Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, (C11H22N3)[FeCl3(C11H21N3)], is one of the rare examples where an isolated ionic pair of the type [A]n+[EMX3]n- (E is any non-metal, M is any transition metal and X is any halogen) could be structurally characterized. Two short N-H...Cl contacts between the two ammonium H atoms and two of the three Cl atoms of the counter-anion generate a six-membered ring. The third Cl atom is involved in a weaker intra­molecular hydrogen bond to the neutral 1,3-diisopropyl-4,5-dimethyl-4-imidazolin-2-yl­idene­amine ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106008778/sk3010sup1.cif
Contains datablocks global, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106008778/sk3010IIIsup2.hkl
Contains datablock III

CCDC reference: 609407

Comment top

Over the past decade, the coordination chemistry of phosphoraneiminate ligands, R3PN, has developed into a broad area of research which has produced a large number of structurally diverse main group element and transition metal complexes (Dehnicke & Strähle, 1989; Dehnicke & Weller, 1997; Dehnicke et al., 1999; Dehnicke & Greiner, 2003). Based on the striking similarity between electron-rich organophosphanes and nucleophilic carbenes of the imidazolin-2-ylidene type, formal replacement of phosphane by an imidazolin-2-ylidene moiety in phosphoraneimides gives imidazolin-2-imides. The ability of an imidazolium ring to stabilize a positive charge in a more effective manner than a phosphonium group should increase the negative charge on the N atom, and thus lead to the formation of ligands with enhanced basicity and electron-donating capacity. Recently, we have published (Tamm et al., 2004, 2006) examples of titanium complexes bearing imidazolin-2-iminate ligands which proved to be very active and long-lived catalysts for ethylene polymerization. Due to the capability of phosphoraneimides and imidazolin-2-imides to act as 2σ,4π-electron donors, these anionic ligands can be regarded as monodentate analogues of cyclopentadienyls, C5R5, and this relationship has been described as a pseudo-isolobal phenomenon (Diefenbach & Bickelhaupt, 1999). In that respect, monomeric bis(imidazolin-2-iminato) transition metal complexes can be regarded as metallocene analogues, and therefore, we intended to synthesize the complex bis(imidazolin-2-imine)iron(II) chloride, (I), which could be converted into the corresponding bis(imidazolin-2-iminato)iron(II), (II), by the loss of two equivalents of HCl. Surprisingly, the reaction of two equivalents of 1,3-diisopropyl-4,5-dimethylimidazolin-2-imine with FeCl2 did not result in the formation of the expected bis(imidazolin-2-imine)iron(II) chloride, but instead furnished the title HCl adduct, [ImNH2]+[(ImNH)FeIICl3], (III).

As the most prominent feature in the solid state structure of (III), one strong N4—H2···Cl1 hydrogen bond [3.173 (2) Å] and one weaker N4—H3···Cl2 hydrogen bond [3.379 (2) Å] connect the cation and the anion to form an ionic pair (Fig. 1 and Table 2). No other short intramolecular contacts are observed. This hydrogen-bonding type is unique within complexes of the formula [A]n+[EMX3]n (E is any non-metal, M is any transition metal, X is any halogen) or zwitterionic salts such as [(1-methylpiperazin-1-ium-N4)CoIICl3] or [(1,4-dimethylpiperazin-1-ium-N4)ZnIICl3]. The latter salt exhibits a linear assembly in the crystal structure (Clemente et al., 2002), whereas the cobalt complex forms layer-structured hydrogen bonds (Clemente et al., 1999). All other such compounds build up a three-dimensional network of hydrogen bonds, for example in bis(N,N-dimethyl-N'-(3-chlorophenyl)guanidinium)tetrachlorocopper(II) (Davydov et al., 1992) or bis(1,1-dimethylguanidinium)tetrachlorocopper(II) (Fernandez et al., 1997).

The FeII ion of (III) is tetrahedrally coordinated by three Cl atoms and the imidazolin-2-imine N atom bearing one H atom (Fig. 1). The tetrahedral coordination is rather distorted (Table 1), as can be seen by the Cl3—Fe—N1 angle of 95.58 (6)°, with a deviation of about 14° from the ideal tetrahedral value of 109.5°. The Fe—Cl mean distance [2.3084 (6) Å] fits exactly to the value of 2.314 (2) Å found for 21 mononuclear [FeCl4]2− tetrahedral complexes found in the Cambridge Structural Database (CSD, Version 5.26; Allen, 2002). Comparable complexes having a 3Cl+1 N ligand set are not currently known (0 hits in the CSD). Effects responsible for such a conspicuous deviation are packing effects and a possible Jahn–Teller effect, as well as strong hydrogen bonds (Weller & Petz, 1994). In addition, the third contact, a non-classical agostic contact (N1—H1)···Cl3 [3.229 (2) Å], has to be considered.

Experimental top

The title compound was prepared by the reaction of 1,3-diisopropyl-4,5-dimethylimidazolin-2-imine (0.185 g, 0.947 mmol) with FeCl2 (0.060 g, 0.473 mmol) in tetrahydrofuran (20 ml). After stirring the reaction mixture for 10 h at ambient temperature, the product was precipitated with an excess of n-hexane, filtered and washed several times with n-hexane. Prolonged drying in vacuo afforded 0.165 g of the title compound as a yellow solid (yield 63%). Elemental analysis revealed a formulation of a 1:1 mixture of the tetrachloro- and corresponding tetrabromocobaltate compound; calculated for [ImNH2]+[(ImNH)FeIICl3]: C 23.10, H 3.02, N 11.97%; found: C 23.15, H 3.01, N 11.98%. Crystals of (III) could be obtained selectively from a tetrahydrofuran–n-hexane solution (Ratio?) as clear yellow prisms.

Refinement top

The final difference Fourier map shows no striking features. All H atoms could be located in the difference Fourier maps and were allowed to refine freely.

Computing details top

Data collection: KappaCCD Control Software (Nonius, 2001); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1998); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. A perspective view of compound (III), showing the atom-numbering scheme. Displacement ellipsoids are at drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.
(1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene)ammonium trichloro(1,3-diisopropyl-4,5-dimethylimidazolin-2-ylideneamine)iron(II) top
Crystal data top
(C11H22N3)[FeCl3(C11H21N3)]F(000) = 1176
Mr = 553.82Dx = 1.296 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2997 reflections
a = 9.6108 (1) Åθ = 2.2–25.3°
b = 9.6349 (1) ŵ = 0.84 mm1
c = 30.6453 (3) ÅT = 173 K
V = 2837.73 (5) Å3Prism, yellow
Z = 40.60 × 0.51 × 0.46 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
5193 independent reflections
Radiation source: Nonius FR 591 rotating anode4875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 18 pixels mm-1θmax = 25.3°, θmin = 2.2°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.582, Tmax = 0.677l = 3636
56451 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.055Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2) + (Fo2) + (0.0251P)2 + 0.7647P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5193 reflectionsΔρmax = 0.37 e Å3
461 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (11)
Crystal data top
(C11H22N3)[FeCl3(C11H21N3)]V = 2837.73 (5) Å3
Mr = 553.82Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.6108 (1) ŵ = 0.84 mm1
b = 9.6349 (1) ÅT = 173 K
c = 30.6453 (3) Å0.60 × 0.51 × 0.46 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
5193 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
4875 reflections with I > 2σ(I)
Tmin = 0.582, Tmax = 0.677Rint = 0.040
56451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.055Δρmax = 0.37 e Å3
S = 1.07Δρmin = 0.24 e Å3
5193 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
461 parametersAbsolute structure parameter: 0.001 (11)
0 restraints
Special details top

Experimental. Diffractometer operator E. Herdtweck scanspeed 2 x 20 s per film repetition 1 dx 40 1046 films measured in 9 data sets set 1: phi-scan with delta_phi = 1.0 set 2 to 9: omega-scans with delta_omega = 1.0

The crystal was fixed in a capillary with perfluorinated ether and transferred to the diffractometer. Preliminary examination and data collection were carried out on a κ-CCD device with an Oxford Cryosystems cooling system at the window of a rotating anode. Data collection were performed at 173 K. A total of 56451 reflections were integrated. Raw data were corrected for Lorentz, polarization, and, arising from the scaling procedure, for latent decay and absorption effects. After merging all independent intensities were used during the refinements. The structure was solved by a combination of direct methods and difference-Fourier syntheses. All non-hydrogen atoms were refined with anisotropic displacement parameters. The final difference-Fourier map shows no striking features. All hydrogen atoms could be located in the difference-Fourier maps and were allowed to refine freely.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.17932 (3)0.97093 (3)0.15259 (1)0.0264 (1)
Cl10.21812 (5)1.20443 (5)0.16480 (2)0.0376 (2)
Cl20.05120 (5)0.93926 (5)0.13433 (2)0.0350 (2)
Cl30.27628 (6)0.84129 (6)0.20819 (2)0.0381 (2)
N10.3071 (2)0.8963 (2)0.10469 (6)0.0353 (6)
N20.29119 (18)1.00230 (18)0.03467 (5)0.0300 (5)
N30.44378 (19)0.83443 (18)0.04189 (6)0.0292 (5)
C10.3450 (2)0.9091 (2)0.06401 (7)0.0275 (6)
C20.3606 (2)0.9861 (2)0.00573 (7)0.0325 (7)
C30.4546 (2)0.8851 (2)0.00104 (7)0.0341 (7)
C40.1885 (2)1.1084 (2)0.04723 (8)0.0342 (7)
C50.2488 (4)1.2544 (3)0.04627 (13)0.0556 (11)
C60.0545 (3)1.0968 (4)0.02169 (12)0.0562 (10)
C70.3255 (3)1.0669 (3)0.04594 (8)0.0430 (8)
C80.5585 (3)0.8284 (4)0.03275 (9)0.0506 (10)
C90.5280 (2)0.7206 (2)0.06041 (8)0.0317 (7)
C100.6305 (3)0.7740 (3)0.09460 (11)0.0500 (10)
C110.4389 (3)0.6008 (3)0.07618 (10)0.0445 (9)
N40.1046 (2)1.2738 (2)0.16283 (8)0.0383 (8)
N50.17198 (16)1.49892 (15)0.18825 (5)0.0234 (5)
N60.33790 (16)1.35024 (16)0.17362 (5)0.0230 (5)
C120.1987 (2)1.3682 (2)0.17522 (7)0.0244 (6)
C130.3002 (2)1.56582 (19)0.19573 (6)0.0228 (6)
C140.40125 (19)1.4752 (2)0.18703 (6)0.0220 (6)
C150.0331 (2)1.5625 (2)0.19501 (7)0.0270 (7)
C160.0493 (2)1.5688 (2)0.15301 (9)0.0328 (7)
C170.0445 (3)1.4940 (3)0.23244 (8)0.0374 (8)
C180.3085 (3)1.7114 (2)0.21256 (8)0.0304 (7)
C190.5549 (2)1.4874 (2)0.19133 (8)0.0295 (7)
C200.4137 (2)1.2210 (2)0.16214 (7)0.0276 (7)
C210.3921 (3)1.1820 (3)0.11483 (8)0.0367 (8)
C220.3828 (3)1.1038 (2)0.19357 (9)0.0348 (8)
H10.350 (3)0.844 (3)0.1169 (8)0.037 (8)*
H410.166 (2)1.093 (2)0.0775 (7)0.026 (5)*
H510.333 (4)1.258 (4)0.0585 (12)0.081 (11)*
H520.179 (3)1.317 (3)0.0595 (9)0.053 (8)*
H530.249 (4)1.285 (4)0.0146 (13)0.103 (14)*
H610.016 (3)1.004 (3)0.0245 (9)0.063 (9)*
H620.068 (4)1.133 (4)0.0092 (12)0.092 (12)*
H630.009 (3)1.154 (3)0.0394 (10)0.073 (10)*
H710.317 (3)1.163 (3)0.0399 (8)0.050 (7)*
H720.233 (3)1.042 (3)0.0583 (9)0.061 (8)*
H730.407 (4)1.056 (4)0.0696 (11)0.105 (13)*
H810.657 (3)0.825 (3)0.0174 (9)0.066 (9)*
H820.564 (3)0.891 (3)0.0571 (10)0.061 (8)*
H830.524 (3)0.736 (4)0.0416 (11)0.080 (11)*
H910.584 (2)0.688 (2)0.0353 (7)0.029 (6)*
H1010.688 (4)0.848 (4)0.0769 (11)0.084 (11)*
H1020.693 (3)0.693 (3)0.1032 (8)0.056 (8)*
H1030.578 (3)0.805 (3)0.1179 (9)0.052 (8)*
H1110.387 (3)0.568 (3)0.0516 (9)0.058 (9)*
H1120.366 (3)0.625 (3)0.0998 (9)0.055 (8)*
H1130.499 (3)0.526 (3)0.0862 (8)0.048 (7)*
H20.025 (3)1.287 (3)0.1695 (8)0.038 (7)*
H30.129 (2)1.200 (2)0.1603 (7)0.028 (7)*
H1510.052 (2)1.651 (2)0.2035 (6)0.018 (5)*
H1610.002 (3)1.607 (3)0.1295 (9)0.057 (9)*
H1620.072 (2)1.480 (3)0.1428 (7)0.033 (6)*
H1630.131 (3)1.619 (3)0.1563 (9)0.055 (8)*
H1710.014 (3)1.497 (3)0.2562 (8)0.039 (7)*
H1720.117 (3)1.553 (3)0.2378 (7)0.039 (7)*
H1730.073 (3)1.399 (3)0.2254 (8)0.047 (7)*
H1810.262 (3)1.774 (3)0.1950 (8)0.039 (7)*
H1820.274 (2)1.712 (2)0.2410 (8)0.027 (6)*
H1830.408 (3)1.739 (2)0.2120 (7)0.037 (6)*
H1910.609 (2)1.461 (2)0.1636 (8)0.040 (6)*
H1920.578 (2)1.581 (3)0.1961 (7)0.029 (6)*
H1930.589 (2)1.431 (2)0.2151 (7)0.035 (6)*
H2010.509 (2)1.245 (2)0.1646 (7)0.034 (6)*
H2110.412 (3)1.266 (3)0.0956 (9)0.055 (8)*
H2120.450 (3)1.109 (3)0.1077 (8)0.043 (7)*
H2130.299 (3)1.152 (3)0.1069 (8)0.050 (8)*
H2210.384 (3)1.137 (3)0.2230 (9)0.055 (8)*
H2220.291 (3)1.066 (3)0.1895 (8)0.044 (7)*
H2230.455 (3)1.038 (3)0.1911 (8)0.046 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0196 (1)0.0259 (1)0.0337 (2)0.0012 (1)0.0005 (1)0.0078 (1)
Cl10.0189 (2)0.0280 (3)0.0660 (4)0.0005 (2)0.0024 (2)0.0158 (3)
Cl20.0205 (2)0.0300 (3)0.0544 (3)0.0020 (2)0.0031 (2)0.0076 (2)
Cl30.0414 (3)0.0360 (3)0.0370 (3)0.0094 (3)0.0054 (2)0.0043 (2)
N10.0363 (12)0.0363 (10)0.0332 (11)0.0167 (10)0.0026 (9)0.0019 (8)
N20.0300 (9)0.0290 (10)0.0311 (9)0.0067 (8)0.0014 (7)0.0009 (7)
N30.0292 (9)0.0309 (10)0.0276 (9)0.0074 (8)0.0022 (8)0.0003 (8)
C10.0249 (11)0.0267 (10)0.0309 (11)0.0033 (9)0.0008 (9)0.0039 (9)
C20.0328 (12)0.0343 (12)0.0304 (11)0.0001 (10)0.0016 (9)0.0008 (9)
C30.0342 (12)0.0403 (13)0.0278 (12)0.0011 (11)0.0006 (10)0.0008 (10)
C40.0316 (13)0.0289 (11)0.0421 (13)0.0081 (10)0.0023 (11)0.0013 (10)
C50.054 (2)0.0318 (14)0.081 (2)0.0043 (13)0.0018 (17)0.0048 (15)
C60.0357 (15)0.0550 (19)0.078 (2)0.0145 (14)0.0110 (15)0.0081 (17)
C70.0508 (16)0.0401 (15)0.0380 (13)0.0008 (13)0.0061 (13)0.0057 (11)
C80.0605 (18)0.0570 (19)0.0342 (15)0.0180 (16)0.0147 (13)0.0058 (14)
C90.0301 (12)0.0312 (12)0.0339 (12)0.0112 (10)0.0007 (10)0.0033 (10)
C100.0445 (16)0.0513 (17)0.0542 (18)0.0172 (14)0.0168 (14)0.0086 (14)
C110.0442 (15)0.0353 (14)0.0540 (18)0.0098 (12)0.0100 (14)0.0066 (13)
N40.0153 (10)0.0206 (11)0.0789 (17)0.0001 (8)0.0042 (10)0.0145 (10)
N50.0172 (8)0.0194 (8)0.0336 (9)0.0009 (7)0.0025 (7)0.0034 (7)
N60.0152 (8)0.0161 (8)0.0378 (10)0.0007 (7)0.0017 (7)0.0030 (7)
C120.0165 (10)0.0214 (10)0.0353 (11)0.0010 (8)0.0028 (8)0.0011 (8)
C130.0221 (11)0.0194 (10)0.0268 (10)0.0027 (8)0.0018 (8)0.0003 (8)
C140.0209 (10)0.0196 (9)0.0256 (10)0.0035 (8)0.0011 (8)0.0028 (8)
C150.0227 (11)0.0195 (11)0.0388 (12)0.0043 (9)0.0025 (9)0.0047 (9)
C160.0306 (12)0.0285 (12)0.0393 (13)0.0077 (10)0.0007 (11)0.0006 (11)
C170.0258 (12)0.0508 (17)0.0356 (13)0.0080 (12)0.0067 (10)0.0040 (12)
C180.0313 (13)0.0221 (11)0.0378 (13)0.0003 (10)0.0017 (11)0.0053 (10)
C190.0220 (10)0.0241 (12)0.0425 (14)0.0026 (9)0.0035 (10)0.0023 (10)
C200.0152 (10)0.0198 (10)0.0478 (14)0.0014 (8)0.0024 (9)0.0017 (9)
C210.0376 (14)0.0264 (13)0.0462 (14)0.0078 (11)0.0105 (12)0.0033 (11)
C220.0324 (13)0.0258 (12)0.0462 (15)0.0070 (11)0.0007 (11)0.0026 (11)
Geometric parameters (Å, º) top
Fe—Cl12.3109 (6)C8—H830.99 (4)
Fe—Cl22.3053 (6)C8—H820.96 (3)
Fe—Cl32.3091 (7)C8—H811.06 (3)
Fe—N12.0445 (19)C9—H910.99 (2)
N1—C11.305 (3)C10—H1021.02 (3)
N2—C11.372 (3)C10—H1011.05 (4)
N2—C21.415 (3)C10—H1030.92 (3)
N2—C41.472 (3)C11—H1110.96 (3)
N3—C11.371 (3)C11—H1130.97 (3)
N3—C31.407 (3)C11—H1121.03 (3)
N3—C91.477 (3)C13—C181.497 (3)
N4—C121.338 (3)C13—C141.333 (3)
N5—C131.410 (2)C14—C191.487 (3)
N5—C121.346 (2)C15—C161.512 (3)
N5—C151.483 (2)C15—C171.519 (3)
N6—C141.410 (2)C20—C221.514 (3)
N6—C201.485 (2)C20—C211.512 (3)
N6—C121.350 (2)C15—H1510.910 (19)
N1—H10.75 (3)C16—H1610.93 (3)
N4—H20.80 (3)C16—H1620.94 (3)
N4—H30.753 (19)C16—H1630.93 (3)
C2—C31.336 (3)C17—H1710.92 (3)
C2—C71.496 (3)C17—H1720.91 (3)
C3—C81.497 (4)C17—H1730.98 (3)
C4—C51.522 (4)C18—H1810.92 (3)
C4—C61.511 (4)C18—H1820.93 (2)
C9—C111.516 (4)C18—H1830.99 (3)
C9—C101.527 (4)C19—H1911.03 (2)
C4—H410.96 (2)C19—H1920.94 (3)
C5—H520.99 (3)C19—H1930.97 (2)
C5—H510.89 (4)C20—H2010.948 (19)
C5—H531.01 (4)C21—H2111.02 (3)
C6—H621.02 (4)C21—H2120.92 (3)
C6—H630.99 (3)C21—H2130.97 (3)
C6—H610.97 (3)C22—H2210.96 (3)
C7—H721.00 (3)C22—H2220.96 (3)
C7—H731.07 (4)C22—H2230.94 (3)
C7—H710.95 (3)
Cl1—Fe—Cl2108.86 (2)C9—C10—H101102.3 (19)
Cl1—Fe—Cl3110.00 (2)C9—C10—H102107.4 (15)
Cl1—Fe—N1111.21 (6)C9—C10—H103106.7 (18)
Cl2—Fe—Cl3119.69 (2)H102—C10—H103112 (2)
Cl2—Fe—N1110.88 (6)H101—C10—H103118 (3)
Cl3—Fe—N195.58 (6)H101—C10—H102110 (3)
Fe—N1—C1145.14 (16)C9—C11—H112115.7 (16)
C1—N2—C2108.88 (16)C9—C11—H113109.2 (17)
C1—N2—C4122.40 (17)H111—C11—H113108 (2)
C2—N2—C4128.42 (17)H112—C11—H113110 (2)
C1—N3—C3109.36 (17)H111—C11—H112106 (2)
C1—N3—C9125.42 (18)C9—C11—H111107.2 (18)
C3—N3—C9125.21 (18)N5—C12—N6108.65 (16)
C13—N5—C15125.12 (15)N4—C12—N5126.26 (18)
C12—N5—C13108.02 (15)N4—C12—N6124.93 (18)
C12—N5—C15126.84 (16)N5—C13—C18122.09 (18)
C14—N6—C20124.97 (15)N5—C13—C14107.75 (16)
C12—N6—C14107.93 (15)C14—C13—C18130.1 (2)
C12—N6—C20127.04 (16)N6—C14—C13107.63 (16)
Fe—N1—H1102 (2)N6—C14—C19121.46 (16)
C1—N1—H1113 (2)C13—C14—C19130.84 (18)
H2—N4—H3118 (3)C16—C15—C17113.76 (18)
C12—N4—H3117.5 (15)N5—C15—C16111.65 (17)
C12—N4—H2118 (2)N5—C15—C17111.58 (18)
N1—C1—N3128.05 (19)N6—C20—C21111.61 (18)
N2—C1—N3106.29 (17)N6—C20—C22112.25 (17)
N1—C1—N2125.65 (18)C21—C20—C22113.44 (19)
C3—C2—C7128.3 (2)N5—C15—H151104.3 (12)
N2—C2—C7123.85 (18)C16—C15—H151108.1 (12)
N2—C2—C3107.77 (18)C17—C15—H151106.8 (12)
N3—C3—C8122.0 (2)C15—C16—H161114.8 (18)
C2—C3—C8130.4 (2)C15—C16—H162111.7 (14)
N3—C3—C2107.66 (18)C15—C16—H163111.8 (17)
N2—C4—C5112.4 (2)H161—C16—H162103 (2)
N2—C4—C6112.6 (2)H161—C16—H163107 (2)
C5—C4—C6112.5 (2)H162—C16—H163108 (2)
N3—C9—C10111.53 (18)C15—C17—H171106.5 (17)
N3—C9—C11112.23 (18)C15—C17—H172103.9 (16)
C10—C9—C11113.7 (2)C15—C17—H173112.2 (15)
C6—C4—H41107.2 (12)H171—C17—H172108 (2)
N2—C4—H41107.2 (12)H171—C17—H173112 (2)
C5—C4—H41104.3 (12)H172—C17—H173114 (2)
C4—C5—H53107 (2)C13—C18—H181112.7 (17)
H51—C5—H52115 (3)C13—C18—H182108.0 (12)
H51—C5—H53113 (3)C13—C18—H183107.2 (12)
H52—C5—H53103 (3)H181—C18—H182112 (2)
C4—C5—H51112 (2)H181—C18—H183106 (2)
C4—C5—H52107.3 (17)H182—C18—H183110.9 (18)
C4—C6—H62110 (2)C14—C19—H191114.2 (12)
C4—C6—H61110.3 (17)C14—C19—H192108.9 (12)
C4—C6—H63101.6 (17)C14—C19—H193111.1 (12)
H61—C6—H62117 (3)H191—C19—H192104.3 (17)
H61—C6—H63103 (2)H191—C19—H193108.2 (17)
H62—C6—H63114 (3)H192—C19—H193110.0 (18)
C2—C7—H71111.5 (15)N6—C20—H201104.5 (12)
C2—C7—H73110 (2)C21—C20—H201105.6 (13)
H71—C7—H72104 (2)C22—C20—H201108.7 (12)
H72—C7—H73112 (3)C20—C21—H211109.4 (16)
H71—C7—H73107 (3)C20—C21—H212109.5 (16)
C2—C7—H72112.9 (17)C20—C21—H213116.1 (15)
C3—C8—H82108.2 (18)H211—C21—H212111 (2)
C3—C8—H81108.7 (15)H211—C21—H213105 (2)
H81—C8—H83113 (2)H212—C21—H213106 (2)
C3—C8—H83106.5 (18)C20—C22—H221110.4 (17)
H81—C8—H82108 (2)C20—C22—H222112.3 (16)
H82—C8—H83112 (3)C20—C22—H223107.8 (17)
N3—C9—H91103.6 (12)H221—C22—H222105 (2)
C10—C9—H91106.8 (12)H221—C22—H223107 (2)
C11—C9—H91108.3 (11)H222—C22—H223114 (2)
Cl1—Fe—N1—C158.4 (3)C15—N5—C12—N45.2 (3)
Cl2—Fe—N1—C162.9 (3)C12—N5—C13—C18177.23 (19)
Cl3—Fe—N1—C1172.4 (3)C15—N5—C12—N6179.16 (17)
Cl2—Fe—N1—H1122 (2)C12—N5—C13—C140.2 (2)
Cl3—Fe—N1—H13 (2)C13—N5—C12—N60.8 (2)
Cl1—Fe—N1—H1117 (2)C15—N5—C13—C14178.61 (17)
Fe—N1—C1—N21.2 (4)C13—N5—C12—N4176.4 (2)
Fe—N1—C1—N3179.10 (18)C13—N5—C15—C17112.7 (2)
C4—N2—C1—N14.7 (3)C12—N5—C15—C1765.4 (3)
C2—N2—C1—N31.3 (2)C13—N5—C15—C16118.75 (19)
C1—N2—C2—C7177.6 (2)C15—N5—C13—C181.2 (3)
C4—N2—C1—N3175.48 (17)C12—N5—C15—C1663.1 (2)
C1—N2—C2—C30.0 (2)C12—N6—C14—C130.9 (2)
C1—N2—C4—C5110.2 (3)C20—N6—C12—N5178.12 (17)
C1—N2—C4—C6121.4 (2)C14—N6—C20—C21116.5 (2)
C2—N2—C4—C562.8 (3)C20—N6—C14—C190.7 (3)
C2—N2—C4—C665.6 (3)C12—N6—C20—C2166.9 (3)
C2—N2—C1—N1178.9 (2)C12—N6—C20—C2261.7 (3)
C4—N2—C2—C3173.76 (18)C14—N6—C12—N4176.7 (2)
C4—N2—C2—C78.7 (3)C14—N6—C12—N51.0 (2)
C3—N3—C1—N1178.2 (2)C20—N6—C12—N46.2 (3)
C1—N3—C3—C22.1 (2)C12—N6—C14—C19176.50 (19)
C1—N3—C3—C8177.3 (2)C20—N6—C14—C13178.08 (17)
C9—N3—C3—C2179.13 (18)C14—N6—C20—C22114.9 (2)
C9—N3—C3—C81.5 (3)C7—C2—C3—N3176.2 (2)
C1—N3—C9—C1068.2 (3)C7—C2—C3—C84.5 (4)
C1—N3—C9—C1160.8 (3)N2—C2—C3—N31.2 (2)
C3—N3—C9—C10110.4 (2)N2—C2—C3—C8178.1 (2)
C3—N3—C9—C11120.7 (2)N5—C13—C14—N60.4 (2)
C9—N3—C1—N2179.16 (17)C18—C13—C14—N6177.58 (19)
C3—N3—C1—N22.1 (2)C18—C13—C14—C190.5 (4)
C9—N3—C1—N10.6 (3)N5—C13—C14—C19176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H2···Cl10.80 (3)2.47 (3)3.173 (2)147 (3)
N4—H3···Cl20.753 (19)2.739 (19)3.379 (2)144.2 (19)
N1—H1···Cl30.75 (3)2.89 (2)3.229 (2)111 (2)

Experimental details

Crystal data
Chemical formula(C11H22N3)[FeCl3(C11H21N3)]
Mr553.82
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)9.6108 (1), 9.6349 (1), 30.6453 (3)
V3)2837.73 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.60 × 0.51 × 0.46
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.582, 0.677
No. of measured, independent and
observed [I > 2σ(I)] reflections
56451, 5193, 4875
Rint0.040
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.055, 1.07
No. of reflections5193
No. of parameters461
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.24
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.001 (11)

Computer programs: KappaCCD Control Software (Nonius, 2001), DENZO (Otwinowski & Minor, 1997), DENZO, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1998), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) top
Fe—Cl12.3109 (6)N3—C31.407 (3)
Fe—Cl22.3053 (6)N3—C91.477 (3)
Fe—Cl32.3091 (7)N4—C121.338 (3)
Fe—N12.0445 (19)N5—C131.410 (2)
N1—C11.305 (3)N5—C121.346 (2)
N2—C11.372 (3)N5—C151.483 (2)
N2—C21.415 (3)N6—C141.410 (2)
N2—C41.472 (3)N6—C201.485 (2)
N3—C11.371 (3)N6—C121.350 (2)
Cl1—Fe—Cl2108.86 (2)Cl2—Fe—N1110.88 (6)
Cl1—Fe—Cl3110.00 (2)Cl3—Fe—N195.58 (6)
Cl1—Fe—N1111.21 (6)Fe—N1—C1145.14 (16)
Cl2—Fe—Cl3119.69 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H2···Cl10.80 (3)2.47 (3)3.173 (2)147 (3)
N4—H3···Cl20.753 (19)2.739 (19)3.379 (2)144.2 (19)
N1—H1···Cl30.75 (3)2.89 (2)3.229 (2)111 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds