Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The two title complexes, [Zn2(C13H9Cl2N2O)2(C2H3O2)2], (I), and [Cu2(C13H9Cl2N2O)2(NCS)2], (II), are dinuclear Schiff base compounds. Both mol­ecules are located on crystallographic centres of inversion. In (I), the ZnII atom is five-coordinated in a trigonal-bipyramidal coordination, with one imine N atom of one Schiff base and two acetate O atoms defining the basal plane, and one O atom and one pyridine N atom of the Schiff base occupying the axial positions, while in (II), the CuII atom is five-coordinated in a square-pyramidal coordination, with one O and two N atoms of one Schiff base and one terminal N atom of a bridging thio­cyanate ligand defining the basal plane, and one terminal S atom of another bridging thio­cyanate ligand occupying the apical position. The different bridging ligands lead to the different coordinations of the complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105030192/sk1871sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105030192/sk1871Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105030192/sk1871IIsup3.hkl
Contains datablock II

CCDC references: 290555; 290556

Comment top

Metal-organic complexes containing bridging ligands are of current interest because of their interesting molecular topologies and crystal-packing motifs, as well as the fact that they may be designed with specific functionalities (Mukherjee et al., 2001; Meyer & Pritzkow, 2001; Goher et al., 2002). The prime strategy for designing these polynuclear materials is to use suitable bridging ligands (Koner et al., 2003). Owing to the coordination modes of the acetate and thiocyanate anions, these ligands may act as bridging groups. A major obstacle to a more comprehensive study of such acetate- or thiocyanate-coordinated polynuclear complexes is the lack of rational synthetic procedures, since with the present state of knowledge it is hardly possible to determine which coordination mode will be adopted by the acetate anion or thiocyanate anion and whether the sought-after alternating structure will finally be formed (Bhaduri et al., 2003; Romero et al., 2002; Tercero et al., 2002; Ribas et al., 1999).

Our work is aimed at obtaining polynuclear complexes. On the basis of the above considerations, we used the rigid tridentate Schiff base ligand, 2,4-dichloro-6-(pyridin-2-ylmethyliminomethyl)phenol (DPMP), as the first ligand. The reason we use this ligand is that the rigid DPMP molecule can adopt an almost fixed coordination mode through the three N and O donor atoms (You, 2005a). The second ligand, viz. acetate or thiocyanate, is a well known bridging group. It readily bridges different metal ions through the donor atoms, forming polynuclear complexes. We report here two new dinuclear zinc(II) and copper(II) complexes, [Zn2(C13H9Cl2N2O)2(C2H3O2)2], (I), and [Cu2(C13H9Cl2N2O)2(NCS)2], (II). The different bridging ligands lead to the different coordination modes of the metal ions.

Complexes (I) and (II) are dinuclear Schiff base compounds (Figs. 1 and 2). In (I), the ZnII atom is five-coordinated in a trigonal-bipyramidal coordination, with one imine N atom of one Schiff base and two acetate O atoms defining the basal plane, and one O and one pyridine N atom of the Schiff base occupying the axial positions. In (II), the CuII atom is five-coordinated in a square-pyramidal coordination, with one O and two N atoms of one Schiff base and one terminal N atom of a bridging thiocyanate ligand defining the basal plane, and one terminal S atom of another bridging thiocyanate ligand occupying the apical position. The different coordinations in the two complexes are caused by the different bridging ligands between the metal ions. In (I), atoms O2 and O3 of the acetate group have almost the same coordination patterns, which respectively coordinate to the Zn1 and Zn1i atoms [symmetry code: (i) 2 − x, −y, −z]. The C14—O2 bond is longer by 0.010 (4) Å than the C14—O3 bond (Table 1), and the Zn1—O2 bond is shorter by 0.008 (2) Å than the of Zn1i—O3 bond, indicating that atom O3 adopts the ketonic coordination, while atom O2 adopt the enolic coordination. In (II), atoms N3 and S1 of the thiocyanate group have different coordination patterns. The N atom of the thiocyanate group preferably coordinates to the metal ions through linear coordination modes, while the S atom of the thiocyanate group preferably adopts the orthogonal coordination modes (You & Zhu, 2005; You, 2005b). The thiocyanate group in (II) is nearly linear and shows bent coordinations with the metal atoms [the angles N3—C14—S1, Cu1—N3—C14 and C14—S1—Cu1ii are 179.1 (4), 159.3 (3) and 84.4 (3)°, respectively; symmetry code: (ii) 1 − x, 2 − y, −z].

Each zinc(II) moiety of complex (I), and each copper(II) moiety of the complex (II), is nearly coplanar, with the mean deviations from the DPMP plane of 0.043 (3) Å in (I) and 0.021 (3) Å in (II). These planar configurations can decrease the steric repulsion of the two near planar moieties. The N1—Zn1—N2 bond angle [77.30 (10)°] in (I) and the N1—Cu1—N2 bond angle [82.47 (11)°] in (II) are much smaller than 90°, as a result, respectively, of the strain created by the five-membered chelate rings Zn1/N2/C9/C8/N1 in (I) and Cu1/N2/C9/C8/N1 in (II). The bond lengths subtended at the metal atoms in the complexes are within normal ranges and, as expected, the bonds involving the pyridine N atoms are longer than those involving the imine N atoms.

The distance between atoms Zn1 and Zn1i [4.117 (2) Å] is much shorter than that between Cu1 and Cu1ii [5.099 (2) Å], as a result of the different size of the bridging ligands. The distance [2.220 (4) Å] between atoms O2 and O3 of the acetate group in (I) is much shorter than that [2.784 (4) Å] between atoms S1 and N3 of the thiocyanate group in (II). The metal–metal distance in (I) is shorter than that in (II), resulting in more steric repulsion of the two near planar moieties, and further in the N2—Zn1—O1 bond angle [164.49 (10)°] in (I) deviating from 180° much more than the corresponding value [N2—Cu1—O1 = 175.35 (11)°] observed in (II).

In conclusion, the different bridging ligands can result in the different coordinations of the complexes.

Experimental top

For the preparation of complex (I), 3,5-dichlorosalicylaldehyde (0.1 mmol, 19.1 mg) and 2-aminomethylpyridine (0.1 mmol, 10.8 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution, to which was added an MeOH solution (5 ml) of Zn(CH3COO)2·4H2O (0.1 mmol, 25.6 mg) with stirring. The mixture was stirred for another 10 min at room temperature. After keeping the filtrate in air for 5 d, colourless block-shaped crystals were formed. Complex (II) was prepared by a procedure similar to that described for (I), with Zn(CH3COO)2·4H2O replaced by Cu(CH3COO)2·H2O (0.1 mmol, 19.9 mg) and NH4NCS (0.1 mmol, 7.6 mg). Blue needle-shaped crystals of (II) were obtained after evaporating the solvents from the filtrate in air for 7 d.

Refinement top

All H atoms in (I) and (II) were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labeled with the suffix A are at the symmetry position (2 − x, −y, −z).
[Figure 2] Fig. 2. The structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labeled with the suffix A are at the symmetry position (1 − x, 2 − y, −z).
(I) Di-µ-acetato-bis{[2,4-dichloro-6-(2- pyridylmethyliminomethyl)phenolato]zinc(II)} top
Crystal data top
[Zn2(C13H9Cl2N2O)2(C2H3O2)2]Z = 1
Mr = 809.07F(000) = 408
Triclinic, P1Dx = 1.639 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.540 (1) ÅCell parameters from 3662 reflections
b = 9.388 (1) Åθ = 2.3–27.6°
c = 12.228 (1) ŵ = 1.84 mm1
α = 76.208 (1)°T = 298 K
β = 85.222 (1)°Block, colourless
γ = 77.320 (1)°0.25 × 0.22 × 0.11 mm
V = 819.67 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3560 independent reflections
Radiation source: fine-focus sealed tube2835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scanθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.657, Tmax = 0.823k = 1111
7858 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.463P]
where P = (Fo2 + 2Fc2)/3
3560 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Zn2(C13H9Cl2N2O)2(C2H3O2)2]γ = 77.320 (1)°
Mr = 809.07V = 819.67 (15) Å3
Triclinic, P1Z = 1
a = 7.540 (1) ÅMo Kα radiation
b = 9.388 (1) ŵ = 1.84 mm1
c = 12.228 (1) ÅT = 298 K
α = 76.208 (1)°0.25 × 0.22 × 0.11 mm
β = 85.222 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3560 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2835 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.823Rint = 0.027
7858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 1.03 e Å3
3560 reflectionsΔρmin = 0.30 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.89936 (5)0.21795 (4)0.01275 (3)0.03055 (13)
Cl10.7445 (2)0.31616 (13)0.38103 (9)0.0901 (5)
Cl20.40017 (15)0.88217 (11)0.38379 (9)0.0562 (3)
O10.8098 (4)0.2969 (3)0.1452 (2)0.0485 (6)
O20.7400 (4)0.0713 (3)0.0699 (2)0.0534 (7)
O30.8439 (3)0.1577 (3)0.0414 (3)0.0564 (7)
N10.7998 (3)0.4340 (3)0.0404 (2)0.0294 (5)
N20.9862 (4)0.1970 (3)0.1811 (2)0.0331 (6)
C10.7210 (5)0.4265 (3)0.1937 (3)0.0332 (7)
C20.6722 (6)0.4585 (4)0.3087 (3)0.0439 (8)
C30.5769 (5)0.5933 (4)0.3662 (3)0.0454 (9)
H30.55070.60720.44150.054*
C40.5197 (5)0.7096 (4)0.3103 (3)0.0374 (7)
C50.5634 (4)0.6896 (4)0.2007 (3)0.0346 (7)
H50.52680.76840.16460.042*
C60.6628 (4)0.5516 (3)0.1416 (3)0.0290 (6)
C70.7075 (4)0.5464 (3)0.0283 (3)0.0302 (6)
H70.66520.63340.00200.036*
C80.8302 (5)0.4586 (3)0.1503 (3)0.0321 (7)
H8A0.71380.48960.18700.039*
H8B0.89630.53880.13980.039*
C90.9360 (4)0.3192 (3)0.2247 (3)0.0315 (6)
C100.9799 (5)0.3189 (4)0.3324 (3)0.0419 (8)
H100.94380.40470.36080.050*
C111.0786 (5)0.1880 (5)0.3973 (3)0.0494 (9)
H111.10960.18490.47000.059*
C121.1294 (5)0.0650 (4)0.3537 (3)0.0498 (9)
H121.19660.02310.39600.060*
C131.0812 (5)0.0708 (4)0.2462 (3)0.0445 (8)
H131.11510.01500.21760.053*
C140.7367 (4)0.0637 (3)0.0831 (3)0.0327 (7)
C150.5810 (6)0.1170 (5)0.1548 (4)0.0618 (12)
H15A0.50240.14360.10860.093*
H15B0.51370.03840.18880.093*
H15C0.62790.20300.21270.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0387 (2)0.02216 (19)0.0315 (2)0.00701 (14)0.00378 (14)0.00847 (14)
Cl10.1688 (15)0.0531 (7)0.0447 (6)0.0119 (8)0.0228 (7)0.0295 (5)
Cl20.0673 (7)0.0402 (5)0.0524 (6)0.0061 (4)0.0176 (5)0.0073 (4)
O10.0758 (18)0.0290 (12)0.0378 (13)0.0031 (12)0.0079 (12)0.0124 (10)
O20.0587 (17)0.0383 (14)0.0695 (18)0.0244 (12)0.0115 (14)0.0157 (13)
O30.0414 (15)0.0556 (17)0.0771 (19)0.0092 (12)0.0198 (13)0.0327 (15)
N10.0359 (14)0.0259 (12)0.0277 (13)0.0082 (10)0.0039 (10)0.0086 (10)
N20.0386 (15)0.0278 (13)0.0333 (14)0.0073 (11)0.0028 (11)0.0069 (11)
C10.0414 (18)0.0295 (16)0.0321 (16)0.0108 (13)0.0024 (13)0.0114 (13)
C20.065 (2)0.0319 (17)0.0363 (18)0.0093 (16)0.0000 (16)0.0123 (14)
C30.061 (2)0.047 (2)0.0319 (17)0.0183 (18)0.0093 (16)0.0063 (15)
C40.0414 (19)0.0296 (16)0.0379 (17)0.0089 (13)0.0016 (14)0.0004 (13)
C50.0391 (18)0.0288 (15)0.0371 (17)0.0075 (13)0.0001 (13)0.0096 (13)
C60.0327 (16)0.0248 (14)0.0314 (15)0.0095 (12)0.0023 (12)0.0083 (12)
C70.0348 (17)0.0237 (14)0.0337 (16)0.0073 (12)0.0037 (13)0.0104 (12)
C80.0448 (18)0.0262 (15)0.0282 (15)0.0099 (13)0.0021 (13)0.0102 (12)
C90.0339 (16)0.0317 (16)0.0318 (16)0.0130 (13)0.0024 (12)0.0078 (13)
C100.053 (2)0.0411 (19)0.0343 (18)0.0117 (16)0.0014 (15)0.0125 (15)
C110.056 (2)0.055 (2)0.0351 (19)0.0123 (18)0.0128 (16)0.0025 (17)
C120.055 (2)0.042 (2)0.046 (2)0.0073 (17)0.0144 (17)0.0051 (17)
C130.050 (2)0.0316 (17)0.050 (2)0.0034 (15)0.0064 (16)0.0089 (16)
C140.0351 (17)0.0330 (16)0.0332 (16)0.0098 (13)0.0015 (13)0.0126 (13)
C150.066 (3)0.051 (2)0.079 (3)0.028 (2)0.034 (2)0.032 (2)
Geometric parameters (Å, º) top
Zn1—O21.989 (2)C4—C51.365 (5)
Zn1—O3i1.997 (2)C5—C61.407 (4)
Zn1—O12.013 (2)C5—H50.9300
Zn1—N12.099 (2)C6—C71.440 (4)
Zn1—N22.164 (3)C7—H70.9300
Cl1—C21.740 (4)C8—C91.508 (4)
Cl2—C41.745 (3)C8—H8A0.9700
O1—C11.282 (4)C8—H8B0.9700
O2—C141.244 (4)C9—C101.384 (5)
O3—C141.234 (4)C10—C111.387 (5)
O3—Zn1i1.997 (2)C10—H100.9300
N1—C71.287 (4)C11—C121.353 (6)
N1—C81.460 (4)C11—H110.9300
N2—C91.346 (4)C12—C131.378 (5)
N2—C131.350 (4)C12—H120.9300
C1—C21.428 (5)C13—H130.9300
C1—C61.436 (4)C14—C151.509 (5)
C2—C31.369 (5)C15—H15A0.9600
C3—C41.395 (5)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
O2—Zn1—O3i122.65 (11)C5—C6—C7115.9 (3)
O2—Zn1—O199.18 (12)C1—C6—C7122.7 (3)
O3i—Zn1—O192.55 (12)N1—C7—C6126.8 (3)
O2—Zn1—N1115.73 (10)N1—C7—H7116.6
O3i—Zn1—N1120.68 (10)C6—C7—H7116.6
O1—Zn1—N187.82 (10)N1—C8—C9111.8 (2)
O2—Zn1—N291.31 (11)N1—C8—H8A109.3
O3i—Zn1—N291.34 (12)C9—C8—H8A109.3
O1—Zn1—N2164.49 (10)N1—C8—H8B109.3
N1—Zn1—N277.30 (10)C9—C8—H8B109.3
C1—O1—Zn1130.7 (2)H8A—C8—H8B107.9
C14—O2—Zn1141.9 (2)N2—C9—C10122.1 (3)
C14—O3—Zn1i144.5 (2)N2—C9—C8116.9 (3)
C7—N1—C8116.2 (3)C10—C9—C8121.0 (3)
C7—N1—Zn1126.5 (2)C9—C10—C11118.7 (3)
C8—N1—Zn1117.29 (19)C9—C10—H10120.6
C9—N2—C13118.0 (3)C11—C10—H10120.6
C9—N2—Zn1116.7 (2)C12—C11—C10119.3 (3)
C13—N2—Zn1125.3 (2)C12—C11—H11120.3
O1—C1—C2121.2 (3)C10—C11—H11120.3
O1—C1—C6125.2 (3)C11—C12—C13119.7 (3)
C2—C1—C6113.6 (3)C11—C12—H12120.1
C3—C2—C1124.8 (3)C13—C12—H12120.1
C3—C2—Cl1118.1 (3)N2—C13—C12122.1 (3)
C1—C2—Cl1117.1 (3)N2—C13—H13118.9
C2—C3—C4119.0 (3)C12—C13—H13118.9
C2—C3—H3120.5O3—C14—O2127.2 (3)
C4—C3—H3120.5O3—C14—C15116.5 (3)
C5—C4—C3120.1 (3)O2—C14—C15116.3 (3)
C5—C4—Cl2120.8 (3)C14—C15—H15A109.5
C3—C4—Cl2119.1 (3)C14—C15—H15B109.5
C4—C5—C6121.1 (3)H15A—C15—H15B109.5
C4—C5—H5119.5C14—C15—H15C109.5
C6—C5—H5119.5H15A—C15—H15C109.5
C5—C6—C1121.4 (3)H15B—C15—H15C109.5
O2—Zn1—O1—C1112.2 (3)C2—C3—C4—Cl2179.4 (3)
O3i—Zn1—O1—C1124.1 (3)C3—C4—C5—C61.3 (5)
N1—Zn1—O1—C13.5 (3)Cl2—C4—C5—C6178.8 (2)
N2—Zn1—O1—C119.8 (6)C4—C5—C6—C10.4 (5)
O3i—Zn1—O2—C144.2 (5)C4—C5—C6—C7177.3 (3)
O1—Zn1—O2—C1494.8 (4)O1—C1—C6—C5179.1 (3)
N1—Zn1—O2—C14173.2 (4)C2—C1—C6—C51.5 (4)
N2—Zn1—O2—C1496.7 (4)O1—C1—C6—C73.4 (5)
O2—Zn1—N1—C793.6 (3)C2—C1—C6—C7176.1 (3)
O3i—Zn1—N1—C797.2 (3)C8—N1—C7—C6178.6 (3)
O1—Zn1—N1—C75.6 (3)Zn1—N1—C7—C64.5 (4)
N2—Zn1—N1—C7178.8 (3)C5—C6—C7—N1178.5 (3)
O2—Zn1—N1—C883.3 (2)C1—C6—C7—N10.9 (5)
O3i—Zn1—N1—C885.9 (2)C7—N1—C8—C9178.8 (3)
O1—Zn1—N1—C8177.5 (2)Zn1—N1—C8—C91.6 (3)
N2—Zn1—N1—C81.9 (2)C13—N2—C9—C100.5 (5)
O2—Zn1—N2—C9114.0 (2)Zn1—N2—C9—C10178.6 (2)
O3i—Zn1—N2—C9123.3 (2)C13—N2—C9—C8180.0 (3)
O1—Zn1—N2—C918.8 (5)Zn1—N2—C9—C81.9 (4)
N1—Zn1—N2—C92.1 (2)N1—C8—C9—N20.3 (4)
O2—Zn1—N2—C1364.0 (3)N1—C8—C9—C10179.8 (3)
O3i—Zn1—N2—C1358.7 (3)N2—C9—C10—C110.0 (5)
O1—Zn1—N2—C13163.3 (4)C8—C9—C10—C11179.5 (3)
N1—Zn1—N2—C13179.9 (3)C9—C10—C11—C120.1 (6)
Zn1—O1—C1—C2179.5 (3)C10—C11—C12—C130.6 (6)
Zn1—O1—C1—C60.0 (5)C9—N2—C13—C121.0 (5)
O1—C1—C2—C3179.6 (4)Zn1—N2—C13—C12178.9 (3)
C6—C1—C2—C30.9 (5)C11—C12—C13—N21.1 (6)
O1—C1—C2—Cl11.9 (5)Zn1i—O3—C14—O230.6 (7)
C6—C1—C2—Cl1177.5 (2)Zn1i—O3—C14—C15151.5 (4)
C1—C2—C3—C40.7 (6)Zn1—O2—C14—O313.7 (7)
Cl1—C2—C3—C4179.2 (3)Zn1—O2—C14—C15168.4 (3)
C2—C3—C4—C51.9 (5)
Symmetry code: (i) x+2, y, z.
(II) di-µ-thiocyanato-bis{[2,4-dichloro-6-(2- pyridylmethyliminomethyl)phenolato]copper(II)} top
Crystal data top
[Zn2(C13H9Cl2N2O)2(NCS)2]F(000) = 804
Mr = 803.52Dx = 1.732 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1836 reflections
a = 8.718 (1) Åθ = 2.4–22.5°
b = 13.387 (2) ŵ = 1.90 mm1
c = 13.564 (2) ÅT = 298 K
β = 103.305 (2)°Needle, blue
V = 1540.5 (4) Å30.15 × 0.07 × 0.04 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3505 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scanθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.763, Tmax = 0.928k = 1716
13079 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.041P)2]
where P = (Fo2 + 2Fc2)/3
3505 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Zn2(C13H9Cl2N2O)2(NCS)2]V = 1540.5 (4) Å3
Mr = 803.52Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.718 (1) ŵ = 1.90 mm1
b = 13.387 (2) ÅT = 298 K
c = 13.564 (2) Å0.15 × 0.07 × 0.04 mm
β = 103.305 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3505 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2317 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.928Rint = 0.059
13079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.99Δρmax = 0.34 e Å3
3505 reflectionsΔρmin = 0.30 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.60055 (5)0.97449 (3)0.19018 (3)0.04162 (15)
Cl11.09808 (11)1.13643 (8)0.21840 (8)0.0610 (3)
Cl21.35906 (12)0.90239 (10)0.53537 (10)0.0817 (4)
S10.33475 (11)1.18975 (8)0.05963 (7)0.0521 (3)
O10.8097 (3)1.02780 (17)0.22243 (18)0.0475 (6)
N10.6465 (3)0.8785 (2)0.2984 (2)0.0410 (7)
N20.3818 (3)0.9130 (2)0.1674 (2)0.0419 (7)
N30.5301 (4)1.0824 (2)0.0956 (2)0.0479 (8)
C10.9219 (4)0.9202 (3)0.3628 (3)0.0406 (8)
C20.9281 (4)0.9979 (2)0.2926 (3)0.0408 (9)
C31.0783 (4)1.0430 (3)0.3031 (3)0.0441 (9)
C41.2072 (4)1.0162 (3)0.3766 (3)0.0519 (10)
H41.30281.04900.38170.062*
C51.1946 (4)0.9401 (3)0.4432 (3)0.0507 (10)
C61.0551 (4)0.8924 (3)0.4363 (3)0.0492 (10)
H61.04810.84070.48090.059*
C70.7793 (4)0.8654 (3)0.3612 (3)0.0448 (9)
H70.78390.81600.41000.054*
C80.5186 (4)0.8117 (3)0.3065 (3)0.0569 (11)
H8A0.49960.81630.37410.068*
H8B0.54820.74340.29590.068*
C90.3712 (4)0.8378 (3)0.2302 (3)0.0439 (9)
C100.2324 (4)0.7866 (3)0.2252 (3)0.0539 (10)
H100.22790.73520.27060.065*
C110.1027 (4)0.8118 (3)0.1535 (3)0.0592 (11)
H110.00800.77830.14960.071*
C120.1123 (4)0.8871 (3)0.0869 (3)0.0601 (11)
H120.02460.90490.03670.072*
C130.2533 (4)0.9361 (3)0.0952 (3)0.0548 (10)
H130.26000.98680.04950.066*
C140.4499 (4)1.1274 (3)0.0310 (3)0.0435 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0411 (3)0.0406 (3)0.0416 (3)0.0021 (2)0.00621 (19)0.0053 (2)
Cl10.0568 (6)0.0508 (6)0.0781 (7)0.0075 (5)0.0208 (5)0.0087 (5)
Cl20.0472 (6)0.1039 (10)0.0832 (9)0.0037 (6)0.0075 (6)0.0190 (7)
S10.0517 (6)0.0558 (6)0.0433 (6)0.0109 (5)0.0005 (4)0.0001 (5)
O10.0421 (14)0.0454 (15)0.0521 (16)0.0043 (12)0.0047 (12)0.0090 (12)
N10.0384 (16)0.0434 (17)0.0392 (17)0.0041 (14)0.0047 (13)0.0049 (14)
N20.0370 (16)0.0399 (17)0.0481 (18)0.0004 (13)0.0085 (14)0.0001 (15)
N30.0524 (19)0.0384 (18)0.0503 (19)0.0007 (15)0.0067 (16)0.0030 (15)
C10.0373 (19)0.045 (2)0.040 (2)0.0007 (16)0.0079 (16)0.0021 (17)
C20.044 (2)0.035 (2)0.045 (2)0.0034 (15)0.0127 (17)0.0074 (16)
C30.044 (2)0.038 (2)0.050 (2)0.0012 (16)0.0109 (17)0.0007 (17)
C40.040 (2)0.055 (2)0.061 (3)0.0050 (18)0.0120 (19)0.011 (2)
C50.037 (2)0.059 (3)0.052 (2)0.0053 (18)0.0019 (18)0.001 (2)
C60.051 (2)0.051 (2)0.043 (2)0.0073 (19)0.0072 (18)0.0026 (18)
C70.054 (2)0.042 (2)0.040 (2)0.0042 (18)0.0132 (18)0.0027 (17)
C80.049 (2)0.060 (3)0.058 (3)0.011 (2)0.004 (2)0.017 (2)
C90.044 (2)0.046 (2)0.043 (2)0.0026 (17)0.0127 (17)0.0007 (18)
C100.051 (2)0.051 (2)0.060 (3)0.0100 (19)0.014 (2)0.005 (2)
C110.042 (2)0.064 (3)0.071 (3)0.007 (2)0.012 (2)0.003 (2)
C120.040 (2)0.062 (3)0.072 (3)0.002 (2)0.001 (2)0.004 (2)
C130.044 (2)0.053 (2)0.064 (3)0.0009 (19)0.007 (2)0.013 (2)
C140.045 (2)0.039 (2)0.047 (2)0.0035 (17)0.0119 (18)0.0089 (18)
Geometric parameters (Å, º) top
Cu1—O11.913 (2)C3—C41.368 (5)
Cu1—N11.922 (3)C4—C51.383 (5)
Cu1—N31.936 (3)C4—H40.9300
Cu1—N22.034 (3)C5—C61.358 (5)
Cu1—S1i2.9577 (12)C6—H60.9300
Cl1—C31.734 (4)C7—H70.9300
Cl2—C51.746 (4)C8—C91.494 (5)
S1—C141.627 (4)C8—H8A0.9700
O1—C21.296 (4)C8—H8B0.9700
N1—C71.281 (4)C9—C101.379 (5)
N1—C81.454 (4)C10—C111.353 (5)
N2—C91.336 (4)C10—H100.9300
N2—C131.343 (4)C11—C121.369 (5)
N3—C141.156 (4)C11—H110.9300
C1—C61.396 (5)C12—C131.376 (5)
C1—C21.419 (5)C12—H120.9300
C1—C71.440 (5)C13—H130.9300
C2—C31.418 (4)
O1—Cu1—N193.12 (11)C5—C6—C1120.5 (4)
O1—Cu1—N390.77 (11)C5—C6—H6119.7
N1—Cu1—N3169.58 (12)C1—C6—H6119.7
O1—Cu1—N2175.35 (11)N1—C7—C1125.8 (3)
N1—Cu1—N282.47 (11)N1—C7—H7117.1
N3—Cu1—N293.33 (12)C1—C7—H7117.1
C2—O1—Cu1127.5 (2)N1—C8—C9110.8 (3)
C7—N1—C8117.1 (3)N1—C8—H8A109.5
C7—N1—Cu1126.7 (2)C9—C8—H8A109.5
C8—N1—Cu1116.1 (2)N1—C8—H8B109.5
C9—N2—C13118.1 (3)C9—C8—H8B109.5
C9—N2—Cu1114.1 (2)H8A—C8—H8B108.1
C13—N2—Cu1127.8 (3)N2—C9—C10122.2 (3)
C14—N3—Cu1159.3 (3)N2—C9—C8116.3 (3)
C6—C1—C2121.4 (3)C10—C9—C8121.5 (3)
C6—C1—C7116.6 (3)C11—C10—C9119.3 (4)
C2—C1—C7122.0 (3)C11—C10—H10120.3
O1—C2—C3120.2 (3)C9—C10—H10120.3
O1—C2—C1124.9 (3)C10—C11—C12119.3 (4)
C3—C2—C1114.9 (3)C10—C11—H11120.3
C4—C3—C2123.1 (4)C12—C11—H11120.3
C4—C3—Cl1118.8 (3)C11—C12—C13119.1 (4)
C2—C3—Cl1118.1 (3)C11—C12—H12120.4
C3—C4—C5119.6 (3)C13—C12—H12120.4
C3—C4—H4120.2N2—C13—C12122.0 (4)
C5—C4—H4120.2N2—C13—H13119.0
C6—C5—C4120.4 (3)C12—C13—H13119.0
C6—C5—Cl2119.2 (3)N3—C14—S1179.1 (4)
C4—C5—Cl2120.3 (3)
N1—Cu1—O1—C22.4 (3)Cl1—C3—C4—C5178.3 (3)
N3—Cu1—O1—C2172.7 (3)C3—C4—C5—C60.4 (6)
O1—Cu1—N1—C71.0 (3)C3—C4—C5—Cl2178.3 (3)
N3—Cu1—N1—C7112.7 (7)C4—C5—C6—C10.8 (6)
N2—Cu1—N1—C7179.5 (3)Cl2—C5—C6—C1179.4 (3)
O1—Cu1—N1—C8178.2 (3)C2—C1—C6—C50.7 (6)
N3—Cu1—N1—C870.0 (7)C7—C1—C6—C5179.9 (3)
N2—Cu1—N1—C83.2 (3)C8—N1—C7—C1177.0 (3)
N1—Cu1—N2—C92.1 (2)Cu1—N1—C7—C10.3 (5)
N3—Cu1—N2—C9172.5 (2)C6—C1—C7—N1178.5 (3)
O1—Cu1—N3—C14166.7 (9)C2—C1—C7—N10.7 (6)
N1—Cu1—N2—C13178.7 (3)C7—N1—C8—C9178.7 (3)
N3—Cu1—N2—C1310.9 (3)Cu1—N1—C8—C93.8 (4)
N1—Cu1—N3—C1481.3 (11)C13—N2—C9—C102.4 (5)
N2—Cu1—N3—C1415.5 (9)Cu1—N2—C9—C10179.4 (3)
Cu1—O1—C2—C3176.9 (2)C13—N2—C9—C8177.5 (3)
Cu1—O1—C2—C12.6 (5)Cu1—N2—C9—C80.5 (4)
C6—C1—C2—O1180.0 (3)N1—C8—C9—N22.0 (5)
C7—C1—C2—O10.8 (6)N1—C8—C9—C10178.1 (3)
C6—C1—C2—C30.4 (5)N2—C9—C10—C111.0 (6)
C7—C1—C2—C3178.8 (3)C8—C9—C10—C11178.8 (4)
O1—C2—C3—C4178.8 (3)C9—C10—C11—C120.5 (6)
C1—C2—C3—C41.6 (5)C10—C11—C12—C130.7 (6)
O1—C2—C3—Cl11.3 (5)C9—N2—C13—C122.2 (6)
C1—C2—C3—Cl1178.3 (3)Cu1—N2—C13—C12178.7 (3)
C2—C3—C4—C51.6 (6)C11—C12—C13—N20.6 (6)
Symmetry code: (i) x+1, y+2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn2(C13H9Cl2N2O)2(C2H3O2)2][Zn2(C13H9Cl2N2O)2(NCS)2]
Mr809.07803.52
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)298298
a, b, c (Å)7.540 (1), 9.388 (1), 12.228 (1)8.718 (1), 13.387 (2), 13.564 (2)
α, β, γ (°)76.208 (1), 85.222 (1), 77.320 (1)90, 103.305 (2), 90
V3)819.67 (15)1540.5 (4)
Z12
Radiation typeMo KαMo Kα
µ (mm1)1.841.90
Crystal size (mm)0.25 × 0.22 × 0.110.15 × 0.07 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.657, 0.8230.763, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
7858, 3560, 2835 13079, 3505, 2317
Rint0.0270.059
(sin θ/λ)max1)0.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.03 0.047, 0.105, 0.99
No. of reflections35603505
No. of parameters209199
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.300.34, 0.30

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
Zn1—O21.989 (2)Zn1—N22.164 (3)
Zn1—O3i1.997 (2)O2—C141.244 (4)
Zn1—O12.013 (2)O3—C141.234 (4)
Zn1—N12.099 (2)
O2—Zn1—O3i122.65 (11)O1—Zn1—N187.82 (10)
O2—Zn1—O199.18 (12)O2—Zn1—N291.31 (11)
O3i—Zn1—O192.55 (12)O3i—Zn1—N291.34 (12)
O2—Zn1—N1115.73 (10)O1—Zn1—N2164.49 (10)
O3i—Zn1—N1120.68 (10)N1—Zn1—N277.30 (10)
Symmetry code: (i) x+2, y, z.
Selected geometric parameters (Å, º) for (II) top
Cu1—O11.913 (2)Cu1—N22.034 (3)
Cu1—N11.922 (3)Cu1—S1i2.9577 (12)
Cu1—N31.936 (3)
O1—Cu1—N193.12 (11)O1—Cu1—N2175.35 (11)
O1—Cu1—N390.77 (11)N1—Cu1—N282.47 (11)
N1—Cu1—N3169.58 (12)N3—Cu1—N293.33 (12)
Symmetry code: (i) x+1, y+2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds