Download citation
Download citation
link to html
The asymmetric unit of the title compound, {[Pb(C4O4)(C12H8N2)2(H2O)]·2H2O}n, contains one squarate dianion, two phenanthroline (phen) ligands and one aqua ligand all coordinated to Pb, and two solvent water mol­ecules. The eight-coordinate Pb metal ion displays a distorted bicapped trigonal-prismatic coordination environment, defined by three squarate O atoms, four N atoms from two chelating phen ligands and one O atom from the coordinated water mol­ecule. The crystal structure contains chains of squarate-1,2,3-bridged PbII ions running in the [010] direction. These polymeric chains are linked to one another via offset face-to-face [pi]-[pi] inter­actions between the phen ligands, which lead to a two-dimensional network extending along the (001) plane. The crystal structure is also stabilized by O-H...O inter­molecular hydrogen-bond inter­actions, forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105024613/sk1858sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105024613/sk1858Isup2.hkl
Contains datablock I

CCDC reference: 285648

Comment top

Increasing interest has been devoted to the study of the coordination chemistry of the squarate ligand, C4O42−, by both inorganic and bioinorganic chemists during the past few years (van Ooijen et al., 1978; Reinprecht et al., 1980; Yufit et al., 1999). Squarate acts as a bridge between two or more metal atoms in mono- or polydentate coordination modes when acting as a ligand towards first row transition metal ions (Trombe et al., 2002; Millet et al., 2003). It coordinates to FeII, FeIII, NiII and CuII complexes in a µ-1,3 fashion giving binuclear (Bernardinelli et al., 1989) and chain structures (Lee et al., 1996), whereas the µ-1,2 coordination mode has been reported for binuclear and chain complexes of CuII and PdII (Castro et al., 1997; Crispini et al., 2000). It is also observed that the squarate anion, with CuII and NiII, acts as a tetramonodentate ligand and forms polynuclear compounds (Castro et al., 1995). The chelating and bischelating coordination modes are only possible in complexes with larger metal ions, such as alkaline and rare-earth cations (Lisnard et al., 2003; Modec et al., 2003). In all the cases reported so far, metal–squarate complexes have been found interesting in terms of the structural relationship between their respective solid-state architectures.

On the other hand, PbII compounds have been increasingly studied owing to their possible applications in different fields, especially in environmental protection, because of the toxicity of lead, and in biological systems, for the diverse interactions of lead with biological molecules. In PbII compounds, lanthanides, and actinides, the coordination number eight is most commonly found (Oldham et al., 2002 or?? 2001; Fan et al., 2003; Gao et al., 2005). For eight-coordination, there are three main structure types, two of which are preferred for molecules. These are (i) cubic, (ii) square antiprismatic and (iii) dodecahedral. The third coordination geometry, viz. (iii), is observed in the title compound, (I). In our ongoing research on squaric acid, we have synthesized some mixed-ligand metal (II) complexes of squaric acid and their structures have been reported. In these compounds, squaric acid behaves as a monodentate ligand (Bulut et al., 2004; Uçar et al., 2005), while in (I), it acts as both a monodentate and a bidentate ligand.

A view of the molecule of (I) and its atom-numbering scheme are shown in Fig 1. The PbII ion is an eight-coordinate environment, defined by four O atoms from squarate and aqua ligands, and four N atoms from two chelating 1,10-phenanthroline (phen) ligands. Although the coordination geometry around the PbII ion is irregular, presumably as a result of the steric constraints arising from the shape of the ligands, it can best be described as a distorted bicapped trigonal prism (Fig. 2).

In the bicapped trigonal prism, the O1/O5/N3 and O3iii/O4iii/N2 triangular planes form the bases; the dihedral angle between these planes is 21.49 (17)°. The rectangular faces O1/O3iii/O4iii/N3 (plane 1), O1/O3iii/N2/O5 (plane 2) and N2/O4iii/N3/O5 (plane 3) are almost planar, with r.m.s. deviations of 0.1167, 0.0160 and 0.4530 Å, respectively; the maximum deviations from these planes are, respectively, 0.148 (2) for atom O3iii, 0.019 (2) for atom O1, and 0.516 (2) Å for atom N2. The dihedral angles between these least-squares planes are 50.88 (8)° between planes 1 and 2, 61.23 (10)° between planes 2 and 3, and 68.18 (9)° between planes 1 and 3. The dihedral angles between plane 1 and the nearly parallel triangular bases are 76.41 (10) and 68.19 (9)°. From the bond angles (see Table 1), it is suggested that four O atoms form the equatorial plane (O1/O3iii/O4iii/O5) of the bicapped trigonal prism, while the N1/N2 and N3/N4 atom pairs occupy the pseudo-axial positions. The capped Pb1—N4 and Pb1—N1 distances of 2.821 (4) and 2.699 (3) Å are the longest and shortest of Pb—N bond distances, respectively, while the other Pb—N distances are in the range 2.772 (4)–2.799 (3) Å. The Pb—O bond distances range from 2.436 (3) to 2.869 (4) Å. These bond distances are in agreement with those observed in other PbII complexes (Furutachi et al., 2000; Li et al., 2004; Dale et al., 2004; Xiao et al., 2004).

In the crystal structure, the squarate dianion adopts a bridging position between the PbII atoms, coordinating via three of its O atoms in a µ-1,2,3 fashion, forming `zigzag' chains in the direction of the crystallographic b axis (Fig. 3 and 4). The squarate dianion coordinates to one PbII ion as a bidentate ligand (via atoms O3 and O4), forming a five-membered chelate ring, while it coordinates to another PbII ion as a monodentate ligand (via O1). The O3/C27/C28/O4 torsion angle is 3.0 (7)°, while the O2/C26/C25/O1 angle is 4.4 (8)°. The O3···O4 distance in five-memebered squarate chelate ring is 3.107 (5) Å, whereas the distance between other squarate O atoms, viz. the monodentate squarate O1 and uncoordinated O2 atoms, is 3.183 (5) Å. The phen ligands are approximately planar, with r.m.s. deviations of 0.0427 and 0.0141 Å for phen1 (N1/N2/C1–C12) and phen 2 (N3/N4/C13–C24), respectively. The dihedral angles between the squarate plane and the phen mean planes are 85.31 (8) and 69.79 (9)°, while that between the phen mean planes is 40.29 (5)°.

The crystal packing of (I) is formed via intermolecular hydrogen bonding (Fig. 3) and strong ππ interactions (Fig. 4). The two solvent water molecules, the aqua ligand and squarate atoms O2 and O3 are involved in interchain hydrogen bonding (see Table 2 for details). The one-dimensional polymeric chains are also linked together via offset face-to-face ππ interactions between the phen ligands, which lead to a two-dimensional network extending along the (001) plane (Fig. 4). These intermolecular interactions occur between two symmetry-related phen rings (ring A; C16–C19/C23/C24). Ring A is oriented in such a way that the perpendicular distance from A to Aiv is 3.423 Å, the closest interatomic distance being C17···C24iv [3.427 (7) Å; symmetry code: (iv) − x + 1, −y, −z + 2]; the distance between the ring centroids is 3.766 (4) Å. The other ππ contact occurs between phen rings A and B (ring B; C13–C16/C24/N3). The perpendicular distance between rings A and Biv (Biv to A) is 3.423 Å, the closest interatomic distance is C15···C19iv [3.421 (7) Å], and the dihedral angle between the planes of these rings is 0.37 (17)°. The distance between the ring centroids is 3.635 (4) Å. The shortest interchain Pb···Pb distance is 9.946 (3) Å for Pb1···Pb1(x, −y + 1/2, z − 1/2), whereas the intrachain equivalent is 7.2746 (3) Å for Pb1···Pb1(x, −1 + y, z).

Experimental top

Squaric acid (0.57 g, 5 mmol) dissolved in water (25 ml) was neutralized with NaOH (0.40 g, 10 mmol), and the mixture was added to a hot solution of Pb(NO3)2·2H2O (1.83 g, 5 mmol) dissolved in water (50 ml). The mixture was stirred at 333 K for 12 h and then cooled to room temperature. The white crystals that formed were filtered and washed with water and alcohol, and dried in a vacuum. A solution of 1,10-phenanthroline (0.36 g, 2 mmol) in methanol (50 ml) was added dropwise with stirring to a suspension of PbSq·2H2O (0.35 g, 1 mmol) in water (50 ml). The resulting white solution was refluxed for about 2 h and then cooled to room temperature. A few days later, well formed white crystals were selected for X-ray studies.

Refinement top

H atoms attached to C atoms were placed at calculated positions (C—H = 0.93 Å) and were allowed to ride on the parent atom [Uiso(H) = 1.2Ueq(C)]. The remaining H atoms were located in a difference map and were refined with the O—H and H···H distances restrained to 0.85 (3) and 1.35 (3) Å, respectively. The highest peak and deepest hole are located 1.00 and 0.73 Å from atom Pb1.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : A view of the PbII coordination in (I), shown with 30% probability displacement ellipsoids and arbitrary spheres for the H atoms. The water molecules have been omitted for clarity. [Symmetry code: (iii) x, y − 1, z.]
[Figure 2] Fig. 2. : A detail of (I), illustrating the bicapped trigonal-prismatic geometry of the Pb atom. [Symmetry code: (iii) x, y − 1, z.]
[Figure 3] Fig. 3. : The zigzag chain structure of the title PbII complex, with intra- and interchain interactions indicated by dashed lines.
[Figure 4] Fig. 4. : The extended two-dimensional structure of (I); the interchain offset face-to-face π-π interactions are indicated by dashed lines. [Symmetry code: (iv) 1 − x, −y, 2 − z.]
catena-poly[[[aquabis(1,10-phenanthroline-κ2N,N')lead(II)]- µ1,2,3-squarato-κO:O':O''] dihydrate] top
Crystal data top
[Pb(C4O4)(C12H8N2)2(H2O)]·2H2OF(000) = 1424
Mr = 733.70Dx = 1.896 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5847 reflections
a = 18.5438 (10) Åθ = 1.8–27.1°
b = 7.2746 (3) ŵ = 6.62 mm1
c = 19.8774 (11) ÅT = 297 K
β = 106.578 (4)°Prism, white
V = 2570.0 (2) Å30.23 × 0.21 × 0.16 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
5638 independent reflections
Radiation source: fine-focus sealed tube4842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 6.67 pixels mm-1θmax = 27.1°, θmin = 2.1°
ω scansh = 2323
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 99
Tmin = 0.255, Tmax = 0.666l = 2525
39366 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.006
5638 reflectionsΔρmax = 1.33 e Å3
386 parametersΔρmin = 1.21 e Å3
9 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00113 (11)
Crystal data top
[Pb(C4O4)(C12H8N2)2(H2O)]·2H2OV = 2570.0 (2) Å3
Mr = 733.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.5438 (10) ŵ = 6.62 mm1
b = 7.2746 (3) ÅT = 297 K
c = 19.8774 (11) Å0.23 × 0.21 × 0.16 mm
β = 106.578 (4)°
Data collection top
Stoe IPDS-II
diffractometer
5638 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
4842 reflections with I > 2σ(I)
Tmin = 0.255, Tmax = 0.666Rint = 0.066
39366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0279 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.33 e Å3
5638 reflectionsΔρmin = 1.21 e Å3
386 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8945 (2)0.3366 (6)0.8898 (2)0.0462 (9)
H10.85400.36530.85130.055*
C20.9666 (2)0.3657 (6)0.8841 (2)0.0505 (10)
H20.97400.41140.84280.061*
C31.0264 (2)0.3255 (6)0.9405 (3)0.0495 (10)
H31.07520.34510.93810.059*
C41.0143 (2)0.2550 (5)1.0015 (3)0.0421 (9)
C51.0741 (2)0.2094 (6)1.0619 (3)0.0525 (11)
H51.12350.22551.06080.063*
C61.0613 (2)0.1443 (7)1.1200 (3)0.0553 (11)
H61.10170.12021.15910.066*
C70.9860 (2)0.1106 (6)1.1233 (2)0.0457 (9)
C80.9700 (3)0.0316 (7)1.1813 (3)0.0573 (12)
H81.00880.00611.22160.069*
C90.8975 (3)0.0082 (8)1.1790 (3)0.0627 (13)
H90.88620.06161.21730.075*
C100.8410 (3)0.0329 (7)1.1180 (3)0.0548 (11)
H100.79170.00391.11650.066*
C110.9254 (2)0.1507 (5)1.0639 (2)0.0382 (8)
C120.9392 (2)0.2282 (5)1.0023 (2)0.0372 (8)
C130.6309 (3)0.3413 (7)1.0708 (2)0.0500 (10)
H130.68000.37331.09480.060*
C140.5761 (3)0.3539 (7)1.1060 (2)0.0537 (11)
H140.58880.39351.15240.064*
C150.5040 (3)0.3077 (7)1.0717 (2)0.0520 (11)
H150.46670.31591.09440.062*
C160.4863 (2)0.2477 (6)1.0021 (3)0.0437 (9)
C170.4117 (2)0.1948 (7)0.9632 (3)0.0509 (11)
H170.37330.19910.98480.061*
C180.3963 (2)0.1395 (7)0.8967 (3)0.0538 (11)
H180.34710.10910.87220.065*
C190.4543 (2)0.1262 (6)0.8624 (2)0.0417 (9)
C200.4408 (2)0.0614 (6)0.7936 (2)0.0481 (10)
H200.39250.02570.76820.058*
C210.4983 (2)0.0508 (6)0.7640 (2)0.0496 (10)
H210.49000.00860.71820.060*
C220.5698 (2)0.1042 (6)0.8036 (2)0.0460 (9)
H220.60880.09700.78280.055*
C230.52863 (19)0.1755 (5)0.8988 (2)0.0346 (7)
C240.5450 (2)0.2390 (5)0.9704 (2)0.0367 (8)
C250.7245 (2)0.6252 (5)0.8512 (2)0.0377 (8)
C260.7444 (2)0.7346 (5)0.7972 (2)0.0370 (8)
C270.74157 (19)0.9000 (5)0.8381 (2)0.0344 (7)
C280.7247 (2)0.7912 (5)0.8926 (2)0.0356 (8)
N10.87997 (18)0.2711 (4)0.94619 (18)0.0396 (7)
N20.85302 (18)0.1108 (5)1.06212 (19)0.0444 (8)
N30.61688 (19)0.2868 (5)1.00543 (18)0.0406 (7)
N40.58577 (17)0.1645 (5)0.86886 (16)0.0389 (7)
O10.71346 (19)0.4568 (4)0.85661 (16)0.0510 (7)
O20.76046 (19)0.6971 (4)0.74210 (16)0.0509 (7)
O30.75091 (16)1.0700 (4)0.83365 (15)0.0437 (6)
O40.71735 (18)0.8329 (5)0.95123 (15)0.0492 (7)
O50.7820 (2)0.5226 (4)1.02749 (18)0.0529 (7)
O60.8219 (3)0.5161 (6)1.1752 (2)0.0727 (10)
O70.7511 (3)0.2963 (6)0.7197 (2)0.0672 (10)
Pb10.736284 (7)0.223905 (18)0.948366 (7)0.03400 (7)
H5A0.760 (3)0.620 (6)1.013 (2)0.072 (18)*
H5B0.793 (3)0.525 (7)1.0721 (14)0.067 (17)*
H6A0.800 (3)0.597 (6)1.188 (3)0.08 (2)*
H6B0.805 (4)0.412 (5)1.178 (5)0.14 (4)*
H7A0.752 (3)0.236 (6)0.756 (2)0.057 (15)*
H7B0.747 (3)0.405 (4)0.729 (3)0.076 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (2)0.051 (2)0.044 (2)0.0002 (19)0.0111 (18)0.0036 (19)
C20.050 (2)0.052 (3)0.054 (3)0.003 (2)0.021 (2)0.001 (2)
C30.037 (2)0.049 (2)0.068 (3)0.0072 (18)0.023 (2)0.006 (2)
C40.0306 (19)0.040 (2)0.054 (2)0.0010 (15)0.0096 (17)0.0079 (17)
C50.0291 (19)0.057 (3)0.067 (3)0.0007 (18)0.0065 (19)0.009 (2)
C60.036 (2)0.066 (3)0.054 (3)0.005 (2)0.0036 (19)0.008 (2)
C70.043 (2)0.045 (2)0.045 (2)0.0034 (17)0.0057 (18)0.0057 (17)
C80.055 (3)0.066 (3)0.044 (2)0.013 (2)0.004 (2)0.000 (2)
C90.070 (3)0.073 (3)0.047 (3)0.005 (3)0.020 (2)0.010 (2)
C100.048 (2)0.063 (3)0.055 (3)0.001 (2)0.017 (2)0.004 (2)
C110.0362 (18)0.0355 (19)0.041 (2)0.0013 (15)0.0070 (16)0.0059 (16)
C120.0311 (18)0.0331 (18)0.045 (2)0.0013 (14)0.0068 (16)0.0049 (15)
C130.048 (2)0.063 (3)0.038 (2)0.005 (2)0.0104 (18)0.001 (2)
C140.065 (3)0.058 (3)0.041 (2)0.001 (2)0.020 (2)0.003 (2)
C150.059 (3)0.056 (3)0.050 (2)0.004 (2)0.029 (2)0.005 (2)
C160.041 (2)0.044 (2)0.050 (2)0.0029 (16)0.0185 (19)0.0075 (17)
C170.032 (2)0.061 (3)0.064 (3)0.0011 (19)0.021 (2)0.008 (2)
C180.0285 (19)0.066 (3)0.064 (3)0.0050 (19)0.0085 (19)0.007 (2)
C190.0317 (18)0.042 (2)0.048 (2)0.0018 (16)0.0052 (16)0.0057 (17)
C200.037 (2)0.050 (2)0.048 (2)0.0092 (18)0.0018 (18)0.0036 (18)
C210.050 (2)0.052 (3)0.040 (2)0.002 (2)0.0025 (19)0.0001 (18)
C220.041 (2)0.059 (3)0.037 (2)0.0026 (18)0.0090 (17)0.0005 (18)
C230.0284 (16)0.0348 (18)0.0390 (19)0.0011 (14)0.0071 (14)0.0057 (15)
C240.0309 (18)0.039 (2)0.041 (2)0.0001 (14)0.0106 (15)0.0033 (15)
C250.0342 (19)0.034 (2)0.041 (2)0.0014 (14)0.0044 (16)0.0000 (15)
C260.0331 (17)0.0339 (18)0.041 (2)0.0006 (14)0.0062 (15)0.0019 (15)
C270.0298 (17)0.0319 (18)0.0409 (19)0.0001 (14)0.0090 (15)0.0005 (15)
C280.0300 (17)0.0367 (19)0.040 (2)0.0013 (14)0.0105 (15)0.0016 (15)
N10.0317 (16)0.0448 (18)0.0407 (17)0.0001 (13)0.0078 (14)0.0003 (14)
N20.0364 (17)0.050 (2)0.0476 (19)0.0013 (15)0.0135 (15)0.0003 (16)
N30.0358 (17)0.0475 (19)0.0388 (17)0.0049 (14)0.0111 (14)0.0033 (14)
N40.0312 (15)0.0491 (18)0.0355 (16)0.0005 (14)0.0083 (13)0.0028 (14)
O10.068 (2)0.0314 (14)0.0473 (17)0.0065 (14)0.0071 (15)0.0039 (12)
O20.0643 (19)0.0481 (17)0.0436 (16)0.0048 (14)0.0206 (15)0.0073 (13)
O30.0519 (16)0.0306 (14)0.0513 (17)0.0038 (12)0.0190 (14)0.0007 (12)
O40.0627 (18)0.0423 (15)0.0483 (17)0.0035 (14)0.0250 (15)0.0004 (13)
O50.064 (2)0.0449 (18)0.0491 (19)0.0036 (15)0.0156 (16)0.0013 (14)
O60.099 (3)0.062 (2)0.061 (2)0.002 (2)0.028 (2)0.0038 (19)
O70.102 (3)0.061 (2)0.0409 (17)0.006 (2)0.0239 (19)0.0014 (16)
Pb10.03248 (9)0.03228 (9)0.03693 (9)0.00108 (5)0.00941 (6)0.00055 (5)
Geometric parameters (Å, º) top
C1—N11.316 (5)C18—C191.432 (6)
C1—C21.390 (6)C18—H180.9300
C1—H10.9300C19—C201.400 (6)
C2—C31.365 (7)C19—C231.409 (5)
C2—H20.9300C20—C211.359 (6)
C3—C41.393 (7)C20—H200.9300
C3—H30.9300C21—C221.391 (6)
C4—C121.410 (6)C21—H210.9300
C4—C51.421 (7)C22—N41.321 (5)
C5—C61.331 (7)C22—H220.9300
C5—H50.9300C23—N41.357 (5)
C6—C71.437 (6)C23—C241.443 (6)
C6—H60.9300C24—N31.362 (5)
C7—C81.393 (7)C25—O11.252 (5)
C7—C111.410 (6)C25—C281.461 (5)
C8—C91.363 (7)C25—C261.465 (5)
C8—H80.9300C26—O21.244 (5)
C9—C101.391 (7)C26—C271.462 (5)
C9—H90.9300C27—O31.256 (5)
C10—N21.322 (6)C27—C281.446 (5)
C10—H100.9300C28—O41.249 (5)
C11—N21.363 (5)N1—Pb12.699 (3)
C11—C121.437 (6)N2—Pb12.772 (4)
C12—N11.360 (5)N3—Pb12.799 (3)
C13—N31.311 (5)N4—Pb12.821 (4)
C13—C141.390 (6)O1—Pb12.436 (3)
C13—H130.9300O3—Pb1i2.623 (3)
C14—C151.359 (7)O4—Pb1i2.869 (4)
C14—H140.9300O5—Pb12.675 (3)
C15—C161.398 (7)O5—H5A0.83 (3)
C15—H150.9300O5—H5B0.85 (3)
C16—C241.406 (6)O6—H6A0.80 (3)
C16—C171.431 (6)O6—H6B0.83 (3)
C17—C181.333 (7)O7—H7A0.84 (3)
C17—H170.9300O7—H7B0.82 (3)
N1—C1—C2124.1 (4)C20—C19—C18122.6 (4)
N1—C1—H1117.9C23—C19—C18119.7 (4)
C2—C1—H1117.9C21—C20—C19119.9 (4)
C3—C2—C1118.4 (4)C21—C20—H20120.1
C3—C2—H2120.8C19—C20—H20120.1
C1—C2—H2120.8C20—C21—C22118.6 (4)
C2—C3—C4120.0 (4)C20—C21—H21120.7
C2—C3—H3120.0C22—C21—H21120.7
C4—C3—H3120.0N4—C22—C21123.9 (4)
C3—C4—C12117.7 (4)N4—C22—H22118.0
C3—C4—C5122.8 (4)C21—C22—H22118.0
C12—C4—C5119.5 (4)N4—C23—C19122.1 (4)
C6—C5—C4121.8 (4)N4—C23—C24118.7 (3)
C6—C5—H5119.1C19—C23—C24119.1 (3)
C4—C5—H5119.1N3—C24—C16122.0 (4)
C5—C6—C7121.1 (4)N3—C24—C23119.0 (3)
C5—C6—H6119.5C16—C24—C23119.0 (4)
C7—C6—H6119.5O1—C25—C28137.3 (4)
C8—C7—C11118.1 (4)O1—C25—C26132.6 (4)
C8—C7—C6123.2 (4)C28—C25—C2690.2 (3)
C11—C7—C6118.7 (4)O2—C26—C27136.5 (4)
C9—C8—C7120.1 (4)O2—C26—C25134.3 (3)
C9—C8—H8119.9C27—C26—C2589.1 (3)
C7—C8—H8119.9O3—C27—C28131.0 (4)
C8—C9—C10118.3 (5)O3—C27—C26138.1 (4)
C8—C9—H9120.8C28—C27—C2690.9 (3)
C10—C9—H9120.8O4—C28—C27132.1 (4)
N2—C10—C9123.9 (4)O4—C28—C25138.0 (4)
N2—C10—H10118.0C27—C28—C2589.9 (3)
C9—C10—H10118.0C1—N1—C12117.9 (4)
N2—C11—C7121.4 (4)C1—N1—Pb1120.2 (3)
N2—C11—C12118.4 (3)C12—N1—Pb1121.9 (3)
C7—C11—C12120.1 (4)C10—N2—C11118.1 (4)
N1—C12—C4122.0 (4)C10—N2—Pb1122.2 (3)
N1—C12—C11119.3 (3)C11—N2—Pb1119.4 (3)
C4—C12—C11118.7 (4)C13—N3—C24118.2 (4)
N3—C13—C14123.5 (4)C13—N3—Pb1119.7 (3)
N3—C13—H13118.2C24—N3—Pb1121.6 (3)
C14—C13—H13118.2C22—N4—C23117.8 (3)
C15—C14—C13119.1 (4)C25—O1—Pb1138.4 (3)
C15—C14—H14120.4Pb1—O5—H5A117 (4)
C13—C14—H14120.4Pb1—O5—H5B125 (4)
C14—C15—C16119.6 (4)H5A—O5—H5B106 (4)
C14—C15—H15120.2H6A—O6—H6B115 (5)
C16—C15—H15120.2H7A—O7—H7B107 (4)
C15—C16—C24117.7 (4)O1—Pb1—O580.41 (11)
C15—C16—C17122.4 (4)O1—Pb1—N182.01 (11)
C24—C16—C17119.9 (4)O5—Pb1—N175.94 (10)
C18—C17—C16121.1 (4)O1—Pb1—N2138.21 (10)
C18—C17—H17119.4O5—Pb1—N273.66 (11)
C16—C17—H17119.4N1—Pb1—N260.40 (10)
C17—C18—C19121.1 (4)O1—Pb1—N3101.61 (11)
C17—C18—H18119.5O5—Pb1—N377.52 (10)
C19—C18—H18119.5N1—Pb1—N3152.20 (11)
C20—C19—C23117.6 (4)N2—Pb1—N3104.00 (10)
N1—C1—C2—C30.5 (7)C26—C27—C28—O4175.5 (4)
C1—C2—C3—C40.8 (7)O3—C27—C28—C25179.5 (4)
C2—C3—C4—C120.1 (6)C26—C27—C28—C252.0 (3)
C2—C3—C4—C5179.7 (4)O1—C25—C28—O44.1 (9)
C3—C4—C5—C6179.2 (5)C26—C25—C28—O4175.2 (5)
C12—C4—C5—C61.1 (7)O1—C25—C28—C27178.7 (5)
C4—C5—C6—C72.4 (7)C26—C25—C28—C272.0 (3)
C5—C6—C7—C8175.7 (5)C2—C1—N1—C120.4 (7)
C5—C6—C7—C111.0 (7)C2—C1—N1—Pb1179.9 (3)
C11—C7—C8—C91.3 (7)C4—C12—N1—C11.1 (6)
C6—C7—C8—C9175.4 (5)C11—C12—N1—C1178.0 (4)
C7—C8—C9—C100.4 (8)C4—C12—N1—Pb1179.2 (3)
C8—C9—C10—N20.9 (8)C11—C12—N1—Pb11.7 (5)
C8—C7—C11—N21.2 (6)C9—C10—N2—C111.0 (7)
C6—C7—C11—N2175.7 (4)C9—C10—N2—Pb1173.0 (4)
C8—C7—C11—C12178.5 (4)C7—C11—N2—C100.0 (6)
C6—C7—C11—C121.6 (6)C12—C11—N2—C10177.4 (4)
C3—C4—C12—N10.9 (6)C7—C11—N2—Pb1174.3 (3)
C5—C4—C12—N1179.3 (4)C12—C11—N2—Pb18.4 (5)
C3—C4—C12—C11178.2 (4)C14—C13—N3—C240.4 (7)
C5—C4—C12—C111.6 (6)C14—C13—N3—Pb1171.7 (4)
N2—C11—C12—N14.6 (5)C16—C24—N3—C130.3 (6)
C7—C11—C12—N1178.0 (4)C23—C24—N3—C13179.0 (4)
N2—C11—C12—C4174.6 (4)C16—C24—N3—Pb1171.6 (3)
C7—C11—C12—C42.8 (6)C23—C24—N3—Pb17.7 (5)
N3—C13—C14—C150.0 (8)C21—C22—N4—C230.3 (7)
C13—C14—C15—C160.3 (7)C19—C23—N4—C220.4 (6)
C14—C15—C16—C240.3 (7)C24—C23—N4—C22179.3 (4)
C14—C15—C16—C17179.2 (4)C28—C25—O1—Pb135.3 (8)
C15—C16—C17—C18179.5 (5)C26—C25—O1—Pb1143.6 (4)
C24—C16—C17—C181.0 (7)C25—O1—Pb1—O55.5 (4)
C16—C17—C18—C191.8 (7)C25—O1—Pb1—N171.5 (4)
C17—C18—C19—C20177.3 (5)C25—O1—Pb1—N246.4 (5)
C17—C18—C19—C231.2 (7)C25—O1—Pb1—N380.5 (4)
C23—C19—C20—C211.0 (6)C1—N1—Pb1—O123.3 (3)
C18—C19—C20—C21179.5 (4)C12—N1—Pb1—O1157.0 (3)
C19—C20—C21—C220.4 (7)C1—N1—Pb1—O5105.3 (3)
C20—C21—C22—N40.3 (7)C12—N1—Pb1—O575.0 (3)
C20—C19—C23—N41.1 (6)C1—N1—Pb1—N2175.7 (4)
C18—C19—C23—N4179.6 (4)C12—N1—Pb1—N24.0 (3)
C20—C19—C23—C24178.6 (4)C1—N1—Pb1—N3123.0 (3)
C18—C19—C23—C240.1 (6)C12—N1—Pb1—N357.3 (4)
C15—C16—C24—N30.0 (6)C10—N2—Pb1—O1151.4 (3)
C17—C16—C24—N3179.6 (4)C11—N2—Pb1—O122.6 (4)
C15—C16—C24—C23179.3 (4)C10—N2—Pb1—O597.4 (4)
C17—C16—C24—C230.3 (6)C11—N2—Pb1—O576.5 (3)
N4—C23—C24—N30.4 (5)C10—N2—Pb1—N1179.7 (4)
C19—C23—C24—N3179.9 (4)C11—N2—Pb1—N16.3 (3)
N4—C23—C24—C16178.9 (4)C10—N2—Pb1—N325.2 (4)
C19—C23—C24—C160.8 (6)C11—N2—Pb1—N3148.8 (3)
O1—C25—C26—O24.4 (8)C13—N3—Pb1—O1116.1 (3)
C28—C25—C26—O2174.9 (5)C24—N3—Pb1—O172.8 (3)
O1—C25—C26—C27178.7 (4)C13—N3—Pb1—O538.8 (3)
C28—C25—C26—C272.0 (3)C24—N3—Pb1—O5150.1 (3)
O2—C26—C27—O33.5 (9)C13—N3—Pb1—N121.2 (5)
C25—C26—C27—O3179.7 (5)C24—N3—Pb1—N1167.7 (3)
O2—C26—C27—C28174.7 (5)C13—N3—Pb1—N230.6 (3)
C25—C26—C27—C282.0 (3)C24—N3—Pb1—N2140.5 (3)
O3—C27—C28—O43.0 (7)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O40.83 (3)2.00 (3)2.792 (5)161 (5)
O5—H5B···O60.85 (3)1.97 (3)2.817 (5)176 (5)
O6—H6A···O2ii0.80 (3)2.09 (3)2.878 (5)168 (7)
O6—H6B···O7iii0.83 (3)2.11 (4)2.887 (6)156 (7)
O7—H7A···O3iv0.84 (3)1.96 (3)2.800 (5)173 (5)
O7—H7B···O20.82 (3)2.15 (3)2.947 (6)166 (5)
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Pb(C4O4)(C12H8N2)2(H2O)]·2H2O
Mr733.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)18.5438 (10), 7.2746 (3), 19.8774 (11)
β (°) 106.578 (4)
V3)2570.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)6.62
Crystal size (mm)0.23 × 0.21 × 0.16
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.255, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
39366, 5638, 4842
Rint0.066
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.03
No. of reflections5638
No. of parameters386
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.33, 1.21

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—Pb12.699 (3)O1—Pb12.436 (3)
N2—Pb12.772 (4)O3—Pb1i2.623 (3)
N3—Pb12.799 (3)O4—Pb1i2.869 (4)
N4—Pb12.821 (4)O5—Pb12.675 (3)
O1—Pb1—O580.41 (11)N1—Pb1—N260.40 (10)
O1—Pb1—N182.01 (11)O1—Pb1—N3101.61 (11)
O5—Pb1—N175.94 (10)O5—Pb1—N377.52 (10)
O1—Pb1—N2138.21 (10)N1—Pb1—N3152.20 (11)
O5—Pb1—N273.66 (11)N2—Pb1—N3104.00 (10)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O40.83 (3)2.00 (3)2.792 (5)161 (5)
O5—H5B···O60.85 (3)1.97 (3)2.817 (5)176 (5)
O6—H6A···O2ii0.80 (3)2.09 (3)2.878 (5)168 (7)
O6—H6B···O7iii0.83 (3)2.11 (4)2.887 (6)156 (7)
O7—H7A···O3iv0.84 (3)1.96 (3)2.800 (5)173 (5)
O7—H7B···O20.82 (3)2.15 (3)2.947 (6)166 (5)
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds