Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Cd2(C11H14N3O3)2(NCS)2(CH4O)2], is an inter­esting thio­cyanate-bridged dinuclear cadmium(II) compound. It is located on a crystallographic inversion center. The CdII atom is six-coordinated in an octa­hedral configuration by one O and two N atoms of one Schiff base ligand and by the terminal N atom of a bridging thio­cyanate ligand, defining the basal plane, and by the terminal S atom of another bridging thio­cyanate ligand and by the O atom of a coordi­nated methanol mol­ecule, occupying the axial positions. The mol­ecules are linked through inter­molecular O-H...O hydrogen bonds, forming chains running along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105021906/sk1859sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105021906/sk1859Isup2.hkl
Contains datablock I

CCDC reference: 282182

Comment top

Metal-organic complexes containing bridging ligands are of current interest because of their interesting molecular topologies and crystal-packing motifs, as well as the fact that they may be designed with specific functionalities (Batten & Robson, 1998; Abourahma et al., 2002; Konar et al., 2002). In addition to being robust and thermally stable, some possess photoluminescent properties, a feature that has contributed to d10 metal polynuclear complexes being investigated in the search for new materials (Weidenbruch et al., 1989; Kunkely & Vogler, 1990; Bertoncello et al., 1992). Among the CdII coordination polymers featuring interesting supramolecular structures, such as one-dimensional helical ribbons or molecular zippers, two-dimensional molecular square or triangular grids, and interpenetrating/non-interpenetrating three-dimensional networks (Dai et al., 2002; Chen et al., 2003; Luo et al., 2003), most of them possess photoluminescent properties (Xiong et al., 2000; Wang et al., 2003).

Owing to the versatile coordination modes of the ambidentate thiocyanate ligand, this pseudohalide ligand has become one of the most extensively studied building blocks in the multi-dimensional complexes (Sailaja et al., 2003; Dey et al., 2004). Thiocyanate complexes of various dimensionalities have been obtained (Zurowska et al., 2002; Zhang et al., 2003; You, 2005a). A major obstacle to a more comprehensive study of such thiocyanate-based polymeric coordination complexes is the lack of rational synthetic procedures, since with the present state of knowledge it is hardly possible to determine which coordination mode will be adopted by the thiocyanate ligand and whether the sought-after alternating chain structure will finally be formed (Tercero et al., 2002; Ribas et al., 1999; Liu et al., 2003).

Our work is aimed at obtaining multi-dimensional polymetallic complexes. Based on the above considerations, we designed and synthesized a tridentate ligand, 4-nitro-2-(2-dimethylaminoethyliminomethyl)phenol (NDAP). The reason we use NDAP as ligand is that it could adopt an almost fixed coordination mode through the three donor atoms (You, 2005b; Yue et al., 2005). The second ligand, viz. thiocyanate, is a well known bridging group. It readily bridges different metal ions through the terminal donor atoms, forming polynuclear complexes (Kuang et al., 2001). CdII is a good candidate for octahedral coordination geometry. We report here the dinuclear structure of the title compound, (I), formed by the reaction of the NDAP ligand, ammonium thiocyanate and CdII acetate.

Complex (I) (Fig. 1) contains two Cd(NDAP) units connected to each other by two bridging thiocyanate anions. The CdII atom is in an octahedral coordination environment and is six-coordinated by one O and two N atoms of one Schiff base ligand and by one teminal N atom of a bridging thiocyanate ligand, defining the basal plane, and by one terminal S atom of another bridging thiocyanate ligand, together with one O atom of a coordinated MeOH molecule, occupying the axial positions. The Schiff base ligand acts as a tridentate ligand and ligates to the metal via three O– and N-donor atoms. The thiocyanate anion acts as a bridging ligand and ligates to two different but symmetry-related CdII atoms via the terminal N and S atoms.

The three trans angles at the CdII atom lie in the range 151.7 (3)–170.90 (4)° (Table 1). The other angles subtended at the CdII atom range from 74.5 (3) to 109.81 (7)°, indicating a somewhat distorted octahedral geometry. The bond lengths subtended at Cd1 are comparable to those observed in other Schiff base–cadmium(II) complexes (You et al., 2004) and, as expected, the bond involving amine atom N3 [2.419 (13) Å] is longer than that involving imine atom N2 [2.296 (2) Å] (Mondal et al., 2001). The Cd1—S1i bond [symmetry code: (i) 1 − x, 1 − y, 1 − z] is much longer than the other bonds, indicating that the Cd—S bond is not very strong. The bridging thiocyanate group is nearly linear and shows bent coordination modes with the metal atoms [N4—C13—S1 = 179.3 (2)°, Cd1—N4—C13 = 160.4 (2)° and Cd1i—S1—C13 = 100.71 (8)°]. The N2—Cd1—N3(or N3') bond angle [mean 75.3 (3)°] of the five-membered chelate ring is much smaller than 90°, as a result of the strain created by the five-membered chelate rings Cd1/N2/C8/C9/N3 and Cd1/N2/C8'/C9'/N3'.

The C7N2 bond length [1.280 (3) Å] conforms to the normal value for a double bond, while the C8—N2 bond length [1.458 (3) Å] conforms to the normal value for a single bond. The O1/N1/O2 plane and the C1–C6 phenyl ring are not coplanar, having a dihedral angle of 14.7 (3)°.

In the crystal structure, the molecules are linked by the intermolecular O—H···O hydrogen bonds, forming chains running along the b axis (Table 2 and Fig. 2).

Experimental top

5-Nitrosalicylaldehyde (0.1 mmol, 16.7 mg) and N,N-dimethylethane-1,2-diamine (0.1 mmol, 8.8 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 10 min to give a yellow solution. To the solution was added an MeOH solution (5 ml) of Cd(CH3COO)2·4H2O (0.1 mmol, 30.3 mg), with stirring. The mixture was stirred for another 10 min at room temperature. After keeping the filtrate in air for 3 d, colorless block-shaped crystals were formed.

Refinement top

Atom H4 was located in a difference Fourier map and refined isotropically, with the O—H distance restrained to 0.88 (1) Å. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The C9/N3/C10/C11 moieties are disordered over two distinct sites, with occupancies of 0.535 (5) and 0.465 (5).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are at the symmetry position (1 − x, 1 − y, 1 − z). Only the major component of the disordered moiety is shown.
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines show the intermolecular O—H···O hydrogen bonds.
di-µ-thiocyanato-bis((methanol){4-nitro-2-[2- (dimethylamino)ethyliminomethyl]phenolato}cadmium(II)] top
Crystal data top
[Cd2(C11H14N3O2)2(NCS)2(CH4O)2]Z = 1
Mr = 877.55F(000) = 440
Triclinic, P1Dx = 1.751 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.286 (1) ÅCell parameters from 5707 reflections
b = 8.946 (1) Åθ = 2.4–28.3°
c = 11.971 (2) ŵ = 1.46 mm1
α = 110.019 (2)°T = 298 K
β = 92.705 (2)°Block, colorless
γ = 91.482 (2)°0.32 × 0.21 × 0.11 mm
V = 832.0 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3686 independent reflections
Radiation source: fine-focus sealed tube3559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.652, Tmax = 0.856k = 1111
7155 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.034P)2 + 0.1681P]
where P = (Fo2 + 2Fc2)/3
3686 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.34 e Å3
21 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cd2(C11H14N3O2)2(NCS)2(CH4O)2]γ = 91.482 (2)°
Mr = 877.55V = 832.0 (2) Å3
Triclinic, P1Z = 1
a = 8.286 (1) ÅMo Kα radiation
b = 8.946 (1) ŵ = 1.46 mm1
c = 11.971 (2) ÅT = 298 K
α = 110.019 (2)°0.32 × 0.21 × 0.11 mm
β = 92.705 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3686 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3559 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.856Rint = 0.016
7155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02521 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.34 e Å3
3686 reflectionsΔρmin = 0.55 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.404413 (17)0.167141 (16)0.357952 (12)0.03278 (7)
S10.40874 (8)0.64051 (7)0.72641 (6)0.04685 (15)
O10.7429 (3)0.5691 (2)0.11703 (18)0.0644 (5)
O20.8870 (2)0.6258 (2)0.01713 (19)0.0596 (5)
O30.61049 (18)0.00293 (17)0.33886 (13)0.0372 (3)
O40.2822 (2)0.00646 (18)0.44507 (13)0.0406 (4)
N10.7969 (3)0.5386 (2)0.01447 (19)0.0458 (5)
N20.3463 (2)0.0052 (2)0.16408 (16)0.0378 (4)
N30.1300 (15)0.2208 (12)0.3100 (12)0.0328 (15)0.535 (6)
N40.4184 (3)0.3495 (2)0.54200 (18)0.0498 (5)
C10.6517 (2)0.1192 (2)0.25131 (17)0.0302 (4)
C20.5694 (2)0.1759 (2)0.13573 (17)0.0319 (4)
C30.6226 (3)0.3127 (2)0.04980 (18)0.0348 (4)
H30.57020.35000.02570.042*
C40.7505 (3)0.3927 (2)0.0748 (2)0.0370 (5)
C50.8340 (3)0.3390 (3)0.1858 (2)0.0395 (5)
H50.92100.39370.20190.047*
C60.7861 (3)0.2049 (3)0.27064 (19)0.0374 (5)
H60.84370.16780.34420.045*
C70.4265 (3)0.1102 (3)0.09989 (18)0.0363 (4)
H70.38840.15730.02080.044*
C80.1994 (3)0.0455 (4)0.1107 (2)0.0578 (7)0.535 (6)
H8A0.15550.04750.04610.069*0.535 (6)
H8B0.22490.12810.07810.069*0.535 (6)
C90.0783 (5)0.1013 (6)0.1999 (4)0.0489 (14)0.535 (6)
H9A0.01040.14170.16440.059*0.535 (6)
H9B0.03560.01000.21700.059*0.535 (6)
C100.0231 (10)0.2286 (12)0.4068 (7)0.0613 (19)0.535 (6)
H10A0.08320.25510.38650.092*0.535 (6)
H10B0.06550.30870.47930.092*0.535 (6)
H10C0.01760.12720.41770.092*0.535 (6)
C110.1338 (12)0.3849 (11)0.2984 (8)0.064 (2)0.535 (6)
H11A0.20930.38810.24070.096*0.535 (6)
H11B0.16650.46380.37410.096*0.535 (6)
H11C0.02800.40640.27300.096*0.535 (6)
C120.2508 (3)0.1696 (3)0.3773 (2)0.0488 (6)
H12A0.17480.17940.31180.073*
H12B0.20650.22320.42680.073*
H12C0.34970.21690.34720.073*
C130.4147 (3)0.4694 (3)0.61719 (19)0.0350 (4)
N3'0.1515 (18)0.2586 (12)0.3043 (13)0.0303 (16)0.465 (6)
C8'0.1994 (3)0.0455 (4)0.1107 (2)0.0578 (7)0.465 (6)
H8'10.21720.03390.02880.069*0.465 (6)
H8'20.11310.03040.10960.069*0.465 (6)
C9'0.1470 (7)0.2038 (6)0.1707 (5)0.0492 (16)0.465 (6)
H9'10.03700.20990.14160.059*0.465 (6)
H9'20.21410.27800.14810.059*0.465 (6)
C10'0.0161 (12)0.1761 (15)0.3407 (10)0.078 (3)0.465 (6)
H10D0.01310.21610.42590.117*0.465 (6)
H10E0.03220.06370.31400.117*0.465 (6)
H10F0.08440.19520.30560.117*0.465 (6)
C11'0.1396 (15)0.4252 (12)0.3517 (8)0.060 (2)0.465 (6)
H11D0.04060.45440.32140.090*0.465 (6)
H11E0.22960.47600.32910.090*0.465 (6)
H11F0.14060.45870.43700.090*0.465 (6)
H40.319 (4)0.002 (4)0.5179 (15)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03754 (10)0.02599 (9)0.03024 (10)0.00490 (6)0.00079 (6)0.00391 (6)
S10.0591 (4)0.0338 (3)0.0398 (3)0.0032 (3)0.0132 (3)0.0016 (2)
O10.0731 (14)0.0526 (11)0.0471 (11)0.0072 (10)0.0118 (10)0.0105 (9)
O20.0618 (12)0.0351 (9)0.0772 (13)0.0146 (8)0.0211 (10)0.0103 (9)
O30.0443 (8)0.0329 (8)0.0263 (7)0.0097 (6)0.0024 (6)0.0002 (6)
O40.0586 (10)0.0318 (8)0.0289 (7)0.0019 (7)0.0001 (7)0.0076 (6)
N10.0452 (11)0.0335 (10)0.0490 (12)0.0013 (9)0.0183 (9)0.0000 (9)
N20.0389 (10)0.0368 (10)0.0336 (9)0.0052 (8)0.0058 (7)0.0076 (8)
N40.0737 (15)0.0333 (10)0.0365 (11)0.0067 (10)0.0074 (10)0.0046 (9)
C10.0346 (10)0.0269 (9)0.0276 (9)0.0022 (8)0.0046 (7)0.0072 (8)
C20.0353 (10)0.0305 (10)0.0271 (10)0.0005 (8)0.0039 (8)0.0061 (8)
C30.0405 (11)0.0323 (10)0.0265 (10)0.0025 (8)0.0051 (8)0.0032 (8)
C40.0405 (12)0.0279 (10)0.0377 (11)0.0018 (9)0.0141 (9)0.0035 (9)
C50.0409 (12)0.0380 (11)0.0410 (12)0.0113 (9)0.0085 (9)0.0137 (10)
C60.0401 (11)0.0393 (11)0.0306 (10)0.0073 (9)0.0007 (8)0.0087 (9)
C70.0436 (12)0.0351 (11)0.0256 (10)0.0003 (9)0.0021 (8)0.0050 (8)
C120.0606 (16)0.0351 (12)0.0447 (13)0.0042 (11)0.0018 (11)0.0072 (10)
C130.0385 (11)0.0343 (11)0.0321 (10)0.0029 (9)0.0025 (8)0.0117 (9)
N30.035 (4)0.018 (4)0.050 (3)0.002 (3)0.001 (2)0.019 (3)
C80.0540 (15)0.0682 (18)0.0445 (14)0.0200 (13)0.0129 (11)0.0115 (13)
C90.043 (3)0.050 (3)0.053 (3)0.003 (2)0.008 (2)0.017 (2)
C100.042 (3)0.082 (5)0.072 (4)0.021 (3)0.021 (4)0.038 (4)
C110.065 (4)0.050 (5)0.082 (6)0.014 (4)0.003 (5)0.028 (5)
N3'0.032 (4)0.013 (4)0.050 (3)0.003 (3)0.005 (2)0.016 (3)
C8'0.0540 (15)0.0682 (18)0.0445 (14)0.0200 (13)0.0129 (11)0.0115 (13)
C9'0.055 (3)0.042 (3)0.049 (3)0.014 (2)0.011 (2)0.015 (2)
C10'0.044 (4)0.106 (9)0.113 (9)0.021 (5)0.018 (6)0.070 (8)
C11'0.074 (5)0.038 (5)0.062 (5)0.028 (4)0.002 (5)0.010 (4)
Geometric parameters (Å, º) top
Cd1—N42.244 (2)C12—H12A0.96
Cd1—O32.250 (2)C12—H12B0.96
Cd1—N22.296 (2)C12—H12C0.96
Cd1—O42.378 (2)N3—C91.421 (13)
Cd1—N3'2.408 (15)N3—C101.476 (13)
Cd1—N32.419 (13)N3—C111.521 (12)
Cd1—S1i2.7527 (8)C8—C91.469 (5)
S1—C131.642 (2)C8—H8A0.97
O1—N11.222 (3)C8—H8B0.9700
O2—N11.231 (3)C9—H9A0.9700
O3—C11.295 (2)C9—H9B0.9700
O4—C121.417 (3)C10—H10A0.96
O4—H40.887 (10)C10—H10B0.96
N1—C41.450 (3)C10—H10C0.96
N2—C71.280 (3)C11—H11A0.96
N2—C81.458 (3)C11—H11B0.96
N4—C131.142 (3)C11—H11C0.96
C1—C61.422 (3)N3'—C11'1.410 (14)
C1—C21.431 (3)N3'—C10'1.489 (13)
C2—C31.400 (3)N3'—C9'1.502 (16)
C2—C71.446 (3)C9'—H9'10.9700
C3—C41.371 (3)C9'—H9'20.9700
C3—H30.93C10'—H10D0.9600
C4—C51.392 (3)C10'—H10E0.9600
C5—C61.363 (3)C10'—H10F0.9600
C5—H50.93C11'—H11D0.9600
C6—H60.93C11'—H11E0.9600
C7—H70.93C11'—H11F0.9600
N4—Cd1—O3109.81 (7)C1—C6—H6118.6
N4—Cd1—N2168.91 (7)N2—C7—C2127.71 (19)
O3—Cd1—N281.28 (6)N2—C7—H7116.1
N4—Cd1—O485.89 (6)C2—C7—H7116.1
O3—Cd1—O483.00 (6)O4—C12—H12A109.5
N2—Cd1—O495.72 (6)O4—C12—H12B109.5
N4—Cd1—N3'92.9 (4)H12A—C12—H12B109.5
O3—Cd1—N3'156.8 (3)O4—C12—H12C109.5
N2—Cd1—N3'76.0 (4)H12A—C12—H12C109.5
O4—Cd1—N3'94.4 (2)H12B—C12—H12C109.5
N4—Cd1—N394.8 (3)N4—C13—S1179.3 (2)
O3—Cd1—N3151.7 (3)C9—N3—C10113.1 (7)
N2—Cd1—N374.5 (3)C9—N3—C11110.9 (9)
O4—Cd1—N385.14 (18)C10—N3—C11106.5 (10)
N3'—Cd1—N39.6 (2)C9—N3—Cd1107.1 (7)
N4—Cd1—S1i91.83 (6)C10—N3—Cd1111.7 (7)
O3—Cd1—S1i89.50 (4)C11—N3—Cd1107.3 (6)
N2—Cd1—S1i88.20 (5)N2—C8—C9110.6 (3)
O4—Cd1—S1i170.90 (4)N2—C8—H8A109.5
N3'—Cd1—S1i94.5 (2)C9—C8—H8A109.5
N3—Cd1—S1i103.85 (17)N2—C8—H8B109.5
C13—S1—Cd1i100.71 (8)C9—C8—H8B109.5
C1—O3—Cd1132.37 (13)H8A—C8—H8B108.1
C12—O4—Cd1120.30 (14)N3—C9—C8117.3 (6)
C12—O4—H4109 (2)N3—C9—H9A108.0
Cd1—O4—H4117 (2)C8—C9—H9A108.0
O1—N1—O2123.5 (2)N3—C9—H9B108.0
O1—N1—C4118.1 (2)C8—C9—H9B108.0
O2—N1—C4118.4 (2)H9A—C9—H9B107.2
C7—N2—C8118.3 (2)C11'—N3'—C10'110.9 (12)
C7—N2—Cd1128.37 (15)C11'—N3'—C9'110.2 (8)
C8—N2—Cd1113.35 (15)C10'—N3'—C9'108.9 (10)
C13—N4—Cd1160.4 (2)C11'—N3'—Cd1113.7 (9)
O3—C1—C6118.39 (18)C10'—N3'—Cd1109.1 (7)
O3—C1—C2124.34 (18)C9'—N3'—Cd1103.7 (8)
C6—C1—C2117.26 (18)N3'—C9'—H9'1108.2
C3—C2—C1118.78 (19)N3'—C9'—H9'2108.2
C3—C2—C7115.31 (18)H9'1—C9'—H9'2107.3
C1—C2—C7125.78 (18)N3'—C10'—H10D109.5
C4—C3—C2121.3 (2)N3'—C10'—H10E109.5
C4—C3—H3119.4H10D—C10'—H10E109.5
C2—C3—H3119.4N3'—C10'—H10F109.5
C3—C4—C5121.13 (19)H10D—C10'—H10F109.5
C3—C4—N1119.7 (2)H10E—C10'—H10F109.5
C5—C4—N1119.1 (2)N3'—C11'—H11D109.5
C6—C5—C4118.8 (2)N3'—C11'—H11E109.5
C6—C5—H5120.6H11D—C11'—H11E109.5
C4—C5—H5120.6N3'—C11'—H11F109.5
C5—C6—C1122.7 (2)H11D—C11'—H11F109.5
C5—C6—H6118.6H11E—C11'—H11F109.5
N4—Cd1—O3—C1179.25 (18)C2—C1—C6—C52.3 (3)
N2—Cd1—O3—C10.73 (18)C8—N2—C7—C2176.3 (2)
O4—Cd1—O3—C196.19 (18)Cd1—N2—C7—C24.7 (4)
N3'—Cd1—O3—C111.3 (6)C3—C2—C7—N2173.8 (2)
N3—Cd1—O3—C130.3 (6)C1—C2—C7—N22.1 (4)
S1i—Cd1—O3—C188.99 (18)N4—Cd1—N3—C9171.3 (4)
N4—Cd1—O4—C12172.50 (18)O3—Cd1—N3—C920.5 (8)
O3—Cd1—O4—C1261.95 (17)N2—Cd1—N3—C911.4 (4)
N2—Cd1—O4—C1218.51 (18)O4—Cd1—N3—C985.9 (4)
N3'—Cd1—O4—C1294.9 (4)N3'—Cd1—N3—C9110 (4)
N3—Cd1—O4—C1292.3 (4)S1i—Cd1—N3—C995.6 (4)
N4—Cd1—N2—C7177.1 (3)N4—Cd1—N3—C1047.0 (7)
O3—Cd1—N2—C73.0 (2)O3—Cd1—N3—C10103.9 (9)
O4—Cd1—N2—C785.0 (2)N2—Cd1—N3—C10135.8 (7)
N3'—Cd1—N2—C7178.2 (3)O4—Cd1—N3—C1038.5 (6)
N3—Cd1—N2—C7168.3 (3)N3'—Cd1—N3—C10126 (4)
S1i—Cd1—N2—C786.8 (2)S1i—Cd1—N3—C10140.1 (6)
N4—Cd1—N2—C81.9 (4)N4—Cd1—N3—C1169.4 (7)
O3—Cd1—N2—C8178.03 (19)O3—Cd1—N3—C11139.7 (4)
O4—Cd1—N2—C896.03 (18)N2—Cd1—N3—C11107.8 (8)
N3'—Cd1—N2—C82.9 (3)O4—Cd1—N3—C11154.9 (8)
N3—Cd1—N2—C812.7 (2)N3'—Cd1—N3—C1110 (3)
S1i—Cd1—N2—C892.20 (18)S1i—Cd1—N3—C1123.6 (8)
O3—Cd1—N4—C13137.5 (6)C7—N2—C8—C9146.1 (3)
N2—Cd1—N4—C1342.7 (8)Cd1—N2—C8—C934.8 (3)
O4—Cd1—N4—C13141.5 (6)C10—N3—C9—C8159.6 (7)
N3'—Cd1—N4—C1347.3 (7)C11—N3—C9—C880.8 (10)
N3—Cd1—N4—C1356.7 (6)Cd1—N3—C9—C836.1 (6)
S1i—Cd1—N4—C1347.3 (6)N2—C8—C9—N349.4 (6)
Cd1—O3—C1—C6176.20 (14)N4—Cd1—N3'—C11'37.3 (9)
Cd1—O3—C1—C23.0 (3)O3—Cd1—N3'—C11'154.1 (6)
O3—C1—C2—C3177.82 (19)N2—Cd1—N3'—C11'141.8 (10)
C6—C1—C2—C31.4 (3)O4—Cd1—N3'—C11'123.4 (9)
O3—C1—C2—C72.1 (3)N3—Cd1—N3'—C11'139 (5)
C6—C1—C2—C7177.11 (19)S1i—Cd1—N3'—C11'54.8 (9)
C1—C2—C3—C40.3 (3)N4—Cd1—N3'—C10'87.1 (9)
C7—C2—C3—C4175.86 (19)O3—Cd1—N3'—C10'81.5 (12)
C2—C3—C4—C51.2 (3)N2—Cd1—N3'—C10'93.8 (9)
C2—C3—C4—N1176.80 (19)O4—Cd1—N3'—C10'1.0 (9)
O1—N1—C4—C314.7 (3)N3—Cd1—N3'—C10'14 (3)
O2—N1—C4—C3164.6 (2)S1i—Cd1—N3'—C10'179.2 (9)
O1—N1—C4—C5167.2 (2)N4—Cd1—N3'—C9'156.9 (4)
O2—N1—C4—C513.5 (3)O3—Cd1—N3'—C9'34.4 (8)
C3—C4—C5—C60.3 (3)N2—Cd1—N3'—C9'22.2 (4)
N1—C4—C5—C6177.7 (2)O4—Cd1—N3'—C9'117.0 (4)
C4—C5—C6—C11.5 (3)N3—Cd1—N3'—C9'102 (4)
O3—C1—C6—C5176.9 (2)S1i—Cd1—N3'—C9'64.9 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3ii0.89 (1)1.80 (1)2.685 (2)174 (3)
Symmetry code: (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd2(C11H14N3O2)2(NCS)2(CH4O)2]
Mr877.55
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.286 (1), 8.946 (1), 11.971 (2)
α, β, γ (°)110.019 (2), 92.705 (2), 91.482 (2)
V3)832.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.32 × 0.21 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.652, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
7155, 3686, 3559
Rint0.016
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.10
No. of reflections3686
No. of parameters253
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.55

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Cd1—N42.244 (2)Cd1—N32.419 (13)
Cd1—O32.250 (2)Cd1—S1i2.7527 (8)
Cd1—N22.296 (2)N2—C71.280 (3)
Cd1—O42.378 (2)N2—C81.458 (3)
N4—Cd1—O3109.81 (7)N2—Cd1—N374.5 (3)
N4—Cd1—N2168.91 (7)O4—Cd1—N385.14 (18)
O3—Cd1—N281.28 (6)N4—Cd1—S1i91.83 (6)
N4—Cd1—O485.89 (6)O3—Cd1—S1i89.50 (4)
O3—Cd1—O483.00 (6)N2—Cd1—S1i88.20 (5)
N2—Cd1—O495.72 (6)O4—Cd1—S1i170.90 (4)
N4—Cd1—N394.8 (3)N3—Cd1—S1i103.85 (17)
O3—Cd1—N3151.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3ii0.887 (10)1.801 (11)2.685 (2)174 (3)
Symmetry code: (ii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds