Download citation
Download citation
link to html
The title compound, [Cu{}_{2}^{\rm II}(C7H3O6S)2(C10H9N3)2][CuI(C10H9N3)2]2·2H2O, consists of anionic CuII moieties, cationic CuI species and uncoordinated water mol­ecules. The anionic dimeric unit consists of one crystallographically independent fully deprotonated 5-sulfosalicylate (2-oxido-5-sulfonatobenzoate) anion, a di-2-pyridylamine group and a CuII atom. Each CuII atom is five-coordinate within a square-pyramidal geometry. The anion lies on a special position of \overline{1} site symmetry. In the cationic monomer, the CuI atom adopts tetra­hedral geometry. The cations and anions are connected by O-H...O and N-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105004580/sk1813sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004580/sk1813Isup2.hkl
Contains datablock I

CCDC reference: 269011

Comment top

It is well known that CuII ions can be reduced to CuI by N-heterocyclic ligands under hydrothermal conditions, such as 4,4'-bipyridine or pyridine derivatives (Wen et al., 2004). Interesting reactions and novel structures can be achieved when CuII is reduced. Mixed-valence CuI,II complexes are of great importance in structural topology and functional materials (Zhang & Chen, 2003). In general, mixed-valence copper complexes exist as polynuclear species or ion pairs (Pawlowski et al., 2004). Although numerous complexes with CuII cationic and CuI anionic components have been prepared, complexes containing CuI cationic and CuII anionic motifs have been apparently ignored. In our recent report on metal 5-sulfosalicylates, a copper salt was reacted with 5-sulfosalicylic acid (H3ssal) and 2,2'-dipyridylamine (dpa), and [Cu3(dpa)3(ssal)2]·3H2O was obtained (Fan & Zhu, 2005). Without an abstracting reagent, a similar synthesis but addition of NaOH yielded the mixed-valence compound with CuI cationic components, [CuII2(ssal)2(dpa)2]·2[CuI(dpa)2]·2H2O, (I).

The molecular structure consists of [Cu2(dpa)2(ssal)2]2− anions, [Cu(dpa)2]+ cations and uncoordinated water molecules (Figs. 1 and 2, and Table 1). The anionic dimer [Cu2(dpa)2(ssal)2]2− consists of two centrosymmetrically related five-coordinate CuII centers, with a Cu···Cui distance of 3.225 (1) Å [symmetry code: (i) 1 − x, 1 − y, 2 − z]. The basal plane of the square-pyramidal geometry of the CuII center is occupied by two N atoms of a dpa ligand and two O atoms of the fully deprotonated ssal3− ligand, while the apical position is taken by the phenoxo O atom of a second centrosymmetrically imposed ssal3− ligand. A four-membered bridging unit, Cu2O2, is formed between the CuII atoms via phenoxo atoms O3 and O3i. Only one carboxylate O atom from the ssal3− ligand is directly bonded to the CuII atom, and the coordination mode of the carboxylate moiety is obviously anti monodentate. As expected, in the anion, the C11—O1 bond is significantly longer than the C11—O2 distance, indicating a more keto character in the latter. The dihedral angle between the planes of the ring (atoms C2–C7) and its carboxyl group is 11.0 (4)°. The structure of the anion is closely related to that of the ternary dimeric compound [CuII2(dpa)2(salal)2(ClO4)2] (Garland et al., 1987), in which the CuII atom is coordinated by a sixth O atom from a ClO4 anion and the Cu···Cu distance is longer than that in the title compound.

The cation consists of a CuI atom and two dpa ligands (Fig. 2). The CuI center adopts tetrahedral geometry. The CuI—N bond lengths are similar to those in the anion, and the conformations of the three dpa ligands in the asymmetric unit differ slightly. The dihedral angle between the two pyridyl rings of the dpa ligand in the anion is 19.2 (2)°, while the corresponding angles in the cation are 23.9 (3) and 15.3 (4)°. The N1···N3, N4···N6 and N7···N9 distances are 2.855 (5), 2.891 (6) and 2.955 (6) Å, respectively.

The anions and water molecules form one-dimensional hydrogen-bonded chain through N—H···O1W and O1W—H···O(SO3) interactions (Fig. 3 and Table 2). These chains are linked into a two-dimensional hydrogen-bonded network by the cations through N—H···O(–COO) and N—H···O(SO3) interactions (Fig. 4). Therefore, in the solid state, the stability of (I) is enhanced by hydrogen-bonding interactions.

Experimental top

A mixture of Cu(CH3COO)2·H2O (0.040 g, 0.20 mmol), 5-sulfosalicylic acid dihydrate (0.026 g, 0.10 mmol), 2,2'-dipyridylamine (0.035 g, 0.20 mmol), NaOH (0.019 g, 0.5 mmol) and water (10 ml) was heated at 413 K for 72 h in a 20 ml Teflon-lined stainless steel autoclave. After cooling, green block-shaped crystals of (I) were obtained by filtration.

Refinement top

The aromatic H atoms were generated geometrically, and were included in the refinements in the riding model approximation (C—H 0.93 Å, U 1.2UeqC). The water and amine H atoms were located from a difference Fourier map and were refined with distance restraints of O—H 0.85 (1) and N—H 0.82 (1) and with fixed isotropic displacement parameters of Uiso(H)=0.08 and 0.05 Å2, respectively. The crystals were dried and stored in air. Data collection was directly done using such a crystal without a protective oil at room temperature. PLATON analysis (Spek, 2003) suggests that the structure contains a solvent accessible void which is capable to accommodate an additional water molecule in the region around (1/2, 0, 0), while under present treated procedure, the additional water molecule is not located. Although the crystal was measured to a 2θ limit of 56.7 °, only the intensities below 50.1 ° were used in the refinement; the use of all reflections gave a much lower data completeness (90.5%). In present refinement, there are 55 reflections missing from the dataset.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 view of the anionic dimer. Displacement ellipsoids are drawn at the 50% probability level, and H atoms have been omitted for clarity. [Symmetry code: (i) 1 − x, 1 − y, 2 − z.]
[Figure 2] Fig. 2. An ORTEP-3 view of the cationic monomer. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. A view of the one-dimensional hydrogen-bonding chain constructed from anions and water molecules. Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.
[Figure 4] Fig. 4. A view of the two-dimensional hydrogen-bonding network of (I), parrallel to (010). Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.
bis[µ-5-sulfosalicylato(3-)]bis[(di-2-pyridylamine)copper(II)] bis[bis(di-2-pyridylamine)copper(I)] dihydrate top
Crystal data top
[Cu2(C7H3O6S)2(C10H9N3)2][Cu(C10H9N3)2]2·2H2OZ = 1
Mr = 1747.71F(000) = 894
Triclinic, P1Dx = 1.549 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.258 (2) ÅCell parameters from 4694 reflections
b = 14.422 (4) Åθ = 2.5–26.2°
c = 18.312 (5) ŵ = 1.25 mm1
α = 82.428 (4)°T = 295 K
β = 80.697 (4)°Block, green
γ = 86.409 (4)°0.28 × 0.19 × 0.14 mm
V = 1873.5 (9) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
6582 independent reflections
Radiation source: fine-focus sealed tube6078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.759, Tmax = 0.844k = 1716
13648 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0469P)2 + 3.6691P]
where P = (Fo2 + 2Fc2)/3
6582 reflections(Δ/σ)max < 0.001
514 parametersΔρmax = 0.65 e Å3
5 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu2(C7H3O6S)2(C10H9N3)2][Cu(C10H9N3)2]2·2H2Oγ = 86.409 (4)°
Mr = 1747.71V = 1873.5 (9) Å3
Triclinic, P1Z = 1
a = 7.258 (2) ÅMo Kα radiation
b = 14.422 (4) ŵ = 1.25 mm1
c = 18.312 (5) ÅT = 295 K
α = 82.428 (4)°0.28 × 0.19 × 0.14 mm
β = 80.697 (4)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
6582 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
6078 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.844Rint = 0.026
13648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0695 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.23Δρmax = 0.65 e Å3
6582 reflectionsΔρmin = 0.41 e Å3
514 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.68516 (8)0.45186 (4)0.95670 (3)0.02985 (17)
Cu20.18868 (10)0.75470 (5)0.41661 (4)0.0536 (2)
S10.71032 (18)0.92243 (8)0.76677 (6)0.0375 (3)
O10.6209 (5)0.4850 (2)0.85829 (16)0.0366 (8)
O20.5829 (5)0.5723 (2)0.75380 (18)0.0427 (8)
O30.6158 (4)0.5776 (2)0.97907 (16)0.0329 (7)
O40.8609 (6)0.9702 (3)0.7852 (2)0.0618 (11)
O50.7470 (7)0.8950 (3)0.6930 (2)0.0634 (12)
O60.5349 (6)0.9744 (3)0.7804 (3)0.0740 (14)
O70.1860 (6)0.9049 (3)0.8444 (3)0.0935 (17)
N10.8028 (5)0.4254 (3)1.0503 (2)0.0313 (8)
N20.7951 (6)0.2611 (3)1.0568 (2)0.0411 (10)
N30.7608 (6)0.3196 (3)0.9333 (2)0.0365 (9)
N40.0029 (6)0.8607 (3)0.4300 (2)0.0418 (10)
N50.0302 (6)0.8319 (3)0.5614 (2)0.0426 (10)
N60.2612 (6)0.7623 (3)0.5182 (2)0.0432 (10)
N70.0631 (6)0.6361 (3)0.4063 (3)0.0523 (12)
N80.3240 (6)0.5820 (3)0.3260 (2)0.0454 (11)
N90.3973 (6)0.7387 (3)0.3337 (2)0.0429 (10)
C10.8459 (7)0.4984 (4)1.0828 (3)0.0394 (11)
H10.83450.55841.05760.047*
C20.9053 (7)0.4890 (4)1.1509 (3)0.0462 (13)
H20.93670.54101.17060.055*
C30.9173 (7)0.4009 (4)1.1892 (3)0.0499 (14)
H30.95210.39261.23650.060*
C40.8782 (7)0.3264 (4)1.1578 (3)0.0453 (13)
H40.88660.26641.18310.054*
C50.8248 (6)0.3398 (3)1.0868 (3)0.0347 (10)
C60.7879 (7)0.2477 (3)0.9849 (3)0.0377 (11)
C70.8082 (10)0.1558 (4)0.9676 (3)0.0615 (17)
H70.82100.10651.00490.074*
C80.8093 (11)0.1382 (4)0.8970 (4)0.078 (2)
H80.82360.07710.88530.094*
C90.7891 (10)0.2118 (4)0.8425 (4)0.0675 (18)
H90.79200.20160.79320.081*
C100.7646 (8)0.3001 (4)0.8627 (3)0.0522 (14)
H100.74970.34970.82580.063*
C110.6120 (6)0.5651 (3)0.8197 (2)0.0287 (9)
C120.6384 (6)0.6514 (3)0.8522 (2)0.0278 (9)
C130.6421 (6)0.6523 (3)0.9290 (2)0.0282 (9)
C140.6713 (7)0.7381 (3)0.9532 (3)0.0358 (11)
H140.67580.73981.00350.043*
C150.6933 (7)0.8191 (3)0.9051 (3)0.0389 (11)
H150.71130.87490.92270.047*
C160.6884 (6)0.8175 (3)0.8292 (2)0.0318 (10)
C170.6620 (6)0.7344 (3)0.8044 (2)0.0291 (10)
H170.65990.73360.75380.035*
C180.0624 (9)0.9107 (4)0.3696 (3)0.0542 (14)
H180.00380.89870.32260.065*
C190.2019 (8)0.9769 (4)0.3740 (3)0.0533 (14)
H190.24031.00860.33110.064*
C200.2859 (7)0.9963 (4)0.4432 (3)0.0473 (13)
H200.38291.04150.44760.057*
C210.2272 (7)0.9493 (3)0.5056 (3)0.0405 (12)
H210.28090.96290.55280.049*
C220.0846 (6)0.8803 (3)0.4968 (3)0.0341 (10)
C230.1413 (7)0.7916 (3)0.5739 (3)0.0379 (11)
C240.1803 (8)0.7821 (4)0.6462 (3)0.0522 (14)
H240.09210.80130.68460.063*
C250.3492 (9)0.7444 (5)0.6602 (4)0.0673 (18)
H250.37760.73710.70840.081*
C260.4779 (9)0.7170 (5)0.6024 (4)0.072 (2)
H260.59520.69190.61040.086*
C270.4288 (8)0.7277 (4)0.5335 (4)0.0615 (16)
H270.51650.71010.49430.074*
C280.1097 (9)0.6207 (5)0.4427 (4)0.077 (2)
H280.16670.66510.47250.093*
C290.2065 (10)0.5451 (5)0.4391 (5)0.091 (3)
H290.32780.53870.46430.109*
C300.1202 (10)0.4775 (5)0.3970 (4)0.081 (2)
H300.18240.42410.39380.097*
C310.0560 (9)0.4897 (4)0.3604 (3)0.0589 (16)
H310.11690.44420.33250.071*
C320.1454 (7)0.5717 (3)0.3649 (3)0.0413 (12)
C330.4361 (7)0.6581 (3)0.3048 (3)0.0402 (11)
C340.5887 (8)0.6470 (4)0.2497 (4)0.0630 (17)
H340.61440.59010.23070.076*
C350.7005 (10)0.7209 (5)0.2239 (4)0.083 (2)
H350.80310.71480.18690.100*
C360.6600 (10)0.8044 (5)0.2531 (4)0.081 (2)
H360.73430.85550.23630.098*
C370.5102 (9)0.8102 (4)0.3065 (4)0.0633 (17)
H370.48300.86690.32580.076*
H8A0.360 (7)0.540 (3)0.300 (3)0.050*
H5A0.096 (6)0.850 (4)0.5980 (19)0.050*
H2A0.794 (8)0.213 (2)1.086 (2)0.050*
H7A0.09180.93660.82940.080*
H7B0.27400.93370.81750.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0385 (3)0.0239 (3)0.0268 (3)0.0013 (2)0.0048 (2)0.0034 (2)
Cu20.0559 (4)0.0516 (4)0.0563 (4)0.0036 (3)0.0011 (3)0.0308 (3)
S10.0503 (7)0.0265 (6)0.0321 (6)0.0030 (5)0.0019 (5)0.0003 (5)
O10.057 (2)0.0263 (17)0.0291 (17)0.0025 (15)0.0139 (15)0.0049 (13)
O20.069 (2)0.0292 (17)0.0321 (18)0.0016 (16)0.0134 (16)0.0077 (14)
O30.0478 (19)0.0224 (15)0.0261 (16)0.0017 (13)0.0008 (14)0.0034 (13)
O40.085 (3)0.043 (2)0.056 (2)0.027 (2)0.015 (2)0.0112 (18)
O50.106 (3)0.047 (2)0.032 (2)0.010 (2)0.004 (2)0.0013 (17)
O60.070 (3)0.050 (2)0.083 (3)0.016 (2)0.014 (2)0.023 (2)
O70.072 (3)0.086 (3)0.107 (4)0.006 (3)0.016 (3)0.052 (3)
N10.033 (2)0.030 (2)0.030 (2)0.0009 (16)0.0052 (16)0.0027 (16)
N20.052 (3)0.033 (2)0.036 (2)0.002 (2)0.008 (2)0.0023 (18)
N30.044 (2)0.031 (2)0.035 (2)0.0050 (17)0.0033 (18)0.0118 (17)
N40.050 (3)0.038 (2)0.037 (2)0.0027 (19)0.0029 (19)0.0115 (19)
N50.045 (3)0.053 (3)0.030 (2)0.010 (2)0.0047 (18)0.0100 (19)
N60.039 (2)0.042 (2)0.049 (3)0.0040 (19)0.006 (2)0.012 (2)
N70.042 (3)0.053 (3)0.065 (3)0.006 (2)0.000 (2)0.027 (2)
N80.051 (3)0.039 (2)0.047 (3)0.003 (2)0.004 (2)0.021 (2)
N90.046 (3)0.038 (2)0.046 (2)0.0016 (19)0.002 (2)0.0166 (19)
C10.035 (3)0.042 (3)0.042 (3)0.001 (2)0.006 (2)0.011 (2)
C20.034 (3)0.063 (4)0.046 (3)0.001 (2)0.007 (2)0.025 (3)
C30.040 (3)0.072 (4)0.041 (3)0.006 (3)0.012 (2)0.015 (3)
C40.042 (3)0.055 (3)0.036 (3)0.009 (2)0.009 (2)0.002 (2)
C50.027 (2)0.039 (3)0.036 (3)0.002 (2)0.0004 (19)0.007 (2)
C60.040 (3)0.031 (2)0.041 (3)0.005 (2)0.006 (2)0.002 (2)
C70.095 (5)0.032 (3)0.059 (4)0.010 (3)0.019 (3)0.005 (3)
C80.131 (7)0.035 (3)0.075 (5)0.018 (4)0.035 (4)0.023 (3)
C90.106 (5)0.050 (4)0.054 (4)0.020 (3)0.025 (4)0.028 (3)
C100.075 (4)0.042 (3)0.042 (3)0.012 (3)0.015 (3)0.014 (2)
C110.027 (2)0.031 (2)0.027 (2)0.0016 (18)0.0021 (18)0.0038 (19)
C120.025 (2)0.028 (2)0.030 (2)0.0030 (17)0.0001 (18)0.0070 (18)
C130.028 (2)0.026 (2)0.029 (2)0.0043 (18)0.0008 (18)0.0070 (18)
C140.047 (3)0.036 (3)0.025 (2)0.005 (2)0.002 (2)0.0073 (19)
C150.054 (3)0.025 (2)0.038 (3)0.008 (2)0.002 (2)0.007 (2)
C160.039 (3)0.024 (2)0.030 (2)0.0028 (19)0.0013 (19)0.0013 (18)
C170.033 (2)0.030 (2)0.024 (2)0.0014 (19)0.0029 (18)0.0054 (18)
C180.072 (4)0.057 (4)0.033 (3)0.002 (3)0.003 (3)0.007 (3)
C190.058 (4)0.056 (4)0.043 (3)0.001 (3)0.010 (3)0.007 (3)
C200.038 (3)0.045 (3)0.054 (3)0.000 (2)0.003 (2)0.004 (3)
C210.036 (3)0.046 (3)0.038 (3)0.002 (2)0.001 (2)0.009 (2)
C220.031 (2)0.036 (3)0.036 (3)0.006 (2)0.001 (2)0.006 (2)
C230.042 (3)0.031 (2)0.041 (3)0.003 (2)0.006 (2)0.002 (2)
C240.048 (3)0.063 (4)0.041 (3)0.000 (3)0.008 (2)0.007 (3)
C250.056 (4)0.092 (5)0.050 (4)0.004 (3)0.017 (3)0.018 (3)
C260.038 (3)0.088 (5)0.083 (5)0.007 (3)0.017 (3)0.016 (4)
C270.046 (3)0.069 (4)0.066 (4)0.008 (3)0.002 (3)0.007 (3)
C280.047 (4)0.072 (4)0.112 (6)0.014 (3)0.019 (4)0.043 (4)
C290.057 (4)0.083 (5)0.125 (7)0.023 (4)0.032 (4)0.034 (5)
C300.075 (5)0.067 (4)0.099 (6)0.030 (4)0.012 (4)0.022 (4)
C310.068 (4)0.047 (3)0.062 (4)0.015 (3)0.005 (3)0.019 (3)
C320.048 (3)0.039 (3)0.039 (3)0.004 (2)0.008 (2)0.012 (2)
C330.041 (3)0.040 (3)0.042 (3)0.000 (2)0.003 (2)0.017 (2)
C340.055 (4)0.052 (4)0.083 (5)0.008 (3)0.007 (3)0.033 (3)
C350.060 (4)0.075 (5)0.110 (6)0.020 (4)0.031 (4)0.043 (4)
C360.074 (5)0.062 (4)0.105 (6)0.031 (4)0.020 (4)0.028 (4)
C370.065 (4)0.046 (3)0.081 (5)0.010 (3)0.000 (3)0.028 (3)
Geometric parameters (Å, º) top
Cu1—O11.926 (3)C7—C81.349 (8)
Cu1—O31.930 (3)C7—H70.9300
Cu1—N12.019 (4)C8—C91.375 (9)
Cu1—N32.033 (4)C8—H80.9300
Cu1—O3i2.343 (3)C9—C101.366 (7)
Cu2—N91.989 (4)C9—H90.9300
Cu2—N42.013 (4)C10—H100.9300
Cu2—N62.031 (4)C11—C121.484 (6)
Cu2—N72.032 (4)C12—C171.389 (6)
S1—O41.435 (4)C12—C131.411 (6)
S1—O51.436 (4)C13—C141.408 (6)
S1—O61.440 (4)C14—C151.369 (6)
S1—C161.772 (4)C14—H140.9300
O1—C111.276 (5)C15—C161.398 (6)
O2—C111.249 (5)C15—H150.9300
O3—C131.321 (5)C16—C171.371 (6)
O3—Cu1i2.343 (3)C17—H170.9300
O7—H7A0.86C18—C191.348 (8)
O7—H7B0.84C18—H180.9300
N1—C51.338 (6)C19—C201.369 (8)
N1—C11.352 (6)C19—H190.9300
N2—C61.365 (6)C20—C211.366 (7)
N2—C51.367 (6)C20—H200.9300
N2—H2A0.82 (3)C21—C221.394 (7)
N3—C61.336 (6)C21—H210.9300
N3—C101.354 (6)C23—C241.386 (7)
N4—C221.328 (6)C24—C251.359 (8)
N4—C181.354 (7)C24—H240.9300
N5—C231.381 (6)C25—C261.376 (9)
N5—C221.394 (6)C25—H250.9300
N5—H5A0.82 (4)C26—C271.352 (9)
N6—C231.326 (6)C26—H260.9300
N6—C271.343 (7)C27—H270.9300
N7—C321.327 (6)C28—C291.347 (9)
N7—C281.339 (7)C28—H280.9300
N8—C321.382 (7)C29—C301.379 (10)
N8—C331.383 (6)C29—H290.9300
N8—H8A0.82 (5)C30—C311.355 (9)
N9—C331.336 (6)C30—H300.9300
N9—C371.350 (7)C31—C321.402 (7)
C1—C21.371 (7)C31—H310.9300
C1—H10.9300C33—C341.389 (7)
C2—C31.374 (8)C34—C351.367 (9)
C2—H20.9300C34—H340.9300
C3—C41.350 (8)C35—C361.377 (9)
C3—H30.9300C35—H350.9300
C4—C51.401 (7)C36—C371.346 (9)
C4—H40.9300C36—H360.9300
C6—C71.396 (7)C37—H370.9300
O1—Cu1—O389.89 (13)C9—C10—H10118.2
O1—Cu1—N1168.73 (15)O2—C11—O1120.7 (4)
O3—Cu1—N190.05 (14)O2—C11—C12118.8 (4)
O1—Cu1—N390.36 (14)O1—C11—C12120.5 (4)
O3—Cu1—N3179.45 (16)C17—C12—C13119.1 (4)
N1—Cu1—N389.61 (15)C17—C12—C11118.0 (4)
O1—Cu1—O3i98.07 (13)C13—C12—C11122.9 (4)
O3—Cu1—O3i82.45 (12)O3—C13—C14118.6 (4)
N1—Cu1—O3i93.09 (13)O3—C13—C12123.6 (4)
N3—Cu1—O3i97.99 (14)C14—C13—C12117.8 (4)
N9—Cu2—N4130.02 (18)C15—C14—C13122.0 (4)
N9—Cu2—N6116.50 (18)C15—C14—H14119.0
N4—Cu2—N691.23 (16)C13—C14—H14119.0
N9—Cu2—N794.58 (17)C14—C15—C16119.6 (4)
N4—Cu2—N7110.31 (18)C14—C15—H15120.2
N6—Cu2—N7115.75 (19)C16—C15—H15120.2
O4—S1—O5113.4 (3)C17—C16—C15119.3 (4)
O4—S1—O6111.7 (3)C17—C16—S1120.7 (3)
O5—S1—O6112.4 (3)C15—C16—S1120.1 (3)
O4—S1—C16106.3 (2)C16—C17—C12122.1 (4)
O5—S1—C16106.3 (2)C16—C17—H17118.9
O6—S1—C16106.2 (2)C12—C17—H17118.9
C11—O1—Cu1129.8 (3)C19—C18—N4123.5 (5)
C13—O3—Cu1123.1 (3)C19—C18—H18118.2
C13—O3—Cu1i119.6 (3)N4—C18—H18118.2
Cu1—O3—Cu1i97.55 (12)C18—C19—C20118.5 (5)
H7A—O7—H7B100.00C18—C19—H19120.7
C5—N1—C1117.1 (4)C20—C19—H19120.7
C5—N1—Cu1123.9 (3)C21—C20—C19119.9 (5)
C1—N1—Cu1118.7 (3)C21—C20—H20120.0
C6—N2—C5130.9 (4)C19—C20—H20120.0
C6—N2—H2A115 (4)C20—C21—C22118.4 (5)
C5—N2—H2A113 (4)C20—C21—H21120.8
C6—N3—C10117.2 (4)C22—C21—H21120.8
C6—N3—Cu1123.8 (3)N4—C22—N5120.7 (4)
C10—N3—Cu1118.5 (3)N4—C22—C21122.1 (4)
C22—N4—C18117.5 (4)N5—C22—C21117.2 (4)
C22—N4—Cu2122.4 (3)N6—C23—N5120.3 (4)
C18—N4—Cu2119.9 (3)N6—C23—C24122.1 (5)
C23—N5—C22130.1 (4)N5—C23—C24117.6 (5)
C23—N5—H5A115 (4)C25—C24—C23119.1 (6)
C22—N5—H5A110 (4)C25—C24—H24120.5
C23—N6—C27117.2 (5)C23—C24—H24120.5
C23—N6—Cu2122.3 (3)C24—C25—C26119.4 (6)
C27—N6—Cu2120.2 (4)C24—C25—H25120.3
C32—N7—C28117.6 (5)C26—C25—H25120.3
C32—N7—Cu2122.9 (4)C27—C26—C25118.0 (6)
C28—N7—Cu2119.5 (4)C27—C26—H26121.0
C32—N8—C33133.1 (4)C25—C26—H26121.0
C32—N8—H8A114 (4)N6—C27—C26124.1 (6)
C33—N8—H8A110 (4)N6—C27—H27118.0
C33—N9—C37117.6 (5)C26—C27—H27118.0
C33—N9—Cu2122.6 (3)N7—C28—C29124.4 (6)
C37—N9—Cu2119.7 (4)N7—C28—H28117.8
N1—C1—C2123.6 (5)C29—C28—H28117.8
N1—C1—H1118.2C28—C29—C30118.0 (6)
C2—C1—H1118.2C28—C29—H29121.0
C1—C2—C3118.4 (5)C30—C29—H29121.0
C1—C2—H2120.8C31—C30—C29119.4 (6)
C3—C2—H2120.8C31—C30—H30120.3
C4—C3—C2119.3 (5)C29—C30—H30120.3
C4—C3—H3120.3C30—C31—C32119.2 (6)
C2—C3—H3120.3C30—C31—H31120.4
C3—C4—C5119.8 (5)C32—C31—H31120.4
C3—C4—H4120.1N7—C32—N8121.3 (4)
C5—C4—H4120.1N7—C32—C31121.3 (5)
N1—C5—N2121.6 (4)N8—C32—C31117.4 (5)
N1—C5—C4121.6 (4)N9—C33—N8122.3 (4)
N2—C5—C4116.8 (4)N9—C33—C34121.6 (5)
N3—C6—N2121.3 (4)N8—C33—C34116.1 (4)
N3—C6—C7121.3 (5)C35—C34—C33119.1 (5)
N2—C6—C7117.4 (5)C35—C34—H34120.5
C8—C7—C6120.2 (5)C33—C34—H34120.5
C8—C7—H7119.9C34—C35—C36119.4 (6)
C6—C7—H7119.9C34—C35—H35120.3
C7—C8—C9119.2 (5)C36—C35—H35120.3
C7—C8—H8120.4C37—C36—C35118.4 (6)
C9—C8—H8120.4C37—C36—H36120.8
C10—C9—C8118.3 (6)C35—C36—H36120.8
C10—C9—H9120.9C36—C37—N9123.9 (5)
C8—C9—H9120.9C36—C37—H37118.1
N3—C10—C9123.7 (5)N9—C37—H37118.1
N3—C10—H10118.2
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7i0.82 (3)2.00 (3)2.814 (6)175 (6)
N5—H5A···O5ii0.82 (4)2.08 (4)2.896 (5)178 (5)
N8—H8A···O2iii0.82 (5)1.99 (5)2.809 (5)172 (5)
O7—H7A···O4ii0.861.982.813 (6)162
O7—H7B···O60.842.002.801 (6)159
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C7H3O6S)2(C10H9N3)2][Cu(C10H9N3)2]2·2H2O
Mr1747.71
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.258 (2), 14.422 (4), 18.312 (5)
α, β, γ (°)82.428 (4), 80.697 (4), 86.409 (4)
V3)1873.5 (9)
Z1
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.28 × 0.19 × 0.14
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.759, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
13648, 6582, 6078
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.148, 1.23
No. of reflections6582
No. of parameters514
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.41

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—O11.926 (3)Cu2—N91.989 (4)
Cu1—O31.930 (3)Cu2—N42.013 (4)
Cu1—N12.019 (4)Cu2—N62.031 (4)
Cu1—N32.033 (4)Cu2—N72.032 (4)
Cu1—O3i2.343 (3)
O1—Cu1—O389.89 (13)N1—Cu1—O3i93.09 (13)
O1—Cu1—N1168.73 (15)N3—Cu1—O3i97.99 (14)
O3—Cu1—N190.05 (14)N9—Cu2—N4130.02 (18)
O1—Cu1—N390.36 (14)N9—Cu2—N6116.50 (18)
O3—Cu1—N3179.45 (16)N4—Cu2—N691.23 (16)
N1—Cu1—N389.61 (15)N9—Cu2—N794.58 (17)
O1—Cu1—O3i98.07 (13)N4—Cu2—N7110.31 (18)
O3—Cu1—O3i82.45 (12)N6—Cu2—N7115.75 (19)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7i0.82 (3)2.00 (3)2.814 (6)175 (6)
N5—H5A···O5ii0.82 (4)2.08 (4)2.896 (5)178 (5)
N8—H8A···O2iii0.82 (5)1.99 (5)2.809 (5)172 (5)
O7—H7A···O4ii0.861.982.813 (6)162
O7—H7B···O60.842.002.801 (6)159
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds