Download citation
Download citation
link to html
The two title complexes, catena-poly[[{2,2'-[1,3-propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]-[mu]-azido], [Co(C17H16N2O2)(N3)]n, (I), and catena-poly[[{2,2'-[1,3-propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]-[mu]-thio­cyanato], [Co(C17H16N2O2)(NCS)]n, (II), are isomorphous polynuclear cobalt(III) compounds. In both structures, the CoIII atom is six-coordinated in an octa­hedral configuration by two N atoms and two O atoms of one Schiff base, and two terminal N or S atoms from two bridging ligands. The [N,N'-bis­(salicyl­idene)propane-1,3-diaminato]cobalt(III) moieties are linked by the bridging ligands, viz. azide in (I) and thio­cyanate in (II), giving zigzag polymeric chains with backbones of the type [-Co-N-N-N-Co]n in (I) or [-Co-N-C-S-Co]n in (II) running along the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105012497/sk1836sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105012497/sk1836Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105012497/sk1836IIsup3.hkl
Contains datablock II

CCDC references: 275503; 275504

Comment top

Investigation into the magnetic properties of molecule-based materials containing a polymetallic assembly have become a fascinating subject in the field of condensed matter physics and materials chemistry (Dalai et al., 2002; Bhaduri et al., 2003). Much attention has been focused on coordination complexes with novel magnetic properties, which may have potentially useful applications in materials science (Ray et al., 2003). The prime strategy for designing these molecular materials is to use a suitable bridging ligand that determines the nature of the magnetic interactions (Koner et al., 2003).

Our work is aimed at obtaining multidimensional polymetallic complexes. Based on the above considerations, we designed and synthesized a flexible tetradentate ligand, N,N'-bis(salicylidene)-1,3-propanediamine (BSPD). The reason we do not use a rigid ligand is that the flexible BSPD ligand can adopt different coordination modes according to the geometric need of transition metal ions and the coordination environment. The second ligand, azide or thiocyanate, is a well known? bridging group. They readily bridge different metal ions through their terminal donor atoms, forming polynuclear complexes. Cobalt(III) is a good candidate of octahedral coordination geometry. Here, we report a pair of interesting one-dimensional infinite chains formed by the reaction of the BSPD ligand and the azide or thiocyanate ligand with cobalt(III) acetate.

The two title complexes, (I) and (II), are isomorphous polynuclear cobalt(III) compounds (Figs. 1 and 2). In both structures, the smallest repeat unit contains two BSPD–CoIII cations and two bridging ligands, viz. azide for (I) and thiocyanate for (II). The CoIII atom is in an octahedral coordination environment and is six-coordinated by two N atoms and two O atoms of one Schiff base ligand defining the basal plane, and by two different but symmetry-related terminal N atoms [for (I)], or two terminal N and S atoms [for (II)], occupying the axial positions.

The angles subtended at atom Co1 in (I) are comparable with the corresponding values observed in (II) (Table 1). The bond angles formed by the two apical donor atoms and the CoIII atom deviate from 180° by 15.53 (13) and 11.50 (18)°, respectively, for (I) and (II), which is due to the strain created by the two cis-bridging ligands related to the apical axis of the octahedron in the two complexes. The mean Co—N (imine N atoms) and mean Co—O (phenolate O atoms) bond lengths in (I) are also comparable with the corresponding values in (II). However, the bond lengths between atom Co1 and the apical donor atoms are different from each other. The fact that the Co1—N3 bond length [2.352 (4) Å] in (I) is longer than that in (II) [2.263 (5) Å], while the Co1—N5i bond length in (I) [2.314 (4) Å] is much shorter than the Co1—S1ii bond length [2.780 (5) Å] in (II) [symmetry codes: (i) 1 − x, −y, 1/2 + z; (ii) 2 − x, 2 − y, 1/2 + z] indicates that the Co—S bond is not very strong.

The conformations of the six-membered chelate rings containing the CoIII atom, the azomethine N atoms and three C atoms (C8, C9 and C10) in both (I) and (II) are chair-shaped. The distances of the two para-positioned atoms, Co1 and C9, from the mean plane of the other four atoms are 0.473 (3) and −0.722 (6) Å, respectively, for (I), and 0.374 (3) and −0.753 (6) Å, respectively, for (II). In (I), the CoN2O2 basal plane forms dihedral angles of 20.5 (2) and 23.5 (2)°, respectively, with the two phenolate ring systems, which are inclined at 43.8 (2)° to each other, while in (II), the CoN2O2 basal plane forms dihedral angles of 22.1 (2) and 14.8 (2)°, respectively, with the two phenolate ring systems, which are inclined at 36.8 (2)° to each other.

In both complexes, the average C7N1 and C11N2 bond lengths [1.273 (6) Å in (I) and 1.286 (6) Å in (II)] conform to the normal value for double bonds, while the average C8—N1 and C10—N2 bond lengths [1.474 (5) Å in (I) and 1.466 (6) Å in (II)] conform to the normal value for single bonds (Reference for standard values?).

In the crystal structures, the N,N'-bis(salicylidene)-1,3-propanediaminatocobalt(III) moieties are linked by the bridging ligands, viz. azide for (I) and thiocyanate for (II), giving zigzag polymeric chains with backbones of the type [–Co—N—N—N—Co]n in (I) or [–Co—N—C—S—Co]n (II) running along the c axis. There are no short intermolecular contacts (Figs. 3 and 4).

Experimental top

For the preparation of complex (I), salicylaldehyde (0.1 mmol, 12.2 mg) and 1,3-diaminopropane (0.1 mmol, 7.4 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 10 min to give a yellow solution, to which was added an aqueous solution (2 ml) of NaN3 (0.1 mmol, 6.5 mg) and an MeOH solution (Volume?) of Co(ClO4)3·7H2O (0.1 mmol, 48.3 mg), with stirring. The mixture was stirred for another 10 min at room temperature. After keeping the filtrate in air for 10 d, brown block-shaped crystals of (I) were formed. Complex (II) was prepared by a similar procedure to that described for (I), with NaN3 replaced by NH4NCS (0.1 mmol, 7.6 mg). Brown block-shaped crystals of (II) were obtained after evaporating the solvents from the filtrate in air for 8 d.

Refinement top

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C). There were 1495 Friedel pairs measured for (I) and 1470 for (II).

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms or those labelled with the suffix A are at the symmetry position (1 − x, −y, 1/2 + z).
[Figure 2] Fig. 2. The structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms or those labelled with the suffix A are at the symmetry position (2 − x, 2 − y, 1/2 + z).
[Figure 3] Fig. 3. The crystal packing of (I), viewed along the b axis.
[Figure 4] Fig. 4. The crystal packing of (II), viewed along the b axis.
(I) catena-poly[[[2,2'-[1,3- propanediylbis(nitrilomethylidyne)]diphenolato]cobalt(III)]-µ-azido] top
Crystal data top
[Co(C17H16N2)(N3)]F(000) = 784
Mr = 381.28Dx = 1.585 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3722 reflections
a = 11.930 (2) Åθ = 2.5–27.5°
b = 11.931 (3) ŵ = 1.10 mm1
c = 11.225 (2) ÅT = 298 K
V = 1597.7 (6) Å3Block, brown
Z = 40.32 × 0.28 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3234 independent reflections
Radiation source: fine-focus sealed tube2932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.721, Tmax = 0.819k = 1314
8835 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0889P)2 + 0.1907P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3234 reflectionsΔρmax = 0.80 e Å3
227 parametersΔρmin = 0.42 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (2)
Crystal data top
[Co(C17H16N2)(N3)]V = 1597.7 (6) Å3
Mr = 381.28Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.930 (2) ŵ = 1.10 mm1
b = 11.931 (3) ÅT = 298 K
c = 11.225 (2) Å0.32 × 0.28 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3234 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2932 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.819Rint = 0.030
8835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.130Δρmax = 0.80 e Å3
S = 1.07Δρmin = 0.42 e Å3
3234 reflectionsAbsolute structure: Flack (1983)
227 parametersAbsolute structure parameter: 0.13 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.52548 (4)0.09636 (4)0.76504 (7)0.03257 (17)
O10.6456 (2)0.0035 (2)0.7474 (3)0.0381 (7)
O20.6198 (2)0.2029 (2)0.6893 (3)0.0356 (6)
N10.4254 (2)0.0269 (3)0.8354 (3)0.0278 (7)
N20.4087 (2)0.2180 (3)0.7820 (3)0.0282 (7)
N30.4395 (3)0.0439 (3)0.5849 (3)0.0385 (8)
N40.4335 (2)0.0369 (3)0.5261 (3)0.0320 (7)
N50.4268 (3)0.1167 (3)0.4637 (4)0.0441 (9)
C10.5503 (3)0.1773 (3)0.7702 (5)0.0374 (8)
C20.6414 (3)0.1144 (3)0.7354 (3)0.0361 (9)
C30.7350 (4)0.1693 (4)0.6863 (4)0.0484 (11)
H30.79800.12840.66410.058*
C40.7329 (5)0.2834 (4)0.6712 (5)0.0567 (14)
H40.79460.31900.63750.068*
C50.6429 (6)0.3458 (4)0.7043 (5)0.0678 (17)
H50.64290.42300.69270.081*
C60.5538 (4)0.2952 (3)0.7541 (7)0.0554 (13)
H60.49310.33840.77850.066*
C70.4519 (3)0.1301 (4)0.8273 (4)0.0367 (9)
H70.40250.18090.86190.044*
C80.3263 (3)0.0020 (4)0.9090 (4)0.0359 (9)
H8A0.35040.01130.99030.043*
H8B0.27750.06710.90940.043*
C90.2604 (3)0.0982 (3)0.8663 (4)0.0382 (9)
H9A0.23960.08630.78370.046*
H9B0.19190.10360.91230.046*
C100.3228 (3)0.2075 (4)0.8759 (4)0.0379 (9)
H10A0.27010.26920.86920.046*
H10B0.35840.21230.95340.046*
C110.4034 (3)0.3036 (3)0.7148 (4)0.0313 (8)
H110.34000.34840.72240.038*
C120.4856 (3)0.3386 (3)0.6282 (4)0.0330 (8)
C130.5919 (3)0.2884 (3)0.6227 (3)0.0301 (7)
C140.6726 (3)0.3365 (4)0.5465 (4)0.0375 (9)
H140.74430.30600.54290.045*
C150.6466 (4)0.4281 (4)0.4773 (4)0.0456 (10)
H150.70090.45850.42740.055*
C160.5400 (4)0.4761 (5)0.4809 (5)0.0540 (13)
H160.52240.53700.43270.065*
C170.4611 (4)0.4316 (4)0.5574 (5)0.0425 (10)
H170.39030.46420.56180.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0263 (3)0.0406 (3)0.0308 (3)0.00003 (17)0.0030 (2)0.0014 (3)
O10.0259 (11)0.0388 (13)0.0496 (19)0.0064 (10)0.0070 (13)0.0042 (14)
O20.0236 (11)0.0413 (14)0.0418 (16)0.0016 (10)0.0054 (11)0.0118 (13)
N10.0234 (14)0.0431 (17)0.0169 (16)0.0040 (13)0.0032 (11)0.0050 (12)
N20.0207 (12)0.0390 (14)0.0248 (18)0.0016 (11)0.0028 (13)0.0070 (13)
N30.0369 (18)0.053 (2)0.0252 (18)0.0019 (16)0.0016 (14)0.0034 (16)
N40.0258 (15)0.050 (2)0.0204 (16)0.0008 (14)0.0063 (13)0.0032 (15)
N50.043 (2)0.056 (2)0.033 (2)0.0118 (18)0.0104 (17)0.0005 (17)
C10.0413 (19)0.0426 (18)0.0283 (19)0.0075 (15)0.012 (2)0.001 (2)
C20.037 (2)0.048 (2)0.023 (2)0.0134 (17)0.0043 (14)0.0037 (15)
C30.043 (2)0.076 (3)0.026 (2)0.024 (2)0.0010 (18)0.005 (2)
C40.074 (3)0.062 (3)0.033 (2)0.039 (3)0.013 (2)0.007 (2)
C50.095 (4)0.048 (3)0.061 (3)0.027 (3)0.033 (3)0.011 (2)
C60.064 (3)0.0362 (19)0.066 (4)0.0056 (19)0.020 (3)0.002 (3)
C70.0351 (19)0.043 (2)0.032 (2)0.0107 (18)0.0048 (18)0.0080 (18)
C80.0267 (17)0.053 (2)0.0283 (19)0.0056 (17)0.0043 (16)0.0037 (17)
C90.0226 (18)0.064 (3)0.0276 (19)0.0042 (16)0.0023 (16)0.0086 (17)
C100.0316 (19)0.054 (2)0.028 (2)0.0075 (18)0.0129 (16)0.0001 (18)
C110.0260 (17)0.0355 (19)0.032 (2)0.0008 (14)0.0016 (14)0.0035 (15)
C120.0317 (18)0.041 (2)0.026 (2)0.0001 (16)0.0024 (15)0.0031 (17)
C130.0297 (17)0.0364 (18)0.0240 (18)0.0082 (15)0.0025 (15)0.0022 (15)
C140.0307 (19)0.052 (2)0.029 (2)0.0048 (17)0.0032 (16)0.0029 (17)
C150.050 (3)0.053 (2)0.033 (2)0.017 (2)0.005 (2)0.006 (2)
C160.061 (3)0.059 (3)0.041 (3)0.009 (2)0.002 (2)0.016 (2)
C170.042 (2)0.042 (2)0.044 (3)0.0032 (17)0.0065 (19)0.005 (2)
Geometric parameters (Å, º) top
Co1—O11.874 (2)C5—H50.9300
Co1—O21.899 (3)C6—H60.9300
Co1—N22.021 (3)C7—H70.9300
Co1—N12.052 (3)C8—C91.509 (6)
Co1—N5i2.314 (4)C8—H8A0.9700
Co1—N32.352 (4)C8—H8B0.9700
O1—C21.331 (5)C9—C101.505 (6)
O2—C131.307 (5)C9—H9A0.9700
N1—C71.274 (6)C9—H9B0.9700
N1—C81.473 (5)C10—H10A0.9700
N2—C111.271 (5)C10—H10B0.9700
N2—C101.475 (5)C11—C121.443 (6)
N3—N41.171 (5)C11—H110.9300
N4—N51.184 (5)C12—C171.397 (6)
N5—Co1ii2.314 (4)C12—C131.404 (5)
C1—C21.378 (6)C13—C141.411 (5)
C1—C61.419 (6)C14—C151.376 (6)
C1—C71.452 (6)C14—H140.9300
C2—C31.407 (6)C15—C161.396 (7)
C3—C41.373 (7)C15—H150.9300
C3—H30.9300C16—C171.380 (7)
C4—C51.359 (8)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C61.344 (8)
O1—Co1—O285.72 (12)C1—C6—H6119.3
O1—Co1—N2173.58 (11)N1—C7—C1127.3 (4)
O2—Co1—N288.28 (12)N1—C7—H7116.3
O1—Co1—N191.68 (12)C1—C7—H7116.3
O2—Co1—N1175.44 (14)N1—C8—C9113.5 (3)
N2—Co1—N194.46 (12)N1—C8—H8A108.9
O1—Co1—N5i88.86 (15)C9—C8—H8A108.9
O2—Co1—N5i102.44 (14)N1—C8—H8B108.9
N2—Co1—N5i90.22 (15)C9—C8—H8B108.9
N1—Co1—N5i81.23 (13)H8A—C8—H8B107.7
O1—Co1—N394.23 (14)C10—C9—C8114.0 (3)
O2—Co1—N392.97 (14)C10—C9—H9A108.8
N2—Co1—N388.35 (13)C8—C9—H9A108.8
N1—Co1—N383.47 (12)C10—C9—H9B108.8
N5i—Co1—N3164.47 (13)C8—C9—H9B108.8
C2—O1—Co1127.9 (2)H9A—C9—H9B107.6
C13—O2—Co1128.8 (2)N2—C10—C9111.4 (3)
C7—N1—C8115.7 (3)N2—C10—H10A109.3
C7—N1—Co1121.4 (3)C9—C10—H10A109.3
C8—N1—Co1122.6 (3)N2—C10—H10B109.3
C11—N2—C10117.2 (3)C9—C10—H10B109.3
C11—N2—Co1123.7 (2)H10A—C10—H10B108.0
C10—N2—Co1119.0 (2)N2—C11—C12126.8 (3)
N4—N3—Co1136.9 (3)N2—C11—H11116.6
N3—N4—N5177.9 (4)C12—C11—H11116.6
N4—N5—Co1ii118.0 (3)C17—C12—C13120.3 (4)
C2—C1—C6118.7 (4)C17—C12—C11118.1 (4)
C2—C1—C7123.5 (4)C13—C12—C11121.3 (4)
C6—C1—C7117.7 (4)O2—C13—C12122.6 (3)
O1—C2—C1122.8 (4)O2—C13—C14119.4 (3)
O1—C2—C3118.2 (4)C12—C13—C14118.0 (4)
C1—C2—C3119.0 (4)C15—C14—C13120.8 (4)
C4—C3—C2119.7 (5)C15—C14—H14119.6
C4—C3—H3120.1C13—C14—H14119.6
C2—C3—H3120.1C14—C15—C16121.0 (4)
C5—C4—C3121.6 (5)C14—C15—H15119.5
C5—C4—H4119.2C16—C15—H15119.5
C3—C4—H4119.2C17—C16—C15118.8 (5)
C6—C5—C4119.5 (5)C17—C16—H16120.6
C6—C5—H5120.2C15—C16—H16120.6
C4—C5—H5120.2C16—C17—C12121.1 (4)
C5—C6—C1121.4 (5)C16—C17—H17119.5
C5—C6—H6119.3C12—C17—H17119.5
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z1/2.
(II) catena-poly[[[2,2'-[1,3- propanediylbis(nitrilomethylidyne)]diphenolato]cobalt(III)]-µ-thiocyanato] top
Crystal data top
[Co(C17H16N2)(NCS)]F(000) = 816
Mr = 397.33Dx = 1.562 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2121 reflections
a = 12.566 (7) Åθ = 2.4–21.8°
b = 11.679 (7) ŵ = 1.16 mm1
c = 11.515 (7) ÅT = 298 K
V = 1689.9 (17) Å3Block, brown
Z = 40.33 × 0.27 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3316 independent reflections
Radiation source: fine-focus sealed tube2686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.702, Tmax = 0.793k = 1411
9030 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0684P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3316 reflectionsΔρmax = 0.52 e Å3
227 parametersΔρmin = 0.68 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (3)
Crystal data top
[Co(C17H16N2)(NCS)]V = 1689.9 (17) Å3
Mr = 397.33Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.566 (7) ŵ = 1.16 mm1
b = 11.679 (7) ÅT = 298 K
c = 11.515 (7) Å0.33 × 0.27 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3316 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2686 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.793Rint = 0.060
9030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.52 e Å3
S = 1.03Δρmin = 0.68 e Å3
3316 reflectionsAbsolute structure: Flack (1983)
227 parametersAbsolute structure parameter: 0.10 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.51572 (4)0.10776 (6)0.76500 (10)0.0348 (2)
S10.42537 (11)0.17706 (12)0.48694 (13)0.0414 (4)
O10.6314 (2)0.0049 (3)0.7616 (4)0.0396 (8)
O20.6081 (2)0.2101 (3)0.6869 (4)0.0346 (9)
N10.4235 (3)0.0102 (3)0.8517 (4)0.0263 (9)
N20.4034 (3)0.2344 (3)0.7722 (5)0.0279 (8)
N30.4404 (3)0.0342 (4)0.6029 (4)0.0367 (11)
C10.5410 (4)0.1702 (4)0.7988 (4)0.0322 (12)
C20.6265 (3)0.1087 (4)0.7589 (6)0.0331 (10)
C30.7153 (4)0.1692 (5)0.7138 (5)0.0456 (15)
H30.77510.13010.68770.055*
C40.7113 (5)0.2880 (5)0.7093 (6)0.0540 (17)
H40.76920.32790.67940.065*
C50.6245 (5)0.3479 (5)0.7475 (6)0.0530 (16)
H50.62260.42730.74190.064*
C60.5427 (5)0.2905 (5)0.7931 (6)0.0472 (16)
H60.48490.33140.82190.057*
C70.4472 (4)0.1181 (4)0.8511 (5)0.0347 (12)
H70.39960.16730.88760.042*
C80.3307 (4)0.0226 (4)0.9197 (5)0.0343 (13)
H8A0.35420.05210.99410.041*
H8B0.28770.04480.93420.041*
C90.2622 (4)0.1129 (4)0.8599 (5)0.0371 (12)
H9A0.24750.08850.78100.045*
H9B0.19490.11910.90050.045*
C100.3154 (4)0.2290 (4)0.8572 (5)0.0359 (12)
H10A0.26280.28670.83780.043*
H10B0.34290.24640.93390.043*
C110.4026 (4)0.3206 (4)0.7042 (5)0.0379 (13)
H110.34130.36520.70470.045*
C120.4860 (4)0.3567 (5)0.6266 (5)0.0347 (12)
C130.5863 (4)0.3021 (4)0.6239 (5)0.0310 (11)
C140.6673 (4)0.3492 (5)0.5553 (5)0.0430 (14)
H140.73380.31440.55310.052*
C150.6486 (5)0.4479 (5)0.4905 (6)0.0486 (15)
H150.70330.47790.44540.058*
C160.5507 (5)0.5025 (5)0.4916 (6)0.0528 (17)
H160.53950.56830.44770.063*
C170.4702 (5)0.4571 (5)0.5592 (6)0.0485 (16)
H170.40410.49310.56050.058*
C180.4343 (4)0.0520 (5)0.5548 (5)0.0358 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0282 (3)0.0370 (4)0.0393 (4)0.0004 (3)0.0046 (5)0.0009 (4)
S10.0455 (8)0.0424 (8)0.0363 (8)0.0133 (6)0.0051 (7)0.0037 (7)
O10.0261 (15)0.0349 (18)0.058 (2)0.0046 (13)0.008 (2)0.003 (2)
O20.0255 (17)0.0349 (19)0.044 (2)0.0033 (14)0.0034 (17)0.0128 (17)
N10.0206 (19)0.029 (2)0.029 (2)0.0004 (16)0.0010 (18)0.0006 (18)
N20.0242 (16)0.0277 (19)0.032 (2)0.0003 (14)0.002 (2)0.001 (2)
N30.042 (2)0.038 (3)0.031 (3)0.004 (2)0.002 (2)0.004 (2)
C10.039 (3)0.034 (3)0.024 (3)0.009 (2)0.005 (2)0.002 (2)
C20.033 (2)0.040 (3)0.026 (3)0.012 (2)0.003 (3)0.003 (3)
C30.037 (3)0.055 (4)0.046 (4)0.017 (3)0.011 (3)0.008 (3)
C40.054 (4)0.048 (3)0.059 (4)0.032 (3)0.006 (3)0.001 (3)
C50.065 (4)0.043 (3)0.051 (4)0.017 (3)0.001 (4)0.003 (3)
C60.052 (3)0.038 (3)0.052 (5)0.007 (3)0.003 (3)0.009 (3)
C70.034 (3)0.043 (3)0.028 (3)0.002 (2)0.000 (2)0.007 (2)
C80.027 (2)0.036 (3)0.039 (3)0.001 (2)0.010 (2)0.001 (2)
C90.027 (2)0.040 (3)0.044 (4)0.001 (2)0.005 (2)0.003 (3)
C100.033 (3)0.033 (3)0.042 (3)0.007 (2)0.011 (3)0.001 (2)
C110.037 (3)0.037 (3)0.039 (3)0.009 (2)0.005 (3)0.011 (3)
C120.042 (3)0.036 (3)0.026 (3)0.003 (2)0.005 (2)0.001 (2)
C130.034 (3)0.032 (3)0.026 (3)0.009 (2)0.002 (2)0.005 (2)
C140.041 (3)0.050 (3)0.038 (4)0.016 (3)0.001 (3)0.005 (3)
C150.068 (4)0.042 (3)0.036 (3)0.016 (3)0.006 (3)0.002 (3)
C160.072 (4)0.044 (3)0.043 (4)0.006 (3)0.001 (4)0.010 (3)
C170.060 (4)0.036 (3)0.049 (4)0.009 (3)0.002 (3)0.001 (3)
C180.023 (2)0.063 (4)0.022 (3)0.004 (2)0.003 (2)0.008 (3)
Geometric parameters (Å, º) top
Co1—O11.886 (3)C5—H50.9300
Co1—O21.893 (3)C6—H60.9300
Co1—N22.047 (4)C7—H70.9300
Co1—N12.058 (4)C8—C91.525 (7)
Co1—N32.262 (5)C8—H8A0.9700
Co1—S1i2.781 (2)C8—H8B0.9700
S1—C181.660 (6)C9—C101.512 (7)
O1—C21.328 (5)C9—H9A0.9700
O2—C131.324 (6)C9—H9B0.9700
N1—C71.295 (6)C10—H10A0.9700
N1—C81.455 (6)C10—H10B0.9700
N2—C111.275 (7)C11—C121.441 (8)
N2—C101.478 (6)C11—H110.9300
N3—C181.152 (7)C12—C131.412 (7)
C1—C21.371 (7)C12—C171.420 (8)
C1—C61.407 (7)C13—C141.401 (7)
C1—C71.456 (7)C14—C151.393 (8)
C2—C31.420 (7)C14—H140.9300
C3—C41.389 (8)C15—C161.385 (8)
C3—H30.9300C15—H150.9300
C4—C51.368 (8)C16—C171.383 (8)
C4—H40.9300C16—H160.9300
C5—C61.335 (8)C17—H170.9300
O1—Co1—O285.41 (15)N1—C7—H7116.7
O1—Co1—N2173.16 (14)C1—C7—H7116.7
O2—Co1—N289.18 (16)N1—C8—C9113.1 (5)
O1—Co1—N191.00 (15)N1—C8—H8A109.0
O2—Co1—N1176.36 (14)C9—C8—H8A109.0
N2—Co1—N194.35 (15)N1—C8—H8B109.0
O1—Co1—N393.64 (19)C9—C8—H8B109.0
O2—Co1—N395.99 (18)H8A—C8—H8B107.8
N2—Co1—N391.09 (18)C10—C9—C8112.3 (4)
N1—Co1—N384.86 (18)C10—C9—H9A109.1
O1—Co1—S1i89.96 (15)C8—C9—H9A109.1
O2—Co1—S1i95.17 (15)C10—C9—H9B109.1
N1—Co1—S1i84.20 (16)C8—C9—H9B109.1
N2—Co1—S1i86.33 (16)H9A—C9—H9B107.9
S1i—Co1—N3168.54 (16)N2—C10—C9112.5 (4)
C2—O1—Co1127.0 (3)N2—C10—H10A109.1
C13—O2—Co1130.2 (3)C9—C10—H10A109.1
C7—N1—C8116.3 (4)N2—C10—H10B109.1
C7—N1—Co1121.3 (3)C9—C10—H10B109.1
C8—N1—Co1122.4 (3)H10A—C10—H10B107.8
C11—N2—C10115.8 (4)N2—C11—C12127.3 (5)
C11—N2—Co1123.4 (4)N2—C11—H11116.3
C10—N2—Co1120.8 (3)C12—C11—H11116.3
C18—N3—Co1139.2 (4)C13—C12—C17119.1 (5)
C2—C1—C6119.7 (5)C13—C12—C11122.0 (5)
C2—C1—C7123.6 (5)C17—C12—C11118.6 (5)
C6—C1—C7116.6 (5)O2—C13—C14118.5 (5)
O1—C2—C1123.4 (4)O2—C13—C12122.6 (5)
O1—C2—C3118.0 (5)C14—C13—C12118.9 (5)
C1—C2—C3118.5 (5)C15—C14—C13120.3 (5)
C4—C3—C2118.9 (5)C15—C14—H14119.9
C4—C3—H3120.6C13—C14—H14119.9
C2—C3—H3120.6C16—C15—C14121.7 (6)
C5—C4—C3121.8 (5)C16—C15—H15119.1
C5—C4—H4119.1C14—C15—H15119.1
C3—C4—H4119.1C17—C16—C15118.6 (6)
C6—C5—C4119.0 (6)C17—C16—H16120.7
C6—C5—H5120.5C15—C16—H16120.7
C4—C5—H5120.5C16—C17—C12121.4 (6)
C5—C6—C1122.1 (6)C16—C17—H17119.3
C5—C6—H6119.0C12—C17—H17119.3
C1—C6—H6119.0N3—C18—S1179.3 (5)
N1—C7—C1126.5 (5)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C17H16N2)(N3)][Co(C17H16N2)(NCS)]
Mr381.28397.33
Crystal system, space groupOrthorhombic, Pna21Orthorhombic, Pna21
Temperature (K)298298
a, b, c (Å)11.930 (2), 11.931 (3), 11.225 (2)12.566 (7), 11.679 (7), 11.515 (7)
V3)1597.7 (6)1689.9 (17)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.101.16
Crystal size (mm)0.32 × 0.28 × 0.190.33 × 0.27 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.721, 0.8190.702, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
8835, 3234, 2932 9030, 3316, 2686
Rint0.0300.060
(sin θ/λ)max1)0.6280.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.130, 1.07 0.054, 0.129, 1.03
No. of reflections32343316
No. of parameters227227
No. of restraints11
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.420.52, 0.68
Absolute structureFlack (1983)Flack (1983)
Absolute structure parameter0.13 (2)0.10 (3)

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
Co1—O11.874 (2)Co1—N12.052 (3)
Co1—O21.899 (3)Co1—N5i2.314 (4)
Co1—N22.021 (3)Co1—N32.352 (4)
O1—Co1—O285.72 (12)N2—Co1—N5i90.22 (15)
O1—Co1—N2173.58 (11)N1—Co1—N5i81.23 (13)
O2—Co1—N288.28 (12)O1—Co1—N394.23 (14)
O1—Co1—N191.68 (12)O2—Co1—N392.97 (14)
O2—Co1—N1175.44 (14)N2—Co1—N388.35 (13)
N2—Co1—N194.46 (12)N1—Co1—N383.47 (12)
O1—Co1—N5i88.86 (15)N5i—Co1—N3164.47 (13)
O2—Co1—N5i102.44 (14)
Symmetry code: (i) x+1, y, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Co1—O11.886 (3)Co1—N12.058 (4)
Co1—O21.893 (3)Co1—N32.262 (5)
Co1—N22.047 (4)Co1—S1i2.781 (2)
O1—Co1—O285.41 (15)N2—Co1—N391.09 (18)
O1—Co1—N2173.16 (14)N1—Co1—N384.86 (18)
O2—Co1—N289.18 (16)O1—Co1—S1i89.96 (15)
O1—Co1—N191.00 (15)O2—Co1—S1i95.17 (15)
O2—Co1—N1176.36 (14)N1—Co1—S1i84.20 (16)
N2—Co1—N194.35 (15)N2—Co1—S1i86.33 (16)
O1—Co1—N393.64 (19)S1i—Co1—N3168.54 (16)
O2—Co1—N395.99 (18)
Symmetry code: (i) x+1, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds