—C151—C152119.4 (2)C256—C251—C252119.2 (2)
C156—C151—C157123.0 (2)C256—C251—C257123.0 (2)
C152—C151—C157117.6 (2)C252—C251—C257117.8 (2)
C153—C152—C151120.3 (2)C253—C252—C251120.3 (2)
C153—C152—H152119.8C253—C252—H252119.8
C151—C152—H152119.8C251—C252—H252119.8
O153—C153—C152124.8 (2)O253—C253—C252123.8 (2)
O153—C153—C154114.6 (2)O253—C253—C254115.6 (2)
C152—C153—C154120.6 (2)C252—C253—C254120.5 (2)
C153—O153—C158118.2 (2)C253—O253—C258117.4 (2)
O153—C158—H18A109.5O253—C258—H28A109.5
O153—C158—H18B109.5O253—C258—H28B109.5
H18A—C158—H18B109.5H28A—C258—H28B109.5
O153—C158—H18C109.5O253—C258—H28C109.5
H18A—C158—H18C109.5H28A—C258—H28C109.5
H18B—C158—H18C109.5H28B—C258—H28C109.5
O154—C154—C153121.6 (2)O254—C254—C253124.5 (2)
O154—C154—C155118.9 (2)O254—C254—C255116.4 (2)
C153—C154—C155119.3 (2)C253—C254—C255119.0 (2)
C154—O154—C159114.13 (19)C254—O254—C259118.4 (2)
O155—C155—C156124.7 (2)O254—C259—H29A109.5
O155—C155—C154115.3 (2)O254—C259—H29B109.5
C156—C155—C154120.0 (2)H29A—C259—H29B109.5
O154—C159—H19A109.5O254—C259—H29C109.5
O154—C159—H19B109.5H29A—C259—H29C109.5
H19A—C159—H19B109.5H29B—C259—H29C109.5
O154—C159—H19C109.5O255—C255—C256124.1 (2)
H19A—C159—H19C109.5O255—C255—C254115.5 (2)
H19B—C159—H19C109.5C256—C255—C254120.4 (2)
C155—O155—C150116.85 (19)C255—O255—C250116.83 (19)
O155—C150—H10A109.5O255—C250—H20A109.5
O155—C150—H10B109.5O255—C250—H20B109.5
H10A—C150—H10B109.5H20A—C250—H20B109.5
O155—C150—H10C109.5O255—C250—H20C109.5
H10A—C150—H10C109.5H20A—C250—H20C109.5
H10B—C150—H10C109.5H20B—C250—H20C109.5
C155—C156—C151120.3 (2)C255—C256—C251120.5 (2)
C155—C156—H156119.8C255—C256—H256119.8
C151—C156—H156119.8C251—C256—H256119.8
C15—S11—C12—N130.51 (19)C25—S21—C22—N230.25 (19)
C15—S11—C12—S12179.82 (17)C25—S21—C22—S22179.75 (17)
S12—C12—N13—C14179.79 (18)S22—C22—N23—C24179.51 (18)
S11—C12—N13—C140.1 (3)S21—C22—N23—C240.5 (3)
C12—N13—C14—O14179.8 (2)C22—N23—C24—O24177.2 (2)
C12—N13—C14—C150.4 (3)C22—N23—C24—C251.2 (3)
O14—C14—C15—C1571.0 (4)O24—C24—C25—C2572.6 (4)
N13—C14—C15—C157178.8 (2)N23—C24—C25—C257179.1 (2)
O14—C14—C15—S11179.4 (2)O24—C24—C25—S21177.1 (2)
N13—C14—C15—S110.8 (2)N23—C24—C25—S211.2 (2)
C12—S11—C15—C157178.8 (2)C22—S21—C25—C257179.5 (2)
C12—S11—C15—C140.74 (19)C22—S21—C25—C240.84 (18)
C14—C15—C157—C151177.2 (2)C24—C25—C257—C251177.2 (2)
S11—C15—C157—C1512.2 (4)S21—C25—C257—C2512.4 (4)
C15—C157—C151—C1561.2 (4)C25—C257—C251—C2561.6 (4)
C15—C157—C151—C152179.9 (3)C25—C257—C251—C252179.5 (2)
C156—C151—C152—C1530.1 (4)C256—C251—C252—C2530.9 (4)
C157—C151—C152—C153179.1 (2)C257—C251—C252—C253177.1 (2)
C151—C152—C153—O153179.8 (2)C251—C252—C253—O253176.6 (2)
C151—C152—C153—C1540.0 (4)C251—C252—C253—C2541.1 (4)
C152—C153—O153—C1585.1 (4)C252—C253—O253—C25815.8 (4)
C154—C153—O153—C158175.1 (2)C254—C253—O253—C258166.4 (2)
O153—C153—C154—O1544.4 (3)O253—C253—C254—O2540.9 (4)
C152—C153—C154—O154175.7 (2)C252—C253—C254—O254178.7 (2)
O153—C153—C154—C155179.9 (2)O253—C253—C254—C255175.1 (2)
C152—C153—C154—C1550.0 (4)C252—C253—C254—C2552.7 (4)
C153—C154—O154—C15977.3 (3)C253—C254—O254—C25948.1 (3)
C155—C154—O154—C159107.0 (3)C255—C254—O254—C259135.8 (2)
O154—C154—C155—O1554.2 (3)O254—C254—C255—O2552.3 (3)
C153—C154—C155—O155180.0 (2)C253—C254—C255—O255178.6 (2)
O154—C154—C155—C156175.8 (2)O254—C254—C255—C256178.8 (2)
C153—C154—C155—C1560.0 (4)C253—C254—C255—C2562.5 (4)
C156—C155—O155—C1500.6 (3)C256—C255—O255—C2506.9 (3)
C154—C155—O155—C150179.3 (2)C254—C255—O255—C250174.3 (2)
O155—C155—C156—C151179.9 (2)O255—C255—C256—C251179.3 (2)
C154—C155—C156—C1510.0 (4)C254—C255—C256—C2510.6 (4)
C152—C151—C156—C1550.1 (4)C252—C251—C256—C2551.2 (4)
C157—C151—C156—C155179.0 (2)C257—C251—C256—C255176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C156—H156···S110.952.503.237 (2)134
C256—H256···S210.952.493.227 (2)134
N13—H13···O240.881.952.814 (3)168
N23—H23···O140.881.962.807 (3)162

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC10H6FNOS2C10H6FNOS2C13H13NO4S2
Mr239.28239.28311.36
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cTriclinic, P1
Temperature (K)298298120
a, b, c (Å)11.1848 (4), 7.7651 (4), 12.3611 (5)4.9173 (2), 19.8906 (10), 10.4976 (6)10.3432 (4), 10.9105 (4), 13.4621 (4)
α, β, γ (°)90, 107.417 (3), 9090, 92.929 (3), 90100.399 (2), 91.572 (2), 110.301 (2)
V3)1024.35 (8)1025.41 (9)1394.72 (9)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.500.500.39
Crystal size (mm)0.36 × 0.32 × 0.040.60 × 0.35 × 0.120.10 × 0.08 × 0.03
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.869, 0.9800.753, 0.9420.952, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9920, 2337, 1768 7246, 2287, 1430 29714, 6377, 3786
Rint0.0420.0530.106
(sin θ/λ)max1)0.6490.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.04 0.082, 0.110, 1.09 0.063, 0.119, 1.00
No. of reflections233722876377
No. of parameters141137367
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.320.31, 0.270.33, 0.42

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, Sir2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond angles and torsion angles (°) for compounds (I)–(III) top
Parameter(I)(II)(III)(III)
xnilnil12
Cx5—Cx57—Cx51129.25 (17)130.6 (3)131.3 (3)130.6 (3)
Sx1—Cx5—Cx57130.48 (14)130.1 (2)130.0 (2)130.2 (2)
Cx4—Cx5—Cx57120.50 (17)121.1 (3)120.8 (2)120.9 (2)
Cx52—Cx51—Cx56115.44 (16)118.6 (3)119.4 (2)117.8 (2)
Cx57—Cx51—Cx56124.47 (17)123.6 (3)123.0 (2)123.0 (2)
Cx5—Cx57—Cx51—Cx52-174.60 (19)179.9 (3)179.9 (3)179.5 (3)
Cx52—Cx53—Ox53—Cx585.1 (4)-15.8 (4)
Cx53—Cx54—Ox54—Cx59-77.3 (3)-48.1 (3)
Cx54—Cx55—Ox55—Cx50-179.3 (2)174.3 (2)
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I)–(III) top
CompoundD-H···AD-HH···AD···AD-H···A
(I)C56—H56···S10.932.513.226 (2)134
N3—H3···O4i0.862.002.843 (2)168
(II)C56—H56···S10.932.513.230 (3)135
N3—H3···O4i0.872.002.831 (3)159
(III)C156—H156···S110.952.503.237 (2)134
N13—H13···O240.881.952.814 (3)168
C256—H256···S210.952.493.227 (2)134
N23—H23···O140.881.962.807 (3)162
Symmetry code: (i) 1 − x, 1 − y, 1 − z.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC and JT thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JT also thanks the Universidad de Jaén for a research scholarship supporting a short stay at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JP thanks COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDelgado, P., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o477–o482.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds