Download citation
Download citation
link to html
Three cage-like polycyclic compounds, viz. exo-8-(trifluoro­meth­yl)­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecan-endo-8-ol, C12H13F3O, 5-(trifluoro­meth­yl)-4-oxahexa­cyclo­[5.4.1.02,6.03,10.05,9.08,11]­dodecan-3-ol, C12H11F3O2, and N-[exo-11-(trifluoro­meth­yl)-endo-11-(trimethyl­sil­yl­oxy)­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecan-8-yl­idene]aniline meth­anol solvate, C21H24F3NOSi·CH4O, were obtained from the corresponding oxo derivatives by nucleophilic trifluoro­methyl­ation with (tri­fluorometh­yl)trimethyl­silane in 1,2-dimethoxy­ethane solution in the presence of CsF. The crystal structures show that the addition of trifluoro­methanide occurs exclusively from the exo face of the polycyclic ketones. Further examination of the crystal structures, together with that of the starting penta­cyclo­[5.4.0.02,6.03,10.05,9]undecane-8,11-dione, C11H10O2, showed that increasing substitution at the 8- and/or 11-positions in the cage mol­ecules increases the non-bonded intra­molecular C...C distances at the mouth of the cage and changes the puckering of the five-membered rings involving the 8- and 11-positions from an envelope towards a distorted half-chair conformation. Inter­molecular co-operative O-H...O hydrogen bonds in the endo-8-ol compound link the mol­ecules into tetra­mers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105004701/sk1816sup1.cif
Contains datablocks II, III, V, VII, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004701/sk1816IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004701/sk1816IIIsup3.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004701/sk1816Vsup4.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004701/sk1816VIIsup5.hkl
Contains datablock VII

CCDC references: 269037; 269038; 269039; 269040

Comment top

Fluorinated organic compounds are of interest because of their modified physico-chemical and biological properties in comparison with their non-fluorinated analogues (Hiyama, 2000; Maienfisch & Hall, 2004). One of the most frequently used methods for the synthesis of fluorinated molecules is trifluoromethylation (Singh & Shreeve, 2000). For nucleophilic trifluoromethylation, (trifluoromethyl)trimethylsilane (CF3SiMe3; Ruppert's reagent) has become the reagent of choice (Prakash & Mandal, 2001). In our recent studies, ketones with the pentacyclo[5.4.0.02,6.03,10.05,9]undecane skeleton (so called 'cage' ketones; Marchand, 1995) were used as starting materials for the reaction with CF3SiMe3 (Romański & Mlostoń, 2005). The addition of trifluoromethanide was expected to occur from the exo face of the cage ketone, analogously to previously reported reactions with other nucleophiles [e.g. Grignard reagents (Marchand et al., 2001), trimethylsilyl cyanide (Bott, Marchand, Vidyanand & Sachleben, 1995) and amines (Bott, Marchand, Kumar et al., 1995)]. Treatment of the ketone pentacyclo[5.4.0.02,6.03,10.05,9]undecan-8-one, (I), with Ruppert's reagent in 1,2-dimethoxyethane (DME) in the presence of CsF led to a single product, which, after acidic hydrolysis, was identified as the trifluoromethylated alcohol, (II), with an exo-oriented trifluoromethyl group. Under the same conditions, the corresponding diketone, (III), was converted to the silylated acetal, (IV), regardless of the ratio of (III) and CF3SiMe3 (1:1 or 1:2).

After hydrolysis of compound (IV), the hemiacetal, (V), was obtained as a stable product. Obviously, the addition of trifluoromethanide to one of the carbonyl groups of (III) is followed immediately by ring closure, which results in the subsequent silylation of the second O atom. It is noteworthy that the non-cyclic hexane-2,5-dione reacts with one equivalent of CF3SiMe3 to give the corresponding 1:1 adduct without cyclization to the tetrahydrofuran-2-ol derivative (Singh et al., 2001), whereas the reaction with two equivalents of CF3SiMe3 leads to the formation of the bistrifluoromethylated diol.

In the case of the iminoketone, (VI), the addition of CF3SiMe3 occurred chemoselectively at the keto group, yielding product (VII), again with the CF3 group in the exo position. In contrast to the reaction with the parent dione, (III), no cyclization via attack of the O atom at the imine C atom was observed and the silylated adduct, (VII), was isolated as the only product. The chemoselectivity observed in this reaction can be explained by the fact that typical imines are much less electrophilic than the corresponding carbonyl compounds and do not undergo trifluoromethylation with CF3SiMe3 (Singh & Shreeve, 2000).

The crystal structures of compounds (II), (V) and (VII) were determined in order to confirm the stereochemical outcome of the reactions described above. For comparison, the structure of the parent dione, (III), was also determined. Compound (II) (Fig. 1) crystallizes in a non-centrosymmetric space group, although the presence of glide planes dictates that the compound in the crystal is racemic. The absolute structure has not been determined and the direction of the polar axis was chosen arbitrarily. The asymmetric unit in the structure of compound (VII) contains one molecule of the cage compound plus one disordered methanol molecule. The alternate positions for the methanol molecule are approximately equally occupied, and each arrangement affords an intermolecular O—H···N hydrogen bond with the imine N atom of the same neighbouring cage molecule.

Compound (III) crystallizes with three molecules in the asymmetric unit (molecule A is defined by atoms O1, O2 and C1–C11, molecule B by atoms O21, O22 and C21–C31, and molecule C by atoms O41, O42 and C41–C51) and all have the same molecular conformation (Fig. 2). The weighted r.m.s. fit of the atomic coordinates of the three molecules is 0.030, 0.032 and 0.011 Å for the fit between molecules A and B, A and C, and B and C, respectively. The atomic coordinates of the three molecules were tested carefully for a relationship from a higher-symmetry space group by using the program PLATON (Spek, 2003), but none could be found. Although the compound is racemic because of its internal mirror symmetry, it crystallizes in a polar space group. The absolute structure, and hence the space group P31 instead of P32, was chosen arbitrarily. The validation routine of PLATON also revealed that the crystal is merohedrally twinned by a twofold rotation about the [100] axis. The twin fraction for the major twin component refined to a value of 0.780 (2). Refinement of the model without allowing for twinning led to a significantly higher R[F2 > 2σ(F2)] value of 0.067.

Data for the structures of 137 molecules having the pentacyclo[5.4.0.02,6.03,10.05,9]undecane skeleton and a large variety of substituents at various sites are recorded in the Cambridge Structural Database (November 2004 release; Allen, 2002). Of these, 52 are substituted only at the 8- and/or 11-positions, and in 30 of these structures, there is no bridging route through the substituents that links the 8-position to the 11-position, so that these positions form the open mouth of the cage. The cage geometry of representative examples of these compounds has been discussed by Flippen-Anderson et al. (1991), and the cage geometry of compounds (II), (III), (V) and (VII) is generally consistent with those observations. In particular, the cage C9—C10 bond, which lies across from the cyclobutane ring, and is parallel to and immediately adjacent to the C8···C11 axis, is long at around 1.59 Å [excluding compound (V); Table 1]. The long C9—C10 bond is probably a consequence of the stretching strain introduced by the open mouth of the cage formed by the adjacent atoms C8 and C11. When atoms C8 and C11 are held closer together by the oxo-bridge in compound (V), the C9—C10 bond is at its shortest. Interestingly, the C1— C7 bond, which is also immediately adjacent to the C8···C11 axis, is elongated only in compound (III). Flippen-Anderson et al. also remarked that the C—C bonds linking the substituted C atoms to the cyclubutane ring are often unusually short. In the present structures, the corresponding bonds, C7—C8 and C1—C11, are similarly short when the substituent bond involves a π system, as in the dione, (III), and for the imine-substituted C atom of (VII). In most other cases, shortening of these bonds is not observed, although the C7—C8 bond in (II), which involves the substituted C atom, is slightly shorter than the C1—C11 bond, which involves the unsubstituted C atom. The C3—C4—C5 bond angle involving the capping C atom has an average value of 95.3 (5)° across the four structures and is consistent with the observations of Flippen-Anderson et al.

The C8···C11 non-bonded intramolecular distances at the mouth of the cage reflect the congestion caused by various degrees of substitution at these atoms. In compound (V), the oxo-bridge between atoms C8 and C11 holds these atoms together at a distance of 2.172 (2) Å (Fig. 3). In the dione, (III), the environment about atoms C8 and C11 is sp2-planar, so that the steric restraints introduced by the ketone O atoms are small, and the C8···C11 distance ranges from 2.562 (4) to 2.574 (5) Å across the three symmetry-independent molecules. Compound (II) is disubstituted at atom C8 but not substituted at atom C11, and the C8···C11 distance is considerably larger at 2.749 (7) Å. In compound (VII), the C8···C11 distance is only 2.682 (2) Å, even though atom C11 is now also substituted and the trimethylsilyloxy substituent at atom C8 occupies the endo-position (Fig. 4). The shorter distance results from the reduced steric crowding afforded by the sp2-planar character of atom C11 in (VII), compared with the more bulky situation in compound (II), where atom C11 forms part of a tetrahedral methylene group.

The degree and type of substitution at atoms C8 and C11 also affects the puckering of the five-membered rings that form the sides of the cage and in which these atoms reside (Table 2). For five-membered rings, the puckering parameter ϕ2 ideally has a value of n × 36° for an envelope conformation and (n × 36) + 18° for a half-chair conformation (n is an integer?). In compound (V), which displays the shortest C8···C11 distance and has the constraint of the oxo-bridge, the rings defined by the atom sequences C5—C6—C7—C8—C9 and C1—C2—C3—C10—C11 have almost ideal envelope conformations, puckered on atoms C9 and C10, respectively. In (III), the corresponding rings in molecule A also have similar envelope conformations, but the increase in the C8···C11 distance caused by the opening out of the mouth of the cage has moved atoms C8 and C11 out of the planes of atoms C5, C6 and C7 and atoms C1, C2 and C3, respectively, so that the envelope conformations have become distorted towards half-chair conformations twisted on C8—C9 and C10—C11, respectively. The other two symmetry-independent molecules have almost identical conformations. In (II), the five-membered ring containing the substituted C atom, C8, has an almost ideal half-chair conformation twisted on C8—C9, while the ring containing the unsubstituted C atom can best be described by a half-chair conformation twisted on C10—C11, but distorted somewhat towards an envelope conformation puckered on atom C10. The corresponding five-membered rings in compound (VII) are best described as being distorted half-chairs twisted on C8—C9 and C10—C11, with the puckering distorted to a point almost half way between that of a half-chair and an envelope puckered on atoms C9 and C10, respectively.

A significant feature of the structure of (II) is the O—H···O hydrogen bonding (Table 3). The hydroxy O atom is within hydrogen-bonding distance of the hydroxy O atoms of two neighbouring molecules. Although no obvious positions for the hydroxy H atom could be detected in the peaks lists obtained from any difference Fourier maps, a contoured map showed a hint of residual electron density on opposing sides of the O atom and in positions that would be consistent with O—H···O hydrogen bonds to both neighbouring molecules. Including either one of these positions for the hydroxy H atom in the model generates unreasonably short intermolecular O—H···H—O distances, because the symmetry relationships between adjacent molecules always result in the hydroxy H atoms in these adjacent molecules pointing at one another. Introducing equally occupied disordered sites for the hydroxy H atom, with the O—H vectors pointing in opposite directions and at both neighbouring hydroxy O atoms, alleviates the close contact issue, because neither H-atom site in the H···H contact would need to be occupied simultaneously. The propagation of the interactions leads to a loop of cooperative O—H···O hydrogen bonds, which link four molecules into a tetrameric unit (Fig. 5). The disorder of the H-atom positions represents two alternate directions of the O—H···O pattern around the loop. The hydrogen-bonding pattern can be described by the graph-set motif (Bernstein et al., 1995) of R44(8).

The hydroxy group in (V) forms an intermolecular hydrogen bond with the oxo O atom of a neighbouring molecule and thereby links pairs of molecules across a centre of inversion into dimers, which can be described by the hydrogen-bonding motif R22(8).

Experimental top

The starting ketones, (I) and (III), were prepared according to published procedures (Cookson et al., 1964; Romański et al., 2005). Crystals of (III) suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature (m.p. 413–415 K). Compound (VI) was prepared by heating (III) with aniline in boiling benzene, analogously to a literature protocol (Sasaki et al., 1974), and was used for further reaction without purification. The reactions of ketones (I) and (III), as well as aminoketone (VI), with (trifluoromethyl)trimethylsilane were performed in absolute 1,2-dimethoxyethane (DME) under an argon atmosphere in the presence of catalytic amounts (ca 10 mol%) of caesium fluoride, which had been dried by preheating at 423 K for several hours (Romański & Mlostoń, 2005). After evaporation of the solvent, the residues obtained from ketones (I) and (III) were hydrolyzed by stirring with 4 N HCl to give (II) and (V), respectively. Suitable crystals of these compounds were obtained by slow evaporation of their hexane/dichloromethane and methanol solutions, respectively, at room temperature [m.p. 399–400 and 389–390 K for (II) and (V), respectively]. In the case where (VI) was the starting ketone, the product (VII), obtained after evaporation of DME, was also crystallized by slow evaporation of a methanol solution at room temperature (m.p. 414–415 K).

Refinement top

The merohedral twinning in the structure of (III) was treated by employing the twin matrix [1 1 0 / 0 − 1 0 / 0 0 − 1]. The asymmetric unit in the structure of compound (VII) contains one molecule of the cage compound plus one disordered methanol molecule. Two sets of overlapping positions were defined for the atoms of the methanol molecule, and refinement of the site occupation factors led to a value of 0.53 (1) for the major orientation. Similarity restraints were applied to the C—O bond lengths and the atomic displacement parameters of the C and O atoms of each orientation of the methanol molecule.

The hydroxy H atom in compound (V) was located in a difference Fourier map and its position and isotropic displacement parameter were refined. In order to obviate unreasonably short intermolecular O—H···H—O distances in compound (II), the hydroxy H atom must be disordered over two equally occupied sites with the O—H vectors pointing in opposite directions. Both positions for the disordered hydroxy H atom in (II) were initially defined to correspond with the direction that would bring each H atom closest to its nearest hydrogen-bond acceptor. The positions were then constrained to an ideal geometry [O—H = 0.84 Å, with Uiso(H) = 1.5Ueq(O)] and subsequently were allowed to rotate freely about the parent O—C bond. The hydroxy H atoms in the disordered methanol molecule of (VII) were treated in the same way. All methyl H atoms in the structure of (VII) were constrained to an ideal geometry [C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C)] but were allowed to rotate freely about the parent Si—C or O—C bonds. All other H atoms in the structures were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C).

Compounds (II) and (III) crystallize in non-centrosymmetric space groups. Owing to the absence of any significant anomalous scatterers in these compounds, attempts to confirm the absolute structure by refinement of the Flack (1983) parameter in the presence of 1052 [(for (II)] and 2460 [for (III)] sets of Friedel equivalents led to inconclusive values (Flack & Bernardinelli, 2000) for this parameter [0.3 (14) and 0.4 (9), respectively]. Therefore, the Friedel pairs were merged before the final refinement for (II) and (III), and the absolute structure was assigned arbitrarily. For compounds (II), (III), (V) and (VII), four, one, two and eight low-angle reflections, respectively, were omitted from the final cycles of refinement because their observed intensities were much lower than the calculated values as a result of being partially obscured by the beam stop.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary size and only one of the disordered hydroxy H atoms is shown.
[Figure 2] Fig. 2. View of one of the three symmetry-independent molecules (molecule A) of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 3] Fig. 3. View of the molecule of (V), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 4] Fig. 4. View of the molecule of (VII), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size and the disordered methanol molecule has been omitted for clarity.
[Figure 5] Fig. 5. The hydrogen-bonded tetramer in the structure of (II). All H atoms have been omitted for clarity.
(II) exo-8-(trifluoromethyl)pentacyclo[5.4.0.02,6.03,10.05,9]undecan- endo-8-ol top
Crystal data top
C12H13F3ODx = 1.515 Mg m3
Mr = 230.23Melting point: 399 K
Tetragonal, I4c2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I -4 -2cCell parameters from 1354 reflections
a = 14.1311 (3) Åθ = 2.0–27.5°
c = 20.2206 (6) ŵ = 0.13 mm1
V = 4037.81 (17) Å3T = 160 K
Z = 16Block, colourless
F(000) = 19200.30 × 0.23 × 0.20 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1036 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.062
Horizontally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 2.0°
Detector resolution: 9 pixels mm-1h = 1816
ϕ and ω scans with κ offsetsk = 1816
23516 measured reflectionsl = 2625
1262 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0974P)2 + 4.4956P]
where P = (Fo2 + 2Fc2)/3
1258 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H13F3OZ = 16
Mr = 230.23Mo Kα radiation
Tetragonal, I4c2µ = 0.13 mm1
a = 14.1311 (3) ÅT = 160 K
c = 20.2206 (6) Å0.30 × 0.23 × 0.20 mm
V = 4037.81 (17) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
1036 reflections with I > 2σ(I)
23516 measured reflectionsRint = 0.062
1262 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
1258 reflectionsΔρmin = 0.22 e Å3
146 parameters
Special details top

Experimental. Solvent used: hexane / dichloromethane Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.433 (2) Frames collected: 162 Seconds exposure per frame: 14 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 30.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.5884 (3)0.2492 (2)0.10813 (19)0.0783 (11)
F20.5033 (2)0.1522 (2)0.16398 (15)0.0728 (9)
F30.63411 (19)0.2029 (2)0.20297 (14)0.0637 (9)
O10.5751 (2)0.0591 (2)0.06563 (14)0.0508 (8)
H1A0.52480.04290.08460.076*0.50
H1B0.59390.07460.02770.076*0.50
C10.7176 (4)0.0725 (3)0.1315 (3)0.0624 (14)
H10.69520.13550.14760.075*
C20.8137 (4)0.0390 (3)0.1603 (3)0.0575 (13)
H20.84840.08340.19030.069*
C30.8679 (3)0.0030 (5)0.1027 (2)0.0606 (13)
H30.91980.03780.08500.073*
C40.8990 (3)0.0989 (4)0.1269 (3)0.0567 (12)
H410.92640.13860.09130.068*
H420.94300.09530.16490.068*
C50.8001 (3)0.1302 (3)0.1468 (2)0.0442 (10)
H50.79640.19490.16660.053*
C60.7666 (3)0.0503 (3)0.1920 (2)0.0422 (10)
H60.77250.05930.24090.051*
C70.6689 (3)0.0141 (3)0.16370 (19)0.0428 (9)
H70.61950.00090.19750.051*
C80.6417 (3)0.0890 (3)0.11330 (17)0.0319 (8)
C90.7381 (3)0.1151 (3)0.08444 (19)0.0388 (9)
H90.73620.17130.05440.047*
C100.7871 (3)0.0254 (4)0.0525 (2)0.0568 (14)
H100.81150.03800.00690.068*
C110.7300 (4)0.0642 (4)0.0566 (3)0.0660 (16)
H1110.76500.11890.03820.079*
H1120.66840.05790.03370.079*
C120.5932 (3)0.1719 (3)0.1472 (2)0.0443 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.086 (2)0.0557 (17)0.093 (2)0.0283 (16)0.006 (2)0.0158 (17)
F20.0392 (14)0.097 (2)0.0825 (19)0.0057 (16)0.0170 (15)0.0316 (17)
F30.0522 (16)0.0742 (19)0.0648 (16)0.0068 (13)0.0047 (13)0.0382 (15)
O10.0428 (17)0.068 (2)0.0413 (14)0.0014 (14)0.0144 (13)0.0143 (15)
C10.062 (3)0.035 (2)0.090 (4)0.003 (2)0.020 (3)0.003 (2)
C20.056 (3)0.042 (2)0.074 (3)0.0053 (19)0.018 (3)0.003 (2)
C30.033 (2)0.076 (3)0.073 (3)0.011 (2)0.004 (2)0.029 (3)
C40.039 (2)0.067 (3)0.064 (3)0.002 (2)0.001 (2)0.004 (3)
C50.036 (2)0.039 (2)0.058 (3)0.0048 (16)0.0084 (19)0.0054 (18)
C60.038 (2)0.054 (3)0.0350 (19)0.0012 (17)0.0086 (17)0.0002 (18)
C70.049 (2)0.038 (2)0.0409 (19)0.0070 (17)0.0116 (19)0.0045 (17)
C80.0298 (17)0.0392 (19)0.0268 (16)0.0067 (14)0.0068 (14)0.0034 (15)
C90.035 (2)0.043 (2)0.0382 (19)0.0039 (16)0.0033 (16)0.0029 (17)
C100.041 (2)0.077 (4)0.053 (2)0.008 (2)0.002 (2)0.027 (2)
C110.058 (3)0.059 (3)0.082 (4)0.015 (2)0.016 (3)0.040 (3)
C120.040 (2)0.046 (2)0.047 (2)0.0020 (17)0.0024 (18)0.006 (2)
Geometric parameters (Å, º) top
F1—C121.350 (5)C4—H410.9900
F2—C121.343 (5)C4—H420.9900
F3—C121.341 (5)C5—C61.527 (6)
O1—C81.412 (4)C5—C91.551 (6)
O1—H1A0.8400C5—H51.0000
O1—H1B0.8400C6—C71.580 (5)
C1—C71.548 (7)C6—H61.0000
C1—C111.530 (9)C7—C81.518 (5)
C1—C21.551 (7)C7—H71.0000
C1—H11.0000C8—C121.520 (5)
C2—C31.514 (8)C8—C91.527 (5)
C2—C61.565 (6)C9—C101.582 (6)
C2—H21.0000C9—H91.0000
C3—C41.507 (8)C10—C111.504 (8)
C3—C101.560 (7)C10—H101.0000
C3—H31.0000C11—H1110.9900
C4—C51.519 (6)C11—H1120.9900
C8—O1—H1A109.5C7—C6—H6118.1
C8—O1—H1B109.5C8—C7—C1112.4 (4)
C11—C1—C7114.0 (4)C8—C7—C6103.8 (3)
C11—C1—C2104.4 (5)C1—C7—C691.1 (3)
C7—C1—C289.5 (4)C8—C7—H7115.5
C11—C1—H1115.2C1—C7—H7115.5
C7—C1—H1115.2C6—C7—H7115.5
C2—C1—H1115.2O1—C8—C7114.7 (3)
C3—C2—C1105.9 (4)O1—C8—C12103.7 (3)
C3—C2—C6102.3 (4)C7—C8—C12110.4 (3)
C1—C2—C691.5 (4)O1—C8—C9114.0 (3)
C3—C2—H2117.7C7—C8—C9101.5 (3)
C1—C2—H2117.7C12—C8—C9112.9 (3)
C6—C2—H2117.7C8—C9—C5103.1 (3)
C4—C3—C2104.5 (4)C8—C9—C10110.7 (3)
C4—C3—C10104.0 (5)C5—C9—C10101.2 (3)
C2—C3—C10102.2 (4)C8—C9—H9113.6
C4—C3—H3114.9C5—C9—H9113.6
C2—C3—H3114.9C10—C9—H9113.6
C10—C3—H3114.9C11—C10—C3100.7 (5)
C3—C4—C594.6 (4)C11—C10—C9114.7 (4)
C3—C4—H41112.8C3—C10—C9102.5 (3)
C5—C4—H41112.8C11—C10—H10112.6
C3—C4—H42112.8C3—C10—H10112.6
C5—C4—H42112.8C9—C10—H10112.6
H41—C4—H42110.3C10—C11—C1100.4 (4)
C4—C5—C6103.2 (4)C10—C11—H111111.7
C4—C5—C9105.3 (4)C1—C11—H111111.7
C6—C5—C9102.1 (3)C10—C11—H112111.7
C4—C5—H5114.9C1—C11—H112111.7
C6—C5—H5114.9H111—C11—H112109.5
C9—C5—H5114.9F3—C12—F2105.2 (3)
C5—C6—C2102.7 (3)F3—C12—F1104.4 (4)
C5—C6—C7107.1 (3)F2—C12—F1105.5 (4)
C2—C6—C787.8 (3)F3—C12—C8115.9 (4)
C5—C6—H6118.1F2—C12—C8112.4 (3)
C2—C6—H6118.1F1—C12—C8112.5 (3)
C11—C1—C2—C310.2 (5)C6—C7—C8—C936.3 (4)
C7—C1—C2—C3104.5 (4)O1—C8—C9—C5171.9 (3)
C11—C1—C2—C6113.5 (4)C7—C8—C9—C548.0 (4)
C7—C1—C2—C61.2 (4)C12—C8—C9—C570.1 (4)
C1—C2—C3—C4128.7 (4)O1—C8—C9—C1064.4 (4)
C6—C2—C3—C433.5 (4)C7—C8—C9—C1059.5 (4)
C1—C2—C3—C1020.6 (5)C12—C8—C9—C10177.6 (3)
C6—C2—C3—C1074.6 (4)C4—C5—C9—C8147.4 (3)
C2—C3—C4—C553.5 (4)C6—C5—C9—C839.8 (4)
C10—C3—C4—C553.3 (4)C4—C5—C9—C1032.8 (5)
C3—C4—C5—C653.3 (4)C6—C5—C9—C1074.7 (4)
C3—C4—C5—C953.4 (4)C4—C3—C10—C11153.3 (4)
C4—C5—C6—C234.3 (4)C2—C3—C10—C1144.7 (5)
C9—C5—C6—C274.8 (4)C4—C3—C10—C934.8 (5)
C4—C5—C6—C7125.9 (4)C2—C3—C10—C973.8 (5)
C9—C5—C6—C716.8 (4)C8—C9—C10—C110.4 (6)
C3—C2—C6—C50.8 (4)C5—C9—C10—C11109.2 (5)
C1—C2—C6—C5105.8 (4)C8—C9—C10—C3107.7 (4)
C3—C2—C6—C7107.8 (4)C5—C9—C10—C31.1 (5)
C1—C2—C6—C71.2 (4)C3—C10—C11—C150.9 (4)
C11—C1—C7—C81.1 (6)C9—C10—C11—C158.4 (5)
C2—C1—C7—C8106.6 (4)C7—C1—C11—C1057.9 (5)
C11—C1—C7—C6104.3 (5)C2—C1—C11—C1038.1 (4)
C2—C1—C7—C61.2 (4)O1—C8—C12—F3168.3 (3)
C5—C6—C7—C812.0 (4)C7—C8—C12—F344.9 (4)
C2—C6—C7—C8114.6 (4)C9—C8—C12—F367.9 (4)
C5—C6—C7—C1101.4 (4)O1—C8—C12—F247.2 (4)
C2—C6—C7—C11.2 (4)C7—C8—C12—F276.2 (4)
C1—C7—C8—O162.6 (5)C9—C8—C12—F2171.1 (3)
C6—C7—C8—O1159.7 (3)O1—C8—C12—F171.7 (4)
C1—C7—C8—C12179.4 (4)C7—C8—C12—F1164.9 (3)
C6—C7—C8—C1283.6 (4)C9—C8—C12—F152.1 (5)
C1—C7—C8—C960.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1i0.842.052.701 (6)133
O1—H1B···O1ii0.841.952.673 (6)144
Symmetry codes: (i) x+1, y, z; (ii) y+1/2, x1/2, z.
(III) pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione top
Crystal data top
C11H10O2Dx = 1.427 Mg m3
Mr = 174.20Melting point: 414 K
Trigonal, P31Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 31Cell parameters from 3543 reflections
a = 18.0861 (4) Åθ = 2.0–30.0°
c = 6.4388 (1) ŵ = 0.10 mm1
V = 1824.00 (6) Å3T = 160 K
Z = 9Block, colourless
F(000) = 8280.35 × 0.30 × 0.20 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3128 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.054
Horizontally mounted graphite crystal monochromatorθmax = 30.0°, θmin = 2.6°
Detector resolution: 9 pixels mm-1h = 2525
ϕ and ω scans with κ offsetsk = 2525
28695 measured reflectionsl = 89
3543 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.1521P]
where P = (Fo2 + 2Fc2)/3
3542 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C11H10O2Z = 9
Mr = 174.20Mo Kα radiation
Trigonal, P31µ = 0.10 mm1
a = 18.0861 (4) ÅT = 160 K
c = 6.4388 (1) Å0.35 × 0.30 × 0.20 mm
V = 1824.00 (6) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
3128 reflections with I > 2σ(I)
28695 measured reflectionsRint = 0.054
3543 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
3542 reflectionsΔρmin = 0.21 e Å3
353 parameters
Special details top

Experimental. Solvent used: ethyl acetate Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.438 (1) Frames collected: 209 Seconds exposure per frame: 14 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 30.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77113 (17)0.71933 (15)0.1055 (4)0.0425 (6)
O20.92397 (14)0.72917 (14)0.5467 (4)0.0373 (5)
C10.89022 (18)0.62783 (17)0.2635 (4)0.0237 (5)
H10.95120.65010.22410.028*
C20.83414 (18)0.52974 (17)0.2976 (4)0.0255 (6)
H20.86250.49470.28140.031*
C30.78075 (18)0.51589 (19)0.4978 (4)0.0288 (6)
H30.80060.49830.62360.035*
C40.69002 (19)0.4534 (2)0.4273 (5)0.0342 (7)
H410.64670.44550.53250.041*
H420.68260.39740.38560.041*
C50.69094 (19)0.5066 (2)0.2421 (5)0.0315 (7)
H50.63730.48100.15800.038*
C60.77256 (18)0.52392 (18)0.1220 (4)0.0266 (6)
H60.76490.48570.00190.032*
C70.8271 (2)0.62167 (19)0.0846 (4)0.0273 (6)
H70.85230.64040.05720.033*
C80.77205 (19)0.6563 (2)0.1637 (5)0.0281 (6)
C90.71889 (18)0.5954 (2)0.3353 (4)0.0269 (6)
H90.67040.60290.38330.032*
C100.78204 (18)0.60212 (19)0.5160 (4)0.0261 (6)
H100.76570.61280.65650.031*
C110.87358 (18)0.66511 (18)0.4552 (4)0.0234 (5)
O210.46342 (15)1.06201 (15)0.1120 (4)0.0371 (5)
O220.60382 (15)1.05719 (15)0.5569 (4)0.0370 (5)
C210.57026 (18)0.95649 (18)0.2704 (4)0.0243 (5)
H210.63120.97580.23610.029*
C220.50915 (17)0.85917 (18)0.2924 (4)0.0253 (6)
H220.53420.82130.27380.030*
C230.45281 (19)0.84396 (19)0.4873 (4)0.0285 (6)
H230.46810.82110.61150.034*
C240.36244 (19)0.78793 (19)0.4057 (5)0.0324 (7)
H2410.31830.78050.50780.039*
H2420.35190.73160.35660.039*
C250.37094 (18)0.84745 (19)0.2275 (5)0.0287 (6)
H250.31920.82710.13800.034*
C260.45236 (18)0.86103 (18)0.1140 (4)0.0259 (6)
H260.44410.82430.00980.031*
C270.51229 (19)0.95882 (18)0.0873 (4)0.0255 (6)
H270.54010.97910.05130.031*
C280.46089 (17)0.99713 (19)0.1682 (4)0.0239 (5)
C290.40282 (18)0.93527 (19)0.3324 (4)0.0261 (6)
H290.35610.94570.37910.031*
C300.46075 (18)0.93279 (19)0.5169 (4)0.0253 (6)
H300.44350.94190.65790.030*
C310.55392 (18)0.99339 (18)0.4644 (4)0.0239 (6)
O410.27325 (14)0.39197 (14)0.4981 (4)0.0377 (6)
O420.12602 (15)0.39195 (14)0.0593 (3)0.0358 (5)
C410.05919 (18)0.29318 (18)0.3491 (4)0.0233 (5)
H4110.01940.31460.38500.028*
C420.01970 (17)0.19496 (17)0.3295 (4)0.0236 (5)
H4210.04330.15890.35160.028*
C430.05755 (19)0.17740 (19)0.1305 (4)0.0266 (6)
H430.01820.15520.00830.032*
C440.0903 (2)0.11933 (19)0.2110 (5)0.0319 (6)
H4410.04370.06370.26170.038*
H4420.12530.11020.10710.038*
C450.14349 (19)0.17801 (18)0.3865 (5)0.0271 (6)
H450.17460.15660.47370.033*
C460.07882 (18)0.19550 (18)0.5050 (4)0.0249 (6)
H460.05070.15980.63040.030*
C470.11962 (18)0.29416 (18)0.5285 (4)0.0235 (5)
H470.11440.31600.66720.028*
C480.20857 (18)0.32850 (18)0.4431 (4)0.0245 (6)
C490.20045 (18)0.26551 (18)0.2791 (4)0.0239 (5)
H490.25640.27390.22850.029*
C500.13975 (18)0.26486 (18)0.0986 (4)0.0246 (6)
H500.16490.27290.04360.030*
C510.11133 (18)0.32791 (18)0.1529 (4)0.0243 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0497 (15)0.0364 (13)0.0499 (14)0.0279 (11)0.0061 (11)0.0081 (11)
O20.0326 (12)0.0335 (12)0.0460 (12)0.0167 (10)0.0126 (10)0.0171 (10)
C10.0254 (13)0.0236 (13)0.0248 (13)0.0142 (12)0.0011 (10)0.0016 (10)
C20.0232 (13)0.0197 (12)0.0337 (15)0.0110 (11)0.0016 (11)0.0011 (11)
C30.0262 (14)0.0291 (15)0.0294 (14)0.0125 (12)0.0055 (11)0.0088 (11)
C40.0272 (15)0.0284 (15)0.0413 (17)0.0096 (13)0.0067 (13)0.0072 (12)
C50.0224 (13)0.0347 (16)0.0365 (16)0.0135 (12)0.0037 (12)0.0021 (13)
C60.0265 (14)0.0256 (13)0.0260 (13)0.0119 (11)0.0023 (10)0.0058 (10)
C70.0296 (14)0.0313 (15)0.0223 (12)0.0162 (12)0.0028 (11)0.0002 (11)
C80.0260 (14)0.0325 (15)0.0277 (14)0.0161 (13)0.0083 (11)0.0016 (12)
C90.0206 (13)0.0354 (16)0.0280 (14)0.0163 (12)0.0023 (11)0.0005 (12)
C100.0259 (14)0.0350 (15)0.0184 (12)0.0161 (12)0.0010 (10)0.0021 (11)
C110.0260 (14)0.0251 (14)0.0227 (12)0.0154 (12)0.0030 (10)0.0036 (10)
O210.0397 (13)0.0343 (12)0.0442 (13)0.0238 (11)0.0012 (10)0.0087 (10)
O220.0352 (12)0.0336 (12)0.0356 (12)0.0124 (10)0.0142 (9)0.0092 (9)
C210.0210 (12)0.0255 (14)0.0270 (13)0.0121 (11)0.0006 (10)0.0007 (11)
C220.0230 (13)0.0235 (13)0.0313 (14)0.0131 (11)0.0000 (11)0.0013 (11)
C230.0291 (15)0.0285 (15)0.0278 (14)0.0144 (12)0.0030 (11)0.0058 (11)
C240.0274 (15)0.0271 (15)0.0371 (16)0.0093 (12)0.0070 (12)0.0043 (12)
C250.0205 (13)0.0291 (15)0.0328 (15)0.0096 (12)0.0002 (11)0.0008 (12)
C260.0241 (13)0.0246 (14)0.0257 (14)0.0096 (11)0.0005 (11)0.0051 (11)
C270.0261 (14)0.0274 (14)0.0236 (13)0.0138 (12)0.0006 (10)0.0020 (11)
C280.0213 (13)0.0269 (14)0.0233 (13)0.0118 (11)0.0054 (11)0.0008 (11)
C290.0236 (14)0.0302 (15)0.0276 (14)0.0158 (12)0.0000 (11)0.0019 (11)
C300.0240 (14)0.0312 (15)0.0195 (13)0.0128 (12)0.0012 (10)0.0001 (11)
C310.0239 (14)0.0268 (14)0.0234 (13)0.0145 (12)0.0041 (10)0.0003 (11)
O410.0262 (11)0.0334 (12)0.0477 (14)0.0105 (10)0.0089 (10)0.0069 (10)
O420.0377 (12)0.0323 (12)0.0386 (13)0.0184 (10)0.0006 (10)0.0118 (10)
C410.0232 (13)0.0264 (13)0.0240 (13)0.0152 (12)0.0005 (10)0.0005 (11)
C420.0213 (13)0.0229 (13)0.0273 (13)0.0117 (11)0.0001 (11)0.0001 (11)
C430.0241 (14)0.0291 (14)0.0261 (14)0.0129 (12)0.0020 (11)0.0055 (11)
C440.0310 (16)0.0242 (14)0.0423 (17)0.0150 (13)0.0040 (13)0.0060 (13)
C450.0300 (14)0.0267 (14)0.0306 (14)0.0187 (12)0.0007 (12)0.0038 (12)
C460.0257 (14)0.0242 (13)0.0247 (14)0.0125 (11)0.0042 (11)0.0035 (11)
C470.0269 (14)0.0261 (14)0.0203 (12)0.0154 (12)0.0003 (10)0.0021 (10)
C480.0234 (13)0.0252 (13)0.0257 (13)0.0129 (11)0.0040 (10)0.0015 (11)
C490.0226 (13)0.0283 (14)0.0248 (13)0.0158 (11)0.0002 (10)0.0009 (11)
C500.0248 (13)0.0288 (14)0.0200 (13)0.0132 (12)0.0011 (10)0.0001 (11)
C510.0226 (13)0.0263 (14)0.0239 (13)0.0121 (11)0.0044 (10)0.0018 (11)
Geometric parameters (Å, º) top
O1—C81.207 (4)C24—H2420.9900
O2—C111.210 (3)C25—C291.548 (4)
C1—C21.557 (4)C25—C261.549 (4)
C1—C71.585 (4)C25—H251.0000
C1—C111.508 (4)C26—C271.554 (4)
C1—H11.0000C26—H261.0000
C2—C61.553 (4)C27—C281.503 (4)
C2—C31.554 (4)C27—H271.0000
C2—H21.0000C28—C291.516 (4)
C3—C41.523 (4)C29—C301.599 (4)
C3—C101.553 (4)C29—H291.0000
C3—H31.0000C30—C311.519 (4)
C4—C51.527 (4)C30—H301.0000
C4—H410.9900O41—C481.212 (3)
C4—H420.9900O42—C511.212 (3)
C5—C91.544 (4)C41—C421.553 (4)
C5—C61.553 (4)C41—C471.584 (4)
C5—H51.0000C41—C511.512 (4)
C6—C71.553 (4)C41—H4111.0000
C6—H61.0000C42—C461.552 (4)
C7—C81.507 (4)C42—C431.558 (4)
C7—H71.0000C42—H4211.0000
C8—C91.517 (4)C43—C441.531 (4)
C9—C101.592 (4)C43—C501.550 (4)
C9—H91.0000C43—H431.0000
C10—C111.519 (4)C44—C451.519 (4)
C10—H101.0000C44—H4410.9900
O21—C281.207 (4)C44—H4420.9900
O22—C311.208 (4)C45—C491.554 (4)
C21—C221.547 (4)C45—C461.555 (4)
C21—C271.592 (4)C45—H451.0000
C21—C311.513 (4)C46—C471.560 (4)
C21—H211.0000C46—H461.0000
C22—C231.552 (4)C47—C481.509 (4)
C22—C261.553 (4)C47—H471.0000
C22—H221.0000C48—C491.506 (4)
C23—C241.523 (4)C49—C501.595 (4)
C23—C301.552 (4)C49—H491.0000
C23—H231.0000C50—C511.508 (4)
C24—C251.528 (4)C50—H501.0000
C24—H2410.9900
C11—C1—C2103.4 (2)C25—C26—C22103.6 (2)
C11—C1—C7109.2 (2)C25—C26—C27107.4 (2)
C2—C1—C789.2 (2)C22—C26—C2790.8 (2)
C11—C1—H1117.0C25—C26—H26117.1
C2—C1—H1117.0C22—C26—H26117.1
C7—C1—H1117.0C27—C26—H26117.1
C6—C2—C3103.1 (2)C28—C27—C26104.2 (2)
C6—C2—C190.6 (2)C28—C27—C21108.8 (2)
C3—C2—C1107.4 (2)C26—C27—C2189.0 (2)
C6—C2—H2117.3C28—C27—H27117.0
C3—C2—H2117.3C26—C27—H27117.0
C1—C2—H2117.3C21—C27—H27117.0
C4—C3—C10103.7 (2)O21—C28—C27127.8 (3)
C4—C3—C2103.0 (2)O21—C28—C29127.0 (3)
C10—C3—C2101.8 (2)C27—C28—C29105.2 (2)
C4—C3—H3115.5C28—C29—C25102.6 (2)
C10—C3—H3115.5C28—C29—C30108.5 (2)
C2—C3—H3115.5C25—C29—C30102.0 (2)
C3—C4—C595.6 (2)C28—C29—H29114.2
C3—C4—H41112.6C25—C29—H29114.2
C5—C4—H41112.6C30—C29—H29114.2
C3—C4—H42112.6C31—C30—C23102.4 (2)
C5—C4—H42112.6C31—C30—C29108.7 (2)
H41—C4—H42110.1C23—C30—C29102.4 (2)
C4—C5—C9104.2 (2)C31—C30—H30114.0
C4—C5—C6103.1 (2)C23—C30—H30114.0
C9—C5—C6101.5 (2)C29—C30—H30114.0
C4—C5—H5115.4O22—C31—C21127.7 (3)
C9—C5—H5115.4O22—C31—C30127.5 (3)
C6—C5—H5115.4C21—C31—C30104.8 (2)
C5—C6—C7107.8 (2)C51—C41—C42104.0 (2)
C5—C6—C2103.2 (2)C51—C41—C47108.7 (2)
C7—C6—C290.6 (2)C42—C41—C4789.6 (2)
C5—C6—H6117.2C51—C41—H411116.9
C7—C6—H6117.2C42—C41—H411116.9
C2—C6—H6117.2C47—C41—H411116.9
C8—C7—C6104.2 (2)C46—C42—C4190.7 (2)
C8—C7—C1109.1 (2)C46—C42—C43103.2 (2)
C6—C7—C189.6 (2)C41—C42—C43107.6 (2)
C8—C7—H7116.8C46—C42—H421117.2
C6—C7—H7116.8C41—C42—H421117.2
C1—C7—H7116.8C43—C42—H421117.2
O1—C8—C7127.7 (3)C44—C43—C50104.0 (2)
O1—C8—C9127.5 (3)C44—C43—C42102.8 (2)
C7—C8—C9104.8 (2)C50—C43—C42101.3 (2)
C8—C9—C5103.4 (2)C44—C43—H43115.6
C8—C9—C10107.9 (2)C50—C43—H43115.6
C5—C9—C10102.3 (2)C42—C43—H43115.6
C8—C9—H9114.0C43—C44—C4595.7 (2)
C5—C9—H9114.0C45—C44—H441112.6
C10—C9—H9114.0C43—C44—H441112.6
C11—C10—C3101.4 (2)C45—C44—H442112.6
C11—C10—C9109.9 (2)C43—C44—H442112.6
C3—C10—C9102.6 (2)H441—C44—H442110.1
C11—C10—H10113.9C44—C45—C49104.2 (2)
C3—C10—H10113.9C44—C45—C46103.2 (2)
C9—C10—H10113.9C49—C45—C46101.2 (2)
O2—C11—C1127.1 (3)C44—C45—H45115.4
O2—C11—C10127.6 (3)C49—C45—H45115.4
C1—C11—C10105.2 (2)C46—C45—H45115.4
C31—C21—C22103.9 (2)C42—C46—C45103.2 (2)
C31—C21—C27108.8 (2)C42—C46—C4790.5 (2)
C22—C21—C2789.6 (2)C45—C46—C47107.8 (2)
C31—C21—H21116.9C42—C46—H46117.2
C22—C21—H21116.9C45—C46—H46117.2
C27—C21—H21116.9C47—C46—H46117.2
C21—C22—C23107.9 (2)C48—C47—C46103.4 (2)
C21—C22—C2690.7 (2)C48—C47—C41109.1 (2)
C23—C22—C26102.7 (2)C46—C47—C4189.3 (2)
C21—C22—H22117.2C48—C47—H47117.0
C23—C22—H22117.2C46—C47—H47117.0
C26—C22—H22117.2C41—C47—H47117.0
C24—C23—C30104.1 (2)O41—C48—C49127.2 (3)
C24—C23—C22103.3 (2)O41—C48—C47127.5 (3)
C30—C23—C22101.7 (2)C49—C48—C47105.3 (2)
C24—C23—H23115.3C48—C49—C45102.8 (2)
C30—C23—H23115.3C48—C49—C50108.8 (2)
C22—C23—H23115.3C45—C49—C50102.3 (2)
C23—C24—C2595.4 (2)C48—C49—H49113.9
C23—C24—H241112.7C45—C49—H49113.9
C25—C24—H241112.7C50—C49—H49113.9
C23—C24—H242112.7C51—C50—C43103.0 (2)
C25—C24—H242112.7C51—C50—C49108.6 (2)
H241—C24—H242110.2C43—C50—C49102.5 (2)
C24—C25—C29104.5 (2)C51—C50—H50113.9
C24—C25—C26102.6 (2)C43—C50—H50113.9
C29—C25—C26101.9 (2)C49—C50—H50113.9
C24—C25—H25115.3O42—C51—C50127.8 (3)
C29—C25—H25115.3O42—C51—C41127.3 (3)
C26—C25—H25115.3C50—C51—C41104.9 (2)
C11—C1—C2—C6109.7 (2)C26—C27—C28—O21148.7 (3)
C7—C1—C2—C60.1 (2)C21—C27—C28—O21117.4 (3)
C11—C1—C2—C35.8 (3)C26—C27—C28—C2929.7 (3)
C7—C1—C2—C3103.8 (2)C21—C27—C28—C2964.2 (3)
C6—C2—C3—C433.9 (3)O21—C28—C29—C25134.8 (3)
C1—C2—C3—C4128.7 (2)C27—C28—C29—C2543.6 (3)
C6—C2—C3—C1073.4 (3)O21—C28—C29—C30117.7 (3)
C1—C2—C3—C1021.5 (3)C27—C28—C29—C3063.9 (3)
C10—C3—C4—C552.7 (3)C24—C25—C29—C28145.4 (2)
C2—C3—C4—C553.1 (3)C26—C25—C29—C2838.9 (3)
C3—C4—C5—C952.9 (3)C24—C25—C29—C3033.1 (3)
C3—C4—C5—C652.8 (3)C26—C25—C29—C3073.5 (2)
C4—C5—C6—C7127.9 (3)C24—C23—C30—C31146.0 (2)
C9—C5—C6—C720.1 (3)C22—C23—C30—C3138.9 (3)
C4—C5—C6—C232.9 (3)C24—C23—C30—C2933.4 (3)
C9—C5—C6—C274.8 (3)C22—C23—C30—C2973.7 (2)
C3—C2—C6—C50.5 (3)C28—C29—C30—C310.1 (3)
C1—C2—C6—C5108.6 (2)C25—C29—C30—C31108.0 (3)
C3—C2—C6—C7107.9 (2)C28—C29—C30—C23107.7 (2)
C1—C2—C6—C70.1 (2)C25—C29—C30—C230.1 (3)
C5—C6—C7—C85.5 (3)C22—C21—C31—O22149.5 (3)
C2—C6—C7—C8109.5 (2)C27—C21—C31—O22116.1 (3)
C5—C6—C7—C1104.1 (2)C22—C21—C31—C3030.8 (3)
C2—C6—C7—C10.1 (2)C27—C21—C31—C3063.6 (3)
C11—C1—C7—C80.9 (3)C23—C30—C31—O22136.0 (3)
C2—C1—C7—C8104.8 (3)C29—C30—C31—O22116.2 (3)
C11—C1—C7—C6104.0 (2)C23—C30—C31—C2144.3 (3)
C2—C1—C7—C60.1 (2)C29—C30—C31—C2163.6 (3)
C6—C7—C8—O1151.1 (3)C51—C41—C42—C46109.1 (2)
C1—C7—C8—O1114.3 (3)C47—C41—C42—C460.08 (19)
C6—C7—C8—C929.8 (3)C51—C41—C42—C435.0 (3)
C1—C7—C8—C964.8 (3)C47—C41—C42—C43104.2 (2)
O1—C8—C9—C5137.4 (3)C46—C42—C43—C4433.3 (3)
C7—C8—C9—C543.5 (3)C41—C42—C43—C44128.3 (2)
O1—C8—C9—C10114.7 (3)C46—C42—C43—C5074.1 (2)
C7—C8—C9—C1064.4 (3)C41—C42—C43—C5020.9 (3)
C4—C5—C9—C8145.1 (2)C50—C43—C44—C4552.5 (3)
C6—C5—C9—C838.2 (3)C42—C43—C44—C4552.8 (3)
C4—C5—C9—C1033.0 (3)C43—C44—C45—C4952.5 (3)
C6—C5—C9—C1073.8 (3)C43—C44—C45—C4652.9 (3)
C4—C3—C10—C11147.0 (2)C41—C42—C46—C45108.4 (2)
C2—C3—C10—C1140.3 (2)C43—C42—C46—C450.1 (3)
C4—C3—C10—C933.4 (3)C41—C42—C46—C470.1 (2)
C2—C3—C10—C973.3 (2)C43—C42—C46—C47108.3 (2)
C8—C9—C10—C111.2 (3)C44—C45—C46—C4233.4 (3)
C5—C9—C10—C11107.4 (3)C49—C45—C46—C4274.3 (3)
C8—C9—C10—C3108.4 (3)C44—C45—C46—C47128.2 (2)
C5—C9—C10—C30.2 (3)C49—C45—C46—C4720.5 (3)
C2—C1—C11—O2144.6 (3)C42—C46—C47—C48109.5 (2)
C7—C1—C11—O2121.5 (3)C45—C46—C47—C485.5 (3)
C2—C1—C11—C1031.9 (3)C42—C46—C47—C410.07 (19)
C7—C1—C11—C1062.0 (3)C45—C46—C47—C41103.9 (2)
C3—C10—C11—O2130.5 (3)C51—C41—C47—C480.6 (3)
C9—C10—C11—O2121.5 (3)C42—C41—C47—C48104.1 (2)
C3—C10—C11—C146.0 (3)C51—C41—C47—C46104.6 (2)
C9—C10—C11—C162.0 (3)C42—C41—C47—C460.07 (19)
C31—C21—C22—C235.8 (3)C46—C47—C48—O41147.5 (3)
C27—C21—C22—C23103.5 (2)C41—C47—C48—O41118.6 (3)
C31—C21—C22—C26109.3 (2)C46—C47—C48—C4930.8 (3)
C27—C21—C22—C260.0 (2)C41—C47—C48—C4963.2 (3)
C21—C22—C23—C24128.2 (2)O41—C48—C49—C45133.5 (3)
C26—C22—C23—C2433.4 (3)C47—C48—C49—C4544.8 (3)
C21—C22—C23—C3020.5 (3)O41—C48—C49—C50118.5 (3)
C26—C22—C23—C3074.4 (2)C47—C48—C49—C5063.2 (3)
C30—C23—C24—C2552.7 (3)C44—C45—C49—C48146.0 (2)
C22—C23—C24—C2553.2 (3)C46—C45—C49—C4839.1 (3)
C23—C24—C25—C2952.8 (3)C44—C45—C49—C5033.1 (3)
C23—C24—C25—C2653.2 (3)C46—C45—C49—C5073.8 (2)
C24—C25—C26—C2233.9 (3)C44—C43—C50—C51145.7 (2)
C29—C25—C26—C2274.1 (3)C42—C43—C50—C5139.3 (3)
C24—C25—C26—C27129.1 (2)C44—C43—C50—C4932.9 (3)
C29—C25—C26—C2721.1 (3)C42—C43—C50—C4973.5 (2)
C21—C22—C26—C25108.1 (2)C48—C49—C50—C510.3 (3)
C23—C22—C26—C250.4 (3)C45—C49—C50—C51108.6 (3)
C21—C22—C26—C270.0 (2)C48—C49—C50—C43108.3 (2)
C23—C22—C26—C27108.6 (2)C45—C49—C50—C430.1 (3)
C25—C26—C27—C284.7 (3)C43—C50—C51—O42134.9 (3)
C22—C26—C27—C28109.2 (2)C49—C50—C51—O42116.9 (3)
C25—C26—C27—C21104.5 (2)C43—C50—C51—C4144.3 (3)
C22—C26—C27—C210.0 (2)C49—C50—C51—C4163.9 (3)
C31—C21—C27—C280.2 (3)C42—C41—C51—O42149.0 (3)
C22—C21—C27—C28104.7 (2)C47—C41—C51—O42116.6 (3)
C31—C21—C27—C26104.5 (2)C42—C41—C51—C5030.2 (3)
C22—C21—C27—C260.0 (2)C47—C41—C51—C5064.2 (3)
(V) 5-(trifluoromethyl)-4- oxahexacyclo[5.4.1.02,6.03,10.05,9.08,11]dodecan-3-ol top
Crystal data top
C12H11F3O2F(000) = 504
Mr = 244.21Dx = 1.642 Mg m3
Monoclinic, P21/cMelting point: 389 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.4499 (3) ÅCell parameters from 2379 reflections
b = 12.0228 (5) Åθ = 2.0–27.5°
c = 11.6047 (3) ŵ = 0.15 mm1
β = 108.082 (2)°T = 160 K
V = 988.08 (6) Å3Block, colourless
Z = 40.25 × 0.22 × 0.12 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1725 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.051
Horizontally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 2.5°
Detector resolution: 9 pixels mm-1h = 99
ϕ and ω scans with κ offsetsk = 1515
20424 measured reflectionsl = 1515
2271 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom & difmap
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.3171P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2269 reflectionsΔρmax = 0.30 e Å3
159 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (4)
Crystal data top
C12H11F3O2V = 988.08 (6) Å3
Mr = 244.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4499 (3) ŵ = 0.15 mm1
b = 12.0228 (5) ÅT = 160 K
c = 11.6047 (3) Å0.25 × 0.22 × 0.12 mm
β = 108.082 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1725 reflections with I > 2σ(I)
20424 measured reflectionsRint = 0.051
2271 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
2269 reflectionsΔρmin = 0.23 e Å3
159 parameters
Special details top

Experimental. Solvent used: MeOH Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.561 (2) Frames collected: 289 Seconds exposure per frame: 20 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 30.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.82609 (16)0.12252 (9)0.62247 (11)0.0465 (4)
F21.07758 (14)0.02507 (9)0.69292 (10)0.0375 (3)
F30.84692 (17)0.03763 (10)0.54448 (10)0.0454 (4)
O10.85151 (16)0.02203 (10)0.84613 (10)0.0273 (3)
O20.76337 (19)0.01404 (12)1.02054 (12)0.0361 (4)
H20.881 (4)0.025 (2)1.069 (3)0.069 (8)*
C10.8328 (2)0.16799 (15)0.89491 (15)0.0292 (4)
H10.93700.19700.96540.035*
C20.6620 (2)0.24580 (15)0.83654 (16)0.0331 (4)
H210.66650.32200.87190.040*
C30.4787 (2)0.17864 (16)0.81762 (16)0.0322 (4)
H30.40780.19480.87610.039*
C40.3707 (2)0.20080 (16)0.68370 (17)0.0345 (4)
H410.25730.15340.65290.041*
H420.33650.28010.66710.041*
C50.5327 (2)0.16474 (15)0.63651 (16)0.0298 (4)
H50.50550.16880.54660.036*
C60.6992 (2)0.23636 (14)0.71173 (16)0.0310 (4)
H60.72510.30690.67410.037*
C70.8693 (2)0.15917 (14)0.77014 (15)0.0274 (4)
H70.99590.18220.76570.033*
C80.8043 (2)0.03833 (13)0.73445 (14)0.0238 (4)
C90.5872 (2)0.04910 (14)0.69322 (15)0.0253 (4)
H90.51910.01380.64160.030*
C100.5506 (2)0.05874 (14)0.81889 (15)0.0275 (4)
H100.46320.00100.83300.033*
C110.7505 (2)0.05343 (15)0.90730 (15)0.0277 (4)
C120.8887 (2)0.01859 (15)0.64949 (16)0.0295 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0482 (7)0.0399 (7)0.0499 (7)0.0017 (5)0.0130 (6)0.0184 (5)
F20.0284 (6)0.0504 (7)0.0345 (6)0.0101 (5)0.0110 (5)0.0001 (5)
F30.0505 (7)0.0654 (8)0.0241 (6)0.0227 (6)0.0173 (5)0.0099 (5)
O10.0270 (6)0.0317 (7)0.0231 (6)0.0021 (5)0.0074 (5)0.0040 (5)
O20.0299 (7)0.0572 (9)0.0222 (7)0.0007 (6)0.0094 (6)0.0071 (6)
C10.0258 (9)0.0352 (9)0.0258 (8)0.0032 (7)0.0067 (7)0.0077 (7)
C20.0336 (10)0.0285 (10)0.0370 (10)0.0009 (7)0.0107 (8)0.0087 (8)
C30.0263 (9)0.0398 (10)0.0313 (9)0.0031 (8)0.0100 (7)0.0030 (8)
C40.0291 (9)0.0369 (10)0.0365 (10)0.0044 (8)0.0087 (8)0.0006 (8)
C50.0292 (9)0.0325 (9)0.0260 (9)0.0023 (7)0.0060 (7)0.0030 (7)
C60.0333 (10)0.0257 (9)0.0355 (10)0.0014 (7)0.0127 (8)0.0021 (7)
C70.0250 (8)0.0300 (9)0.0281 (9)0.0042 (7)0.0095 (7)0.0021 (7)
C80.0250 (9)0.0289 (9)0.0178 (8)0.0007 (7)0.0070 (7)0.0008 (6)
C90.0248 (9)0.0285 (9)0.0219 (8)0.0029 (7)0.0062 (7)0.0023 (7)
C100.0236 (9)0.0342 (9)0.0251 (8)0.0030 (7)0.0080 (7)0.0009 (7)
C110.0259 (9)0.0369 (10)0.0211 (8)0.0015 (7)0.0084 (7)0.0007 (7)
C120.0287 (9)0.0341 (10)0.0237 (9)0.0056 (7)0.0053 (7)0.0015 (7)
Geometric parameters (Å, º) top
F1—C121.337 (2)C4—C51.535 (2)
F2—C121.341 (2)C4—H410.9900
F3—C121.343 (2)C4—H420.9900
O1—C81.4308 (19)C5—C91.538 (2)
O1—C111.492 (2)C5—C61.539 (2)
O2—C111.372 (2)C5—H51.0000
O2—H20.89 (3)C6—C71.547 (2)
C1—C21.555 (2)C6—H61.0000
C1—C71.557 (2)C7—C81.547 (2)
C1—C111.532 (3)C7—H71.0000
C1—H11.0000C8—C121.490 (2)
C2—C31.542 (3)C8—C91.543 (2)
C2—C61.561 (3)C9—C101.569 (2)
C2—H211.0000C9—H91.0000
C3—C41.535 (3)C10—C111.525 (2)
C3—C101.536 (3)C10—H101.0000
C3—H31.0000
C8—O1—C1195.97 (11)C2—C6—H6117.2
C11—O2—H2108.4 (18)C8—C7—C6107.49 (13)
C11—C1—C2106.52 (13)C8—C7—C1100.51 (13)
C11—C1—C7102.50 (13)C6—C7—C190.64 (13)
C2—C1—C789.50 (13)C8—C7—H7117.9
C11—C1—H1118.0C6—C7—H7117.9
C2—C1—H1118.0C1—C7—H7117.9
C7—C1—H1118.0O1—C8—C12109.31 (13)
C3—C2—C1108.40 (15)O1—C8—C9105.24 (12)
C3—C2—C6103.55 (14)C12—C8—C9116.77 (14)
C1—C2—C690.19 (13)O1—C8—C7105.38 (12)
C3—C2—H21117.0C12—C8—C7116.56 (14)
C1—C2—H21117.0C9—C8—C7102.42 (13)
C6—C2—H21117.0C5—C9—C8108.69 (14)
C4—C3—C10104.13 (14)C5—C9—C10103.42 (13)
C4—C3—C2102.47 (15)C8—C9—C10100.71 (12)
C10—C3—C2101.50 (13)C5—C9—H9114.2
C4—C3—H3115.6C8—C9—H9114.2
C10—C3—H3115.6C10—C9—H9114.2
C2—C3—H3115.6C11—C10—C3108.08 (14)
C3—C4—C595.11 (13)C11—C10—C9101.96 (13)
C5—C4—H41112.7C3—C10—C9102.77 (13)
C3—C4—H41112.7C11—C10—H10114.2
C5—C4—H42112.7C3—C10—H10114.2
C3—C4—H42112.7C9—C10—H10114.2
H41—C4—H42110.2O2—C11—O1110.50 (14)
C4—C5—C9103.59 (14)O2—C11—C10114.98 (14)
C4—C5—C6102.95 (14)O1—C11—C10103.70 (13)
C9—C5—C6101.77 (13)O2—C11—C1119.28 (15)
C4—C5—H5115.5O1—C11—C1103.07 (12)
C9—C5—H5115.5C10—C11—C1103.58 (14)
C6—C5—H5115.5F1—C12—F2106.43 (14)
C5—C6—C7108.60 (14)F1—C12—F3106.97 (14)
C5—C6—C2102.87 (14)F2—C12—F3106.91 (14)
C7—C6—C289.67 (13)F1—C12—C8113.34 (15)
C5—C6—H6117.2F2—C12—C8112.77 (14)
C7—C6—H6117.2F3—C12—C8110.03 (14)
C11—C1—C2—C31.56 (17)C6—C5—C9—C1073.28 (15)
C7—C1—C2—C3104.46 (14)O1—C8—C9—C5141.98 (13)
C11—C1—C2—C6102.80 (14)C12—C8—C9—C596.60 (17)
C7—C1—C2—C60.10 (13)C7—C8—C9—C532.01 (16)
C1—C2—C3—C4128.60 (15)O1—C8—C9—C1033.72 (15)
C6—C2—C3—C433.80 (17)C12—C8—C9—C10155.14 (14)
C1—C2—C3—C1021.13 (17)C7—C8—C9—C1076.25 (14)
C6—C2—C3—C1073.67 (15)C4—C3—C10—C11140.18 (14)
C10—C3—C4—C552.06 (16)C2—C3—C10—C1134.01 (17)
C2—C3—C4—C553.38 (16)C4—C3—C10—C932.87 (16)
C3—C4—C5—C951.95 (16)C2—C3—C10—C973.30 (15)
C3—C4—C5—C653.77 (16)C5—C9—C10—C11111.61 (14)
C4—C5—C6—C7128.07 (15)C8—C9—C10—C110.75 (16)
C9—C5—C6—C720.96 (17)C5—C9—C10—C30.31 (16)
C4—C5—C6—C234.01 (17)C8—C9—C10—C3112.67 (14)
C9—C5—C6—C273.10 (15)C8—O1—C11—O2177.60 (13)
C3—C2—C6—C50.07 (17)C8—O1—C11—C1053.88 (14)
C1—C2—C6—C5108.92 (14)C8—O1—C11—C153.87 (14)
C3—C2—C6—C7109.09 (14)C3—C10—C11—O298.18 (17)
C1—C2—C6—C70.10 (13)C9—C10—C11—O2153.95 (15)
C5—C6—C7—C82.15 (18)C3—C10—C11—O1141.08 (13)
C2—C6—C7—C8101.34 (14)C9—C10—C11—O133.20 (15)
C5—C6—C7—C1103.38 (14)C3—C10—C11—C133.71 (17)
C2—C6—C7—C10.10 (13)C9—C10—C11—C174.16 (15)
C11—C1—C7—C81.21 (15)C2—C1—C11—O2110.32 (17)
C2—C1—C7—C8108.02 (13)C7—C1—C11—O2156.45 (15)
C11—C1—C7—C6106.72 (13)C2—C1—C11—O1126.83 (13)
C2—C1—C7—C60.10 (13)C7—C1—C11—O133.60 (15)
C11—O1—C8—C12179.97 (13)C2—C1—C11—C1019.00 (16)
C11—O1—C8—C953.86 (14)C7—C1—C11—C1074.23 (15)
C11—O1—C8—C753.97 (14)O1—C8—C12—F160.80 (19)
C6—C7—C8—O1127.46 (13)C9—C8—C12—F158.5 (2)
C1—C7—C8—O133.42 (15)C7—C8—C12—F1179.90 (13)
C6—C7—C8—C12111.14 (16)O1—C8—C12—F260.22 (18)
C1—C7—C8—C12154.82 (14)C9—C8—C12—F2179.48 (13)
C6—C7—C8—C917.60 (16)C7—C8—C12—F259.1 (2)
C1—C7—C8—C976.44 (14)O1—C8—C12—F3179.49 (12)
C4—C5—C9—C8139.73 (14)C9—C8—C12—F361.3 (2)
C6—C5—C9—C833.12 (17)C7—C8—C12—F360.2 (2)
C4—C5—C9—C1033.33 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.89 (3)1.93 (3)2.8070 (18)167 (3)
Symmetry code: (i) x+2, y, z+2.
(VII) N-phenyl-[exo-11-(trifluoromethyl)-endo-11- (trimethylsilyloxy)pentacyclo[5.4.0.02,6.03,10.05,9]undecan- 8-yliden]amine methanol solvate top
Crystal data top
C21H24F3NOSi·CH4OZ = 2
Mr = 423.54F(000) = 448
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Melting point: 414 K
a = 8.8352 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3775 (3) ÅCell parameters from 5859 reflections
c = 12.6843 (5) Åθ = 2.0–30.0°
α = 100.2675 (15)°µ = 0.16 mm1
β = 91.417 (2)°T = 160 K
γ = 94.652 (2)°Tablet, colourless
V = 1029.86 (6) Å30.22 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
4581 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.046
Horizontally mounted graphite crystal monochromatorθmax = 30.1°, θmin = 3.3°
Detector resolution: 9 pixels mm-1h = 1212
ϕ and ω scans with κ offsetsk = 1313
26283 measured reflectionsl = 1717
6025 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.054P)2 + 0.529P]
where P = (Fo2 + 2Fc2)/3
6017 reflections(Δ/σ)max = 0.001
288 parametersΔρmax = 0.63 e Å3
37 restraintsΔρmin = 0.31 e Å3
Crystal data top
C21H24F3NOSi·CH4Oγ = 94.652 (2)°
Mr = 423.54V = 1029.86 (6) Å3
Triclinic, P1Z = 2
a = 8.8352 (2) ÅMo Kα radiation
b = 9.3775 (3) ŵ = 0.16 mm1
c = 12.6843 (5) ÅT = 160 K
α = 100.2675 (15)°0.22 × 0.20 × 0.10 mm
β = 91.417 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4581 reflections with I > 2σ(I)
26283 measured reflectionsRint = 0.046
6025 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05237 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.04Δρmax = 0.63 e Å3
6017 reflectionsΔρmin = 0.31 e Å3
288 parameters
Special details top

Experimental. Solvent used: MeOH Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.648 (2) Frames collected: 385 Seconds exposure per frame: 30 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 33.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.43810 (5)0.57671 (5)0.71828 (3)0.02294 (12)
F10.46186 (12)0.25079 (12)0.54106 (8)0.0384 (3)
F20.35857 (11)0.23194 (12)0.68990 (9)0.0378 (3)
F30.52424 (13)0.08612 (11)0.62628 (10)0.0443 (3)
O10.58168 (12)0.47446 (11)0.68663 (9)0.0213 (2)
N10.86584 (15)0.66237 (15)0.81984 (11)0.0266 (3)
C10.90044 (18)0.41446 (18)0.70807 (14)0.0280 (3)
H10.97360.45370.65920.034*
C20.9579 (2)0.2965 (2)0.76997 (15)0.0334 (4)
H21.06470.27040.75950.040*
C30.9059 (2)0.3361 (2)0.88700 (15)0.0334 (4)
H30.98780.38160.94130.040*
C40.8269 (2)0.1929 (2)0.90645 (15)0.0362 (4)
H410.77210.20390.97420.043*
H420.89700.11520.90390.043*
C50.7198 (2)0.17055 (19)0.80748 (14)0.0305 (4)
H50.64830.08040.79660.037*
C60.82742 (19)0.18345 (18)0.71588 (14)0.0287 (4)
H60.85730.09090.67240.034*
C70.77079 (18)0.29957 (17)0.65348 (14)0.0257 (3)
H70.77190.27390.57350.031*
C80.61632 (17)0.33428 (16)0.69971 (13)0.0224 (3)
C90.64358 (18)0.31595 (18)0.81659 (13)0.0250 (3)
H90.54860.31650.85790.030*
C100.77445 (19)0.43266 (18)0.87252 (13)0.0271 (3)
H100.74460.49150.94140.033*
C110.84287 (17)0.52368 (18)0.79644 (13)0.0257 (3)
C120.49128 (19)0.22469 (18)0.63973 (14)0.0282 (3)
C130.3562 (2)0.5500 (2)0.84789 (15)0.0372 (4)
H1310.31570.44840.84230.056*
H1320.27430.61390.86450.056*
H1330.43570.57370.90510.056*
C140.29071 (19)0.5363 (2)0.60790 (15)0.0320 (4)
H1410.33870.53860.53930.048*
H1420.21670.60940.61920.048*
H1430.23880.43960.60680.048*
C150.5216 (2)0.76670 (18)0.72946 (14)0.0300 (4)
H1510.60750.78470.78190.045*
H1520.44440.83360.75300.045*
H1530.55710.78230.65950.045*
C160.93928 (18)0.74087 (18)0.74621 (13)0.0252 (3)
C171.05351 (19)0.84948 (19)0.78664 (15)0.0308 (4)
H171.08070.86890.86110.037*
C181.1277 (2)0.9295 (2)0.71799 (16)0.0347 (4)
H181.20701.00210.74560.042*
C191.0869 (2)0.90418 (19)0.60970 (16)0.0328 (4)
H191.13920.95790.56290.039*
C200.9693 (2)0.80004 (19)0.57011 (14)0.0300 (4)
H200.93910.78450.49630.036*
C210.89529 (18)0.71808 (18)0.63767 (13)0.0273 (3)
H210.81490.64670.61000.033*
O22A0.7893 (9)0.8216 (12)1.0294 (5)0.0721 (18)0.534 (15)
H22A0.81370.78010.96870.108*0.534 (15)
C22A0.6528 (19)0.8799 (19)1.0202 (15)0.046 (2)0.534 (15)
H2210.62980.93721.08950.069*0.534 (15)
H2220.57210.80120.99840.069*0.534 (15)
H2230.65910.94280.96620.069*0.534 (15)
O22B0.7341 (12)0.7649 (9)1.0246 (6)0.0570 (17)0.466 (15)
H22B0.70070.70040.97280.086*0.466 (15)
C22B0.650 (2)0.883 (2)1.0307 (18)0.047 (2)0.466 (15)
H2240.61180.90721.10290.071*0.466 (15)
H2250.56440.86010.97820.071*0.466 (15)
H2260.71450.96651.01510.071*0.466 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0223 (2)0.0230 (2)0.0239 (2)0.00251 (16)0.00323 (16)0.00476 (17)
F10.0444 (6)0.0391 (6)0.0284 (5)0.0066 (5)0.0064 (4)0.0028 (5)
F20.0270 (5)0.0413 (6)0.0425 (6)0.0099 (4)0.0038 (4)0.0061 (5)
F30.0499 (7)0.0217 (5)0.0578 (7)0.0008 (5)0.0116 (6)0.0017 (5)
O10.0212 (5)0.0191 (5)0.0245 (5)0.0013 (4)0.0026 (4)0.0064 (4)
N10.0238 (7)0.0294 (7)0.0260 (7)0.0026 (5)0.0014 (5)0.0063 (6)
C10.0215 (8)0.0281 (8)0.0357 (9)0.0016 (6)0.0048 (6)0.0089 (7)
C20.0253 (8)0.0347 (10)0.0411 (10)0.0049 (7)0.0019 (7)0.0082 (8)
C30.0355 (9)0.0301 (9)0.0344 (9)0.0013 (7)0.0088 (7)0.0077 (7)
C40.0441 (11)0.0332 (9)0.0334 (9)0.0083 (8)0.0021 (8)0.0104 (8)
C50.0339 (9)0.0259 (8)0.0339 (9)0.0040 (7)0.0025 (7)0.0105 (7)
C60.0287 (8)0.0222 (8)0.0356 (9)0.0059 (6)0.0012 (7)0.0044 (7)
C70.0259 (8)0.0225 (8)0.0293 (8)0.0038 (6)0.0051 (6)0.0047 (6)
C80.0231 (7)0.0187 (7)0.0258 (8)0.0009 (6)0.0022 (6)0.0058 (6)
C90.0245 (8)0.0257 (8)0.0261 (8)0.0008 (6)0.0025 (6)0.0095 (6)
C100.0296 (8)0.0260 (8)0.0258 (8)0.0008 (6)0.0001 (6)0.0065 (6)
C110.0206 (7)0.0294 (8)0.0275 (8)0.0019 (6)0.0020 (6)0.0083 (7)
C120.0279 (8)0.0237 (8)0.0330 (9)0.0000 (6)0.0005 (6)0.0062 (7)
C130.0432 (11)0.0378 (10)0.0323 (9)0.0083 (8)0.0145 (8)0.0070 (8)
C140.0235 (8)0.0336 (9)0.0390 (10)0.0030 (7)0.0019 (7)0.0072 (8)
C150.0317 (9)0.0248 (8)0.0337 (9)0.0043 (6)0.0003 (7)0.0054 (7)
C160.0215 (7)0.0251 (8)0.0294 (8)0.0008 (6)0.0012 (6)0.0061 (6)
C170.0285 (8)0.0270 (8)0.0371 (9)0.0024 (6)0.0056 (7)0.0090 (7)
C180.0255 (8)0.0276 (9)0.0521 (11)0.0026 (7)0.0028 (7)0.0131 (8)
C190.0301 (9)0.0274 (9)0.0450 (10)0.0059 (7)0.0099 (7)0.0148 (8)
C200.0323 (9)0.0287 (9)0.0300 (9)0.0060 (7)0.0062 (7)0.0057 (7)
C210.0245 (8)0.0274 (8)0.0294 (8)0.0001 (6)0.0019 (6)0.0042 (7)
O22A0.071 (3)0.089 (4)0.050 (2)0.028 (3)0.018 (2)0.013 (3)
C22A0.055 (3)0.044 (3)0.034 (4)0.002 (3)0.007 (3)0.006 (3)
O22B0.088 (4)0.052 (3)0.042 (2)0.030 (3)0.023 (2)0.022 (2)
C22B0.056 (4)0.046 (4)0.039 (4)0.002 (3)0.005 (3)0.009 (4)
Geometric parameters (Å, º) top
Si1—O11.6659 (11)C9—H91.0000
Si1—C151.8520 (18)C10—C111.505 (2)
Si1—C141.8547 (17)C10—H101.0000
Si1—C131.8614 (18)C13—H1310.9800
F1—C121.341 (2)C13—H1320.9800
F2—C121.349 (2)C13—H1330.9800
F3—C121.337 (2)C14—H1410.9800
O1—C81.4105 (18)C14—H1420.9800
N1—C111.280 (2)C14—H1430.9800
N1—C161.426 (2)C15—H1510.9800
C1—C71.564 (2)C15—H1520.9800
C1—C111.506 (2)C15—H1530.9800
C1—C21.575 (2)C16—C171.393 (2)
C1—H11.0000C16—C211.395 (2)
C2—C31.555 (3)C17—C181.390 (3)
C2—C61.558 (2)C17—H170.9500
C2—H21.0000C18—C191.385 (3)
C3—C41.525 (3)C18—H180.9500
C3—C101.556 (2)C19—C201.386 (3)
C3—H31.0000C19—H190.9500
C4—C51.526 (2)C20—C211.391 (2)
C4—H410.9900C20—H200.9500
C4—H420.9900C21—H210.9500
C5—C61.534 (2)O22A—C22A1.375 (8)
C5—C91.557 (2)O22A—H22A0.8400
C5—H51.0000C22A—H2210.9800
C6—C71.562 (2)C22A—H2220.9800
C6—H61.0000C22A—H2230.9800
C7—C81.535 (2)O22B—C22B1.376 (8)
C7—H71.0000O22B—H22B0.8400
C8—C121.533 (2)C22B—H2240.9800
C8—C91.538 (2)C22B—H2250.9800
C9—C101.586 (2)C22B—H2260.9800
O1—Si1—C15105.05 (7)C5—C9—H9113.1
O1—Si1—C14109.36 (7)C10—C9—H9113.1
C15—Si1—C14109.36 (8)C11—C10—C3100.91 (13)
O1—Si1—C13112.04 (7)C11—C10—C9112.47 (13)
C15—Si1—C13109.84 (9)C3—C10—C9102.08 (13)
C14—Si1—C13111.00 (9)C11—C10—H10113.4
C8—O1—Si1135.40 (10)C3—C10—H10113.4
C11—N1—C16119.88 (14)C9—C10—H10113.4
C11—C1—C7111.98 (13)N1—C11—C10122.96 (15)
C11—C1—C2102.80 (14)N1—C11—C1131.72 (15)
C7—C1—C288.74 (12)C10—C11—C1104.13 (14)
C11—C1—H1116.5F3—C12—F1105.79 (14)
C7—C1—H1116.5F3—C12—F2106.88 (14)
C2—C1—H1116.5F1—C12—F2105.89 (13)
C3—C2—C6102.58 (14)F3—C12—C8114.34 (14)
C3—C2—C1106.52 (14)F1—C12—C8111.49 (13)
C6—C2—C190.78 (13)F2—C12—C8111.89 (14)
C3—C2—H2117.6Si1—C13—H131109.5
C6—C2—H2117.6Si1—C13—H132109.5
C1—C2—H2117.6H131—C13—H132109.5
C4—C3—C2102.83 (15)Si1—C13—H133109.5
C4—C3—C10104.78 (14)H131—C13—H133109.5
C2—C3—C10101.41 (13)H132—C13—H133109.5
C4—C3—H3115.3Si1—C14—H141109.5
C2—C3—H3115.3Si1—C14—H142109.5
C10—C3—H3115.3H141—C14—H142109.5
C3—C4—C595.16 (14)Si1—C14—H143109.5
C3—C4—H41112.7H141—C14—H143109.5
C5—C4—H41112.7H142—C14—H143109.5
C3—C4—H42112.7Si1—C15—H151109.5
C5—C4—H42112.7Si1—C15—H152109.5
H41—C4—H42110.2H151—C15—H152109.5
C4—C5—C6103.48 (14)Si1—C15—H153109.5
C4—C5—C9104.40 (14)H151—C15—H153109.5
C6—C5—C9100.88 (13)H152—C15—H153109.5
C4—C5—H5115.4C17—C16—C21119.52 (15)
C6—C5—H5115.4C17—C16—N1117.89 (15)
C9—C5—H5115.4C21—C16—N1122.50 (14)
C5—C6—C2103.43 (14)C18—C17—C16119.94 (17)
C5—C6—C7108.08 (13)C18—C17—H17120.0
C2—C6—C789.46 (13)C16—C17—H17120.0
C5—C6—H6117.3C19—C18—C17120.52 (16)
C2—C6—H6117.3C19—C18—H18119.7
C7—C6—H6117.3C17—C18—H18119.7
C8—C7—C6104.98 (13)C18—C19—C20119.57 (16)
C8—C7—C1111.08 (13)C18—C19—H19120.2
C6—C7—C191.01 (12)C20—C19—H19120.2
C8—C7—H7115.6C19—C20—C21120.48 (17)
C6—C7—H7115.6C19—C20—H20119.8
C1—C7—H7115.6C21—C20—H20119.8
O1—C8—C12107.68 (12)C20—C21—C16119.88 (16)
O1—C8—C7110.91 (12)C20—C21—H21120.1
C12—C8—C7109.47 (13)C16—C21—H21120.1
O1—C8—C9114.97 (13)C22B—O22B—H22B109.5
C12—C8—C9112.95 (13)O22B—C22B—H224109.5
C7—C8—C9100.69 (12)O22B—C22B—H225109.5
C8—C9—C5104.37 (13)H224—C22B—H225109.5
C8—C9—C10109.71 (12)O22B—C22B—H226109.5
C5—C9—C10102.65 (13)H224—C22B—H226109.5
C8—C9—H9113.1H225—C22B—H226109.5
C15—Si1—O1—C8154.52 (14)C12—C8—C9—C10179.82 (13)
C14—Si1—O1—C888.20 (15)C7—C8—C9—C1063.19 (15)
C13—Si1—O1—C835.31 (16)C4—C5—C9—C8147.53 (13)
C11—C1—C2—C38.42 (17)C6—C5—C9—C840.41 (16)
C7—C1—C2—C3103.84 (14)C4—C5—C9—C1033.06 (16)
C11—C1—C2—C6111.79 (13)C6—C5—C9—C1074.07 (14)
C7—C1—C2—C60.48 (13)C4—C3—C10—C11149.14 (14)
C6—C2—C3—C434.39 (16)C2—C3—C10—C1142.42 (16)
C1—C2—C3—C4129.01 (14)C4—C3—C10—C933.07 (17)
C6—C2—C3—C1073.85 (15)C2—C3—C10—C973.64 (15)
C1—C2—C3—C1020.78 (17)C8—C9—C10—C113.23 (19)
C2—C3—C4—C553.36 (16)C5—C9—C10—C11107.29 (15)
C10—C3—C4—C552.30 (16)C8—C9—C10—C3110.56 (14)
C3—C4—C5—C653.10 (16)C5—C9—C10—C30.04 (16)
C3—C4—C5—C952.09 (16)C16—N1—C11—C10176.34 (14)
C4—C5—C6—C232.97 (16)C16—N1—C11—C110.9 (3)
C9—C5—C6—C274.88 (15)C3—C10—C11—N1118.96 (17)
C4—C5—C6—C7126.86 (14)C9—C10—C11—N1132.95 (16)
C9—C5—C6—C719.01 (17)C3—C10—C11—C149.91 (15)
C3—C2—C6—C50.87 (16)C9—C10—C11—C158.17 (16)
C1—C2—C6—C5107.99 (14)C7—C1—C11—N1134.60 (18)
C3—C2—C6—C7107.60 (14)C2—C1—C11—N1131.54 (18)
C1—C2—C6—C70.48 (13)C7—C1—C11—C1057.93 (16)
C5—C6—C7—C88.67 (17)C2—C1—C11—C1035.94 (15)
C2—C6—C7—C8112.63 (13)O1—C8—C12—F3166.96 (13)
C5—C6—C7—C1103.48 (14)C7—C8—C12—F346.29 (19)
C2—C6—C7—C10.48 (13)C9—C8—C12—F365.01 (18)
C11—C1—C7—C83.66 (19)O1—C8—C12—F147.02 (17)
C2—C1—C7—C8106.96 (14)C7—C8—C12—F173.65 (17)
C11—C1—C7—C6102.83 (15)C9—C8—C12—F1175.05 (13)
C2—C1—C7—C60.48 (13)O1—C8—C12—F271.36 (16)
Si1—O1—C8—C1260.79 (18)C7—C8—C12—F2167.97 (13)
Si1—O1—C8—C7179.46 (11)C9—C8—C12—F256.67 (18)
Si1—O1—C8—C966.07 (18)C11—N1—C16—C17134.67 (17)
C6—C7—C8—O1155.08 (13)C11—N1—C16—C2148.9 (2)
C1—C7—C8—O158.03 (17)C21—C16—C17—C183.1 (3)
C6—C7—C8—C1286.24 (15)N1—C16—C17—C18179.62 (15)
C1—C7—C8—C12176.71 (13)C16—C17—C18—C191.3 (3)
C6—C7—C8—C932.93 (15)C17—C18—C19—C201.2 (3)
C1—C7—C8—C964.12 (15)C18—C19—C20—C211.9 (3)
O1—C8—C9—C5165.45 (13)C19—C20—C21—C160.1 (3)
C12—C8—C9—C570.43 (16)C17—C16—C21—C202.4 (2)
C7—C8—C9—C546.20 (15)N1—C16—C21—C20178.73 (15)
O1—C8—C9—C1056.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22A—H22A···N10.842.092.931 (6)176
O22B—H22B···N10.842.452.910 (6)115

Experimental details

(II)(III)(V)(VII)
Crystal data
Chemical formulaC12H13F3OC11H10O2C12H11F3O2C21H24F3NOSi·CH4O
Mr230.23174.20244.21423.54
Crystal system, space groupTetragonal, I4c2Trigonal, P31Monoclinic, P21/cTriclinic, P1
Temperature (K)160160160160
a, b, c (Å)14.1311 (3), 14.1311 (3), 20.2206 (6)18.0861 (4), 18.0861 (4), 6.4388 (1)7.4499 (3), 12.0228 (5), 11.6047 (3)8.8352 (2), 9.3775 (3), 12.6843 (5)
α, β, γ (°)90, 90, 9090, 90, 12090, 108.082 (2), 90100.2675 (15), 91.417 (2), 94.652 (2)
V3)4037.81 (17)1824.00 (6)988.08 (6)1029.86 (6)
Z16942
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.130.100.150.16
Crystal size (mm)0.30 × 0.23 × 0.200.35 × 0.30 × 0.200.25 × 0.22 × 0.120.22 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23516, 1262, 1036 28695, 3543, 3128 20424, 2271, 1725 26283, 6025, 4581
Rint0.0620.0540.0510.046
(sin θ/λ)max1)0.6490.7040.6490.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.174, 1.05 0.043, 0.101, 1.05 0.048, 0.131, 1.04 0.052, 0.136, 1.04
No. of reflections1258354222696017
No. of parameters146353159288
No. of restraints01037
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.220.28, 0.210.30, 0.230.63, 0.31

Computer programs: COLLECT (Nonius, 2000), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1i0.842.052.701 (6)133
O1—H1B···O1ii0.841.952.673 (6)144
Symmetry codes: (i) x+1, y, z; (ii) y+1/2, x1/2, z.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.89 (3)1.93 (3)2.8070 (18)167 (3)
Symmetry code: (i) x+2, y, z+2.
Comparison of selected geometric parameters (Å, °) for compounds (II), (III), (V) and (VII). top
Compound(II)(III), mol. A(III), mol. B(III), mol. C(V)(VII)
C1—C21.551 (7)1.557 (4)1.547 (4)1.553 (4)1.555 (2)1.575 (2)
C1—C71.548 (7)1.585 (4)1.592 (4)1.584 (4)1.557 (2)1.564 (2)
C1—C111.530 (9)1.508 (4)1.513 (4)1.512 (4)1.532 (3)1.506 (2)
C2—C61.565 (6)1.553 (4)1.553 (4)1.552 (4)1.561 (3)1.558 (2)
C6—C71.580 (5)1.553 (4)1.554 (4)1.560 (4)1.547 (2)1.562 (2)
C7—C81.518 (5)1.507 (4)1.503 (4)1.509 (4)1.547 (2)1.535 (2)
C8—C91.527 (5)1.517 (4)1.516 (4)1.506 (4)1.543 (2)1.538 (2)
C9—C101.582 (6)1.592 (4)1.599 (4)1.595 (4)1.569 (2)1.586 (2)
C10—C111.504 (8)1.519 (4)1.519 (4)1.508 (4)1.525 (2)1.505 (2)
C2—C1—C789.5 (4)89.2 (2)89.6 (2)89.6 (2)89.50 (13)88.74 (12)
C1—C2—C691.5 (4)90.6 (2)90.7 (2)90.7 (2)90.19 (13)90.78 (13)
C3—C4—C594.6 (4)95.6 (2)95.4 (2)95.7 (2)95.11 (13)95.16 (14)
C2—C6—C787.8 (3)90.6 (2)90.8 (7)90.5 (2)98.67 (13)98.46 (13)
C1—C7—C691.1 (3)89.6 (2)89.0 (2)89.3 (2)90.64 (13)91.01 (12)
Selected Cremer &amp; Pople (1975) puckering parameters (Å, °) for compounds (II), (III), (V) and (VII). top
Ring(II)(III), mol. A(III), mol. B(III), mol. C(V)(VII)
q2(C5—C6—C7—C8—C9)0.463 (4)0.416 (4)0.421 (3)0.427 (3)0.3268 (18)0.4517 (18)
q2(C1—C2—C3—C10—C11)0.502 (6)0.445 (3)0.429 (3)0.426 (3)0.3374 (19)0.4768 (19)
ϕ2(C5—C6—C7—C8—C9)309.3 (5)316.9 (5)318.0 (5)316.8 (5)147.4 (3)313.2 (2)
ϕ2(C1—C2—C3—C10—C11)119.6 (7)115.0 (4)115.4 (4)114.4 (4)285.3 (3)117.8 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds