Download citation
Download citation
link to html
(Z)-3-(1H-Indol-3-yl)-2-(3-thienyl)­acrylo­nitrile, C15H10N2S, (I), and (Z)-3-[1-(4-tert-butyl­benzyl)-1H-indol-3-yl]-2-(3-thienyl)­acrylo­nitrile, C26H24N2S, (II), were prepared by base-catalyzed reactions of the corresponding indole-3-carbox­aldehyde with thio­phene-3-aceto­nitrile. 1H/13C NMR spectral data and X-ray crystal structures of compounds (I) and (II) are presented. The olefinic bond connecting the indole and thio­phene moieties has Z geometry in both cases, and the mol­ecules crystallize in space groups P21/c and C2/c for (I) and (II), respectively. Slight thienyl ring-flip disorder (ca 5.6%) was observed and modeled for (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104032925/sk1789sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104032925/sk1789Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104032925/sk1789IIsup3.hkl
Contains datablock II

CCDC references: 264800; 264801

Comment top

Acrylonitriles represent an interesting class of biologically active compound. 3-Aryl-substituted 2-[1H(2H)-benzotriazol-1(2)-yl]- acrylonitriles have been shown to possess tuberculostatic activity (Sanna et al., 2000), and (E)-3-(3-Amino-4-methoxyphenyl)-2-(3,4,5- trimethoxyphenyl)acrylonitrile and its analogs show potent antitumor activity (Ohsumi et al., 1998). We have synthesized a series of novel substituted aryl/heteroaryl 2-(thiophen-3-yl)acrylonitriles and evaluated them for antitubercular activity against Mycobacterium tuberculosis H37Rv and for anticancer activity. X-ray crystal analysis of one representative compound showed that the olefinic bond had a Z-geometry (Sonar et al., 2004). The present study is aimed at establishing the effect of bulkier substituents at position 1 of the indole ring on the geometry of the molecule. The title compounds were synthesized by the base-catalyzed condensation reaction of indole-3-carboxaldehyde and 1-(tert-butylbenzyl)-indole-3- caboxaldehyde with thiophene-3-acetonitrile to afford compounds (I) and (II), respectively. The structures of these products were initially identified by NMR spectroscopy. In order to confirm the olefinic bond geometry in these compounds, and to obtain more detailed information of the structural conformation of the molecules, their X-ray structure determination has also been carried out.

X-ray analysis confirmed the molecular structure and atom connectivity for (I) and (II) as illustrated in Figs. 1 and 2. Selected geometric parameters are presented in Tables 1 and 3. For each structure, the indole ring is planar, with bond distances and angles comparable to those reported for other indole derivatives (Mason et al., 2003). In compound (II), the phenyl ring of the 4-tertbutylbenzyl group is orthogonal to the indole ring system, forming a dihedral angle of 75.16 (4)°, and the tert-butyl group is disordered. In both molecules, the olefinic bond connecting the indole and thiophene moieties has a Z geometry. Deviations from the ideal bond-angle geometry around the Csp2 atoms of the double bond are observed. In both molecules, the C9=C10—C15, C9=C10—C11 and C14=C11—C10 bond angles [120.07 (19)/119.79 (14)°, 124.4 (2)/124.71 (14)° and 124.2 (2)/123.76 (14)°, respectively in (I)/(II)] are close to the ideal geometry (120°); however, the C2=C1—C9, C10=C9—C1 and C15=C10—C11 angles [130.43 (19)/130.42 (15)°, 130.2 (2)/129.60 (15)° and 115.4 (2)/115.49 (13)°, respectively in (I)/(II)] are distorted because of strain induced by the double bond linking the indole and thiophene rings. The vinyl group bearing the indole and thiophene rings and the nitrile group in compounds (I) and (II), has a double-bond length of 1.356 (3) Å and is significantly longer than that observed in the disubstituted vinyl group of 2-styrylbenzimidazoles [1.304 (4) Å; Bacelo et al., 1997]. This is evidence of some delocalization in the bridging units of these molecules. Furthermore, the C1—C9, C10—C11 and C10—C15 bond lengths [1.433 (3)/1.440 (2) Å, 1.485 (3)/1.467 (2) Å and 1.438 (3)/1.439 (2) Å, respectively in compounds (I)/(II)] are slightly shorter than a Car—Csp2 single bond (Wilson, 1992). The C2=C1—C9=C10, C1—C9=C10—C11 and C9=C10—C11=C14 torsion angles in (I)/(II) are −7.4 (4)/-6.8 (3)°, −174.7 (3)/-178.88 (14)° and 168.7 (3)/169.61 (16)°, respectively; these values suggest that the indole and thiophene ring planes do not deviate much from the plane of the double bond, facilitating continuous conjugation between the indole and thiophene ring π-electron systems. There is also extensive conjugation beginning at atom C15 and extending to the indole ring. A very small amount of thienyl ring-flip disorder (ca 5.6%) for (I) was observed and modeled, but no such disorder was seen for(II).

The mode of packing of (I), along the b direction, is illustrated in Fig. 3. The H atom attached to atom N1 is involved in an intermolecular hydrogen bond [2.970 (3) Å] with atom N2 of an inversion-related molecule (Table 2), thus forming an infinite chain. In addition to weak non-bonded interactions, van der Waals forces contribute to the stabilization of the crystal structures of (I) and (II).

From the present investigation, it is evident that, irrespective of the size of the substituent on the indole 1-position, the base-catalyzed reaction between thiophene-3-acetonitrile and indole-3-carboxaldehyde leads to the formation of the Z isomer.

Experimental top

A mixture of indole-3-carboxaldehyde (0.290 g, 2 mmol) and thiophene-3-acetonitrile (0.247 g, 2 mmol) was dissolved in piperidine (5 ml) and the solution was refluxed for 5 h. The cooled reaction mixture was poured on to crushed ice (50 g), and the yellow solid that separated was collected by filtration, washed with water and dried Crystallization from methanol gave (I) as a yellow flakes, which were suitable for X-ray analysis. 1H NMR (CDCl3): δ 7.16–7.26 (m, 2H), 7.51 (d, 1H), 7.68–7.70 (m, 3H), 8.55 (d, 1H), 8.16 (s, 1H), 8.30 (s, 1H), 12.00 (s, 1H). 13C NMR (CDCl3): δ 98.5, 110.3, 112.1, 118.6, 119.6, 120.3, 120.9, 122.5, 124.6, 126.4, 126.9, 127.8, 133.2, 135.6, 136.5. A mixture of 1-(4-tert-butylbenzyl)indole-3-carboxaldehyde (0. 583 g, 2 mmol) and thiophene-3-acetonitrile (0.247 g, 2 mmol) was dissolved in 5% sodium methoxide in methanol (10 ml) and the solution was refluxed for 2 h. The cooled reaction mixture was poured on to crushed ice, and the yellow solid that separated was collected by filtration and dried. Crystallization from methanol afforded yellow needles of (II) suitable for X-ray analysis.1H NMR (CDCl3): δ 1.29 (s, 9H), 5.38 (s, 2H), 7.12 (d, 2H), 7.25–7.38 (m, 5H), 7.40 (d, 2H), 7.47 (t, 1H), 7.76–7.79 (m, 2H), 8.37 (s, 1H). 13C NMR (CDCl3): δ 31.6, 34.8, 50.9, 100.3, 110.9, 118.3, 120.1, 121.2, 121.3, 123.3, 124.2, 125.9, 126.7, 127.2, 128.3, 129.9, 131.9, 133.3, 136.2, 137.1, 151.1.

Refinement top

H atoms were found in difference Fourier maps, and were subsequently positioned geometrically and treated with appropriate riding models. For (I), distances to parent atoms of 0.95 and 0.88 Å for C—H and N—H bonds, respectively, were used. In (II), C—H bonds in the disordered tert-butyl group were fixed at 0.98 Å, while for non-disordered parts of the molecule, the H-atom postions were allowed to refine along the riding-model C—H vector. [Should refined values have s.u. values?]

Computing details top

Data collection: COLLECT (Nonius, 1999) for (I); APEX2 (Bruker–Nonius, 2004) for (II). Cell refinement: SCALEPACK (Otwinowski & Minor, 1997) for (I); APEX2 for (II). Data reduction: DENZO–SMN (Otwinowski & Minor, 1997) for (I); APEX2 for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1995). Software used to prepare material for publication: SHELX97-2 (Sheldrick, 1997) and local procedures for (I); SHELX97 and local procedures for (II).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A packing diagram of (I), viewed down the b axis, showing hydrogen-bonding interactions (dashed lines).
(I) (Z)-3-(1H-Indol-3-yl)-2-(3-thienyl)acrylonitrile top
Crystal data top
C15H10N2SF(000) = 520
Mr = 250.31Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5185 reflections
a = 12.8530 (2) Åθ = 1.0–27.5°
b = 5.6020 (6) ŵ = 0.25 mm1
c = 16.5980 (8) ÅT = 90 K
β = 93.241 (2)°Thin plate, yellow
V = 1193.19 (14) Å30.40 × 0.15 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2713 independent reflections
Radiation source: fine-focus sealed tube1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
Detector resolution: 18 pixels mm-1θmax = 27.4°, θmin = 1.6°
ω scans at fixed χ = 55°h = 1616
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 77
Tmin = 0.894, Tmax = 0.995l = 2121
9660 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.2991P]
where P = (Fo2 + 2Fc2)/3
2713 reflections(Δ/σ)max = 0.016
189 parametersΔρmax = 0.38 e Å3
136 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H10N2SV = 1193.19 (14) Å3
Mr = 250.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8530 (2) ŵ = 0.25 mm1
b = 5.6020 (6) ÅT = 90 K
c = 16.5980 (8) Å0.40 × 0.15 × 0.02 mm
β = 93.241 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2713 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1853 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.995Rint = 0.087
9660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047136 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
2713 reflectionsΔρmin = 0.28 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.72944 (16)0.1775 (4)0.47492 (11)0.0224 (5)
C20.65449 (17)0.3510 (4)0.45807 (11)0.0247 (5)
H20.58780.35550.47990.030*
N10.69046 (14)0.5137 (3)0.40562 (10)0.0257 (4)
H10.65540.63860.38680.031*
C30.78990 (17)0.4539 (4)0.38638 (11)0.0232 (5)
C40.85793 (18)0.5673 (4)0.33621 (12)0.0264 (5)
H40.83900.71100.30870.032*
C50.95412 (18)0.4621 (4)0.32812 (12)0.0283 (5)
H51.00280.53610.29510.034*
C60.98117 (17)0.2478 (4)0.36782 (12)0.0277 (5)
H61.04720.17770.36020.033*
C70.91365 (16)0.1373 (4)0.41765 (11)0.0239 (5)
H70.93270.00740.44440.029*
C80.81688 (16)0.2417 (4)0.42797 (11)0.0222 (5)
C90.73007 (17)0.0200 (4)0.52985 (11)0.0231 (5)
H90.78700.12680.52610.028*
C100.66219 (16)0.0783 (4)0.58636 (11)0.0225 (5)
C110.6771 (3)0.2792 (7)0.64428 (17)0.0212 (5)0.944 (2)
C120.7566 (4)0.4554 (8)0.6410 (2)0.0223 (5)0.944 (2)
H120.80430.46010.59930.027*0.944 (2)
C130.7587 (3)0.6163 (7)0.7023 (2)0.0263 (8)0.944 (2)
H130.80690.74410.70940.032*0.944 (2)
S10.65880 (5)0.55147 (12)0.76607 (3)0.0247 (2)0.944 (2)
C140.6180 (3)0.3140 (5)0.70967 (16)0.0234 (6)0.944 (2)
H140.56060.21600.72190.028*0.944 (2)
C11'0.677 (6)0.251 (11)0.631 (3)0.0222 (14)0.056 (2)
C12'0.617 (4)0.258 (8)0.700 (3)0.0223 (17)*0.056 (2)
H12'0.55450.17000.70480.027*0.056 (2)
C13'0.658 (3)0.401 (6)0.7596 (18)0.0240 (19)*0.056 (2)
H13'0.64600.39040.81540.029*0.056 (2)
S1'0.7385 (14)0.612 (4)0.7148 (11)0.0280 (15)*0.056 (2)
C14'0.750 (7)0.432 (13)0.634 (4)0.0233 (15)*0.056 (2)
H14'0.80120.45250.59510.028*0.056 (2)
C150.57075 (17)0.0648 (4)0.59562 (11)0.0226 (5)
N20.49674 (14)0.1743 (3)0.60393 (10)0.0290 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0268 (12)0.0266 (12)0.0140 (9)0.0006 (10)0.0029 (9)0.0013 (9)
C20.0295 (13)0.0303 (13)0.0145 (9)0.0001 (10)0.0024 (9)0.0003 (9)
N10.0311 (11)0.0279 (11)0.0181 (8)0.0043 (8)0.0027 (8)0.0026 (7)
C30.0283 (12)0.0264 (12)0.0148 (9)0.0014 (10)0.0007 (9)0.0023 (9)
C40.0355 (13)0.0257 (12)0.0179 (10)0.0018 (11)0.0003 (9)0.0019 (9)
C50.0303 (13)0.0343 (13)0.0204 (10)0.0047 (11)0.0028 (9)0.0009 (10)
C60.0247 (12)0.0358 (13)0.0224 (10)0.0003 (10)0.0003 (9)0.0022 (10)
C70.0270 (12)0.0275 (12)0.0169 (9)0.0002 (10)0.0010 (9)0.0010 (9)
C80.0248 (12)0.0286 (12)0.0131 (9)0.0012 (10)0.0001 (8)0.0028 (9)
C90.0252 (12)0.0280 (12)0.0161 (9)0.0018 (9)0.0013 (8)0.0022 (9)
C100.0266 (12)0.0259 (12)0.0149 (9)0.0018 (9)0.0005 (8)0.0028 (9)
C110.0234 (11)0.0269 (13)0.0132 (12)0.0007 (10)0.0004 (11)0.0002 (9)
C120.0229 (13)0.0289 (14)0.0153 (11)0.0018 (10)0.0021 (11)0.0020 (9)
C130.0205 (16)0.0365 (14)0.0230 (14)0.0010 (12)0.0093 (11)0.0067 (11)
S10.0281 (4)0.0301 (4)0.0163 (3)0.0002 (3)0.0032 (2)0.0030 (3)
C140.0265 (11)0.0262 (14)0.0176 (11)0.0021 (11)0.0021 (9)0.0019 (10)
C11'0.023 (2)0.026 (2)0.018 (2)0.000 (2)0.002 (2)0.001 (2)
C150.0301 (13)0.0259 (12)0.0118 (9)0.0027 (11)0.0013 (9)0.0004 (9)
N20.0308 (12)0.0351 (12)0.0214 (9)0.0031 (9)0.0049 (8)0.0015 (8)
Geometric parameters (Å, º) top
C1—C21.386 (3)C10—C151.438 (3)
C1—C91.433 (3)C10—C111.485 (3)
C1—C81.449 (3)C11—C141.374 (3)
C2—N11.359 (3)C11—C121.424 (3)
C2—H20.9500C12—C131.359 (4)
N1—C31.376 (3)C12—H120.9500
N1—H10.8800C13—S11.748 (3)
C3—C41.394 (3)C13—H130.9500
C3—C81.408 (3)S1—C141.693 (2)
C4—C51.383 (3)C14—H140.9500
C4—H40.9500C11'—C14'1.378 (10)
C5—C61.403 (3)C11'—C12'1.427 (10)
C5—H50.9500C12'—C13'1.355 (11)
C6—C71.379 (3)C12'—H12'0.9500
C6—H60.9500C13'—S1'1.759 (10)
C7—C81.394 (3)C13'—H13'0.9500
C7—H70.9500S1'—C14'1.696 (10)
C9—C101.356 (3)C14'—H14'0.9500
C9—H90.9500C15—N21.147 (3)
C10—C11'1.23 (2)
C2—C1—C9130.43 (19)C11'—C10—C15119 (3)
C2—C1—C8105.62 (18)C9—C10—C15120.07 (19)
C9—C1—C8123.84 (19)C9—C10—C11124.4 (2)
N1—C2—C1109.98 (19)C15—C10—C11115.4 (2)
N1—C2—H2125.0C14—C11—C12111.23 (19)
C1—C2—H2125.0C14—C11—C10124.2 (2)
C2—N1—C3109.84 (17)C12—C11—C10124.5 (2)
C2—N1—H1125.1C13—C12—C11114.5 (2)
C3—N1—H1125.1C13—C12—H12122.7
N1—C3—C4130.5 (2)C11—C12—H12122.7
N1—C3—C8107.33 (17)C12—C13—S1109.4 (2)
C4—C3—C8122.1 (2)C12—C13—H13125.3
C5—C4—C3117.3 (2)S1—C13—H13125.3
C5—C4—H4121.4C14—S1—C1392.51 (16)
C3—C4—H4121.4C11—C14—S1112.37 (18)
C4—C5—C6121.2 (2)C11—C14—H14123.8
C4—C5—H5119.4S1—C14—H14123.8
C6—C5—H5119.4C10—C11'—C14'133 (4)
C7—C6—C5121.2 (2)C10—C11'—C12'116 (4)
C7—C6—H6119.4C14'—C11'—C12'110.5 (10)
C5—C6—H6119.4C13'—C12'—C11'113.3 (13)
C6—C7—C8118.8 (2)C13'—C12'—H12'123.3
C6—C7—H7120.6C11'—C12'—H12'123.3
C8—C7—H7120.6C12'—C13'—S1'107.8 (12)
C7—C8—C3119.39 (19)C12'—C13'—H13'126.1
C7—C8—C1133.4 (2)S1'—C13'—H13'126.1
C3—C8—C1107.22 (18)C14'—S1'—C13'90.9 (9)
C10—C9—C1130.2 (2)C11'—C14'—S1'112.0 (11)
C10—C9—H9114.9C11'—C14'—H14'124.0
C1—C9—H9114.9S1'—C14'—H14'124.0
C11'—C10—C9121 (3)N2—C15—C10178.3 (2)
C9—C1—C2—N1175.73 (19)C1—C9—C10—C11174.7 (3)
C8—C1—C2—N10.5 (2)C9—C10—C11—C14168.7 (3)
C1—C2—N1—C30.2 (2)C15—C10—C11—C148.5 (5)
C2—N1—C3—C4179.3 (2)C9—C10—C11—C129.0 (6)
C2—N1—C3—C80.8 (2)C15—C10—C11—C12173.8 (4)
N1—C3—C4—C5179.5 (2)C14—C11—C12—C130.9 (6)
C8—C3—C4—C50.4 (3)C10—C11—C12—C13177.1 (5)
C3—C4—C5—C61.0 (3)C11—C12—C13—S10.6 (6)
C4—C5—C6—C71.4 (3)C12—C13—S1—C140.1 (4)
C5—C6—C7—C80.2 (3)C12—C11—C14—S10.8 (5)
C6—C7—C8—C31.1 (3)C10—C11—C14—S1177.2 (3)
C6—C7—C8—C1179.5 (2)C13—S1—C14—C110.4 (3)
N1—C3—C8—C7178.44 (17)C9—C10—C11'—C14'7 (13)
C4—C3—C8—C71.5 (3)C15—C10—C11'—C14'174 (9)
N1—C3—C8—C11.1 (2)C9—C10—C11'—C12'164 (4)
C4—C3—C8—C1178.97 (18)C15—C10—C11'—C12'15 (9)
C2—C1—C8—C7178.5 (2)C10—C11'—C12'—C13'160 (7)
C9—C1—C8—C75.0 (3)C14'—C11'—C12'—C13'13 (9)
C2—C1—C8—C31.0 (2)C11'—C12'—C13'—S1'23 (6)
C9—C1—C8—C3175.56 (18)C12'—C13'—S1'—C14'22 (5)
C2—C1—C9—C107.4 (4)C10—C11'—C14'—S1'175 (9)
C8—C1—C9—C10168.2 (2)C12'—C11'—C14'—S1'4 (10)
C1—C9—C10—C11'177 (5)C13'—S1'—C14'—C11'15 (8)
C1—C9—C10—C152.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.232.971 (3)141
Symmetry code: (i) x+1, y+1, z+1.
(II) (Z)-3-[1-(4-tert-Butylbenzyl)-1H-indol-3-yl]-2-(3-thienyl)acrylonitrile top
Crystal data top
C26H24N2SF(000) = 1680
Mr = 396.53Dx = 1.212 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 6982 reflections
a = 25.4535 (4) Åθ = 1.0–68.1°
b = 6.2152 (1) ŵ = 1.41 mm1
c = 28.1787 (4) ÅT = 90 K
β = 102.797 (1)°Lath, yellow
V = 4347.10 (12) Å30.25 × 0.10 × 0.02 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3907 independent reflections
Radiation source: fine-focus rotating anode3478 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.044
Detector resolution: 18 pixels mm-1θmax = 68.1°, θmin = 3.2°
ω and ϕ scansh = 2430
Absorption correction: multi-scan
(APEX2; Bruker–Nonius, 2004)
k = 75
Tmin = 0.660, Tmax = 0.972l = 3331
15461 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0599P)2 + 3.3516P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3907 reflectionsΔρmax = 0.31 e Å3
311 parametersΔρmin = 0.32 e Å3
6 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00033 (6)
Crystal data top
C26H24N2SV = 4347.10 (12) Å3
Mr = 396.53Z = 8
Monoclinic, C2/cCu Kα radiation
a = 25.4535 (4) ŵ = 1.41 mm1
b = 6.2152 (1) ÅT = 90 K
c = 28.1787 (4) Å0.25 × 0.10 × 0.02 mm
β = 102.797 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3907 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker–Nonius, 2004)
3478 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.972Rint = 0.044
15461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0436 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
3907 reflectionsΔρmin = 0.32 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.182748 (18)1.46421 (7)0.208550 (15)0.03383 (17)
N10.08062 (5)0.3612 (2)0.34047 (5)0.0240 (3)
N20.04436 (6)0.8446 (2)0.21452 (5)0.0326 (3)
C10.13027 (6)0.6542 (2)0.33268 (5)0.0231 (3)
C20.08208 (6)0.5480 (2)0.31558 (6)0.0240 (3)
H20.0535 (6)0.5991 (11)0.2897 (5)0.029*
C30.12828 (6)0.3395 (3)0.37508 (5)0.0235 (3)
C40.14615 (7)0.1692 (3)0.40660 (6)0.0286 (4)
H40.1242 (5)0.050 (3)0.40847 (7)0.034*
C50.19803 (7)0.1846 (3)0.43514 (6)0.0342 (4)
H50.2127 (3)0.065 (3)0.4577 (5)0.041*
C60.23007 (8)0.3654 (3)0.43269 (6)0.0351 (4)
H60.2650 (9)0.3722 (4)0.4529 (5)0.042*
C70.21200 (7)0.5336 (3)0.40158 (6)0.0294 (4)
H70.2349 (5)0.659 (3)0.40037 (6)0.035*
C80.16015 (6)0.5216 (3)0.37164 (5)0.0237 (3)
C90.15173 (6)0.8450 (2)0.31503 (5)0.0230 (3)
H90.1848 (7)0.8984 (11)0.3353 (4)0.028*
C100.13244 (6)0.9608 (2)0.27411 (6)0.0231 (3)
C110.15858 (6)1.1522 (2)0.25939 (6)0.0239 (3)
C120.20362 (6)1.2602 (3)0.28918 (6)0.0249 (3)
H120.2202 (3)1.2164 (9)0.3224 (7)0.030*
C130.22110 (7)1.4312 (3)0.26637 (6)0.0274 (4)
H130.2497 (7)1.517 (2)0.2802 (3)0.033*
C140.14313 (7)1.2478 (3)0.21452 (6)0.0300 (4)
H140.1136 (7)1.1990 (11)0.1895 (6)0.036*
C150.08350 (6)0.8949 (2)0.24114 (6)0.0244 (3)
C160.03474 (6)0.2145 (3)0.33407 (6)0.0270 (4)
H16A0.04802 (19)0.067 (2)0.33802 (7)0.032*
H16B0.0130 (3)0.2294 (3)0.3010 (5)0.032*
C170.00048 (6)0.2561 (3)0.36982 (6)0.0247 (3)
C180.02480 (7)0.4549 (3)0.37141 (6)0.0313 (4)
H180.01861 (16)0.566 (3)0.3505 (5)0.038*
C190.05796 (7)0.4930 (3)0.40328 (6)0.0306 (4)
H190.0741 (4)0.629 (3)0.40329 (6)0.037*
C200.06802 (6)0.3364 (3)0.43528 (6)0.0277 (4)
C210.04364 (8)0.1379 (3)0.43295 (8)0.0404 (5)
H210.04960 (18)0.027 (3)0.4538 (6)0.048*
C220.01080 (8)0.0983 (3)0.40076 (7)0.0368 (4)
H220.0055 (4)0.046 (3)0.40000 (7)0.044*
C230.10521 (7)0.3802 (3)0.47028 (6)0.0316 (4)
C240.1100 (3)0.6166 (6)0.4806 (2)0.0713 (17)0.668 (6)
H24A0.13220.63550.50460.107*0.668 (6)
H24B0.12680.69140.45040.107*0.668 (6)
H24C0.07400.67660.49350.107*0.668 (6)
C250.15889 (13)0.2873 (9)0.44882 (15)0.0698 (18)0.668 (6)
H25A0.18330.31410.47060.105*0.668 (6)
H25B0.15540.13190.44450.105*0.668 (6)
H25C0.17340.35460.41720.105*0.668 (6)
C260.08204 (16)0.2743 (7)0.52094 (11)0.0584 (13)0.668 (6)
H26A0.04610.33250.53460.088*0.668 (6)
H26B0.07960.11820.51700.088*0.668 (6)
H26C0.10590.30580.54300.088*0.668 (6)
C24'0.1267 (4)0.1812 (11)0.4882 (4)0.084 (5)0.332 (6)
H24D0.09800.10920.51170.126*0.332 (6)
H24E0.14030.08450.46080.126*0.332 (6)
H24F0.15620.21860.50400.126*0.332 (6)
C25'0.0784 (4)0.5309 (18)0.5066 (3)0.069 (3)0.332 (6)
H25D0.06670.65650.49060.103*0.332 (6)
H25E0.04690.46160.52730.103*0.332 (6)
H25F0.10330.57680.52670.103*0.332 (6)
C26'0.1584 (3)0.5017 (19)0.4404 (3)0.071 (3)0.332 (6)
H26D0.18460.51550.46110.107*0.332 (6)
H26E0.17440.41830.41130.107*0.332 (6)
H26F0.14860.64510.43080.107*0.332 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0337 (3)0.0314 (3)0.0364 (3)0.00411 (17)0.00773 (18)0.00610 (17)
N10.0215 (7)0.0256 (7)0.0257 (6)0.0032 (5)0.0069 (5)0.0024 (5)
N20.0302 (8)0.0306 (8)0.0338 (8)0.0010 (6)0.0002 (6)0.0009 (6)
C10.0207 (7)0.0251 (8)0.0242 (7)0.0006 (6)0.0067 (6)0.0035 (6)
C20.0203 (8)0.0255 (8)0.0264 (8)0.0002 (6)0.0056 (6)0.0004 (6)
C30.0239 (8)0.0276 (8)0.0202 (7)0.0002 (6)0.0076 (6)0.0039 (6)
C40.0357 (9)0.0289 (8)0.0227 (8)0.0028 (7)0.0098 (7)0.0011 (6)
C50.0408 (10)0.0387 (10)0.0212 (8)0.0038 (8)0.0029 (7)0.0029 (7)
C60.0318 (9)0.0459 (11)0.0242 (8)0.0007 (8)0.0010 (7)0.0014 (7)
C70.0269 (9)0.0368 (9)0.0235 (8)0.0053 (7)0.0036 (6)0.0033 (7)
C80.0232 (8)0.0275 (8)0.0216 (7)0.0009 (6)0.0078 (6)0.0048 (6)
C90.0184 (7)0.0247 (8)0.0263 (8)0.0008 (6)0.0062 (6)0.0048 (6)
C100.0193 (8)0.0227 (7)0.0283 (8)0.0011 (6)0.0073 (6)0.0040 (6)
C110.0201 (8)0.0230 (8)0.0303 (8)0.0025 (6)0.0093 (6)0.0022 (6)
C120.0227 (8)0.0247 (8)0.0287 (8)0.0007 (6)0.0086 (6)0.0033 (6)
C130.0248 (8)0.0264 (8)0.0334 (8)0.0011 (7)0.0118 (7)0.0030 (7)
C140.0261 (8)0.0309 (9)0.0321 (8)0.0006 (7)0.0042 (7)0.0009 (7)
C150.0252 (8)0.0210 (7)0.0272 (8)0.0007 (6)0.0063 (7)0.0011 (6)
C160.0254 (8)0.0280 (8)0.0281 (8)0.0071 (7)0.0074 (7)0.0045 (6)
C170.0200 (8)0.0269 (8)0.0265 (8)0.0056 (6)0.0038 (6)0.0041 (6)
C180.0329 (9)0.0327 (9)0.0294 (8)0.0020 (7)0.0090 (7)0.0062 (7)
C190.0290 (9)0.0297 (9)0.0329 (9)0.0058 (7)0.0065 (7)0.0011 (7)
C200.0219 (8)0.0302 (9)0.0318 (8)0.0061 (7)0.0077 (7)0.0044 (7)
C210.0507 (12)0.0263 (9)0.0540 (11)0.0021 (8)0.0326 (10)0.0046 (8)
C220.0417 (11)0.0240 (9)0.0515 (11)0.0005 (8)0.0252 (9)0.0016 (8)
C230.0256 (8)0.0347 (9)0.0372 (9)0.0032 (7)0.0128 (7)0.0048 (7)
C240.104 (4)0.044 (2)0.090 (3)0.008 (2)0.072 (3)0.002 (2)
C250.0272 (17)0.127 (5)0.060 (2)0.025 (2)0.0211 (16)0.032 (3)
C260.063 (2)0.080 (3)0.0378 (17)0.024 (2)0.0237 (16)0.0063 (17)
C24'0.122 (10)0.039 (4)0.131 (10)0.005 (4)0.113 (10)0.012 (4)
C25'0.054 (5)0.108 (8)0.055 (5)0.023 (5)0.034 (4)0.049 (5)
C26'0.042 (4)0.116 (9)0.064 (5)0.035 (5)0.031 (4)0.024 (5)
Geometric parameters (Å, º) top
S1—C141.7117 (18)C17—C181.387 (2)
S1—C131.7161 (18)C18—C191.382 (2)
N1—C21.361 (2)C18—H180.9430
N1—C31.384 (2)C19—C201.389 (2)
N1—C161.461 (2)C19—H190.9373
N2—C151.150 (2)C20—C211.389 (3)
C1—C21.382 (2)C20—C231.535 (2)
C1—C91.440 (2)C21—C221.385 (3)
C1—C81.447 (2)C21—H210.9378
C2—H20.9632C22—H220.9894
C3—C41.392 (2)C23—C25'1.443 (7)
C3—C81.408 (2)C23—C251.483 (4)
C4—C51.389 (3)C23—C24'1.486 (6)
C4—H40.9368C23—C241.508 (4)
C5—C61.399 (3)C23—C261.564 (4)
C5—H50.9950C23—C26'1.615 (7)
C6—C71.376 (3)C24—H24A0.9800
C6—H60.9442C24—H24B0.9800
C7—C81.402 (2)C24—H24C0.9800
C7—H70.9785C25—H25A0.9800
C9—C101.356 (2)C25—H25B0.9800
C9—H90.9649C25—H25C0.9800
C10—C151.439 (2)C26—H26A0.9800
C10—C111.467 (2)C26—H26B0.9800
C11—C141.373 (2)C26—H26C0.9800
C11—C121.429 (2)C24'—H24D0.9800
C12—C131.366 (2)C24'—H24E0.9800
C12—H120.9770C24'—H24F0.9800
C13—H130.9188C25'—H25D0.9800
C14—H140.9590C25'—H25E0.9800
C16—C171.512 (2)C25'—H25F0.9800
C16—H16A0.9770C26'—H26D0.9800
C16—H16B0.9770C26'—H26E0.9800
C17—C221.376 (2)C26'—H26F0.9800
C14—S1—C1392.08 (8)C18—C19—C20121.92 (16)
C2—N1—C3109.04 (13)C18—C19—H19119.0
C2—N1—C16125.51 (13)C20—C19—H19119.0
C3—N1—C16125.32 (13)C19—C20—C21116.31 (16)
C2—C1—C9130.42 (15)C19—C20—C23121.44 (15)
C2—C1—C8105.62 (14)C21—C20—C23122.23 (15)
C9—C1—C8123.74 (14)C22—C21—C20121.96 (17)
N1—C2—C1110.56 (14)C22—C21—H21119.0
N1—C2—H2124.7C20—C21—H21119.0
C1—C2—H2124.7C17—C22—C21121.08 (17)
N1—C3—C4129.41 (15)C17—C22—H22119.5
N1—C3—C8107.56 (13)C21—C22—H22119.5
C4—C3—C8122.91 (15)C25'—C23—C25142.2 (4)
C5—C4—C3116.84 (16)C25'—C23—C24'116.8 (6)
C5—C4—H4121.6C25—C23—C24'55.9 (5)
C3—C4—H4121.6C25—C23—C24110.6 (3)
C4—C5—C6121.10 (16)C24'—C23—C24133.9 (3)
C4—C5—H5119.4C25'—C23—C20108.0 (3)
C6—C5—H5119.4C25—C23—C20108.21 (18)
C7—C6—C5121.67 (16)C24'—C23—C20113.4 (3)
C7—C6—H6119.2C24—C23—C20112.59 (19)
C5—C6—H6119.2C25'—C23—C2666.5 (5)
C6—C7—C8118.71 (16)C25—C23—C26109.6 (3)
C6—C7—H7120.6C24'—C23—C2655.4 (5)
C8—C7—H7120.6C24—C23—C26105.3 (3)
C7—C8—C3118.75 (15)C20—C23—C26110.51 (17)
C7—C8—C1133.87 (15)C25'—C23—C26'106.1 (6)
C3—C8—C1107.21 (13)C25—C23—C26'51.6 (4)
C10—C9—C1129.60 (15)C24'—C23—C26'103.7 (6)
C10—C9—H9115.2C24—C23—C26'63.3 (5)
C1—C9—H9115.2C20—C23—C26'108.3 (3)
C9—C10—C15119.79 (14)C26—C23—C26'140.8 (3)
C9—C10—C11124.71 (14)C23—C24—H24A109.5
C15—C10—C11115.49 (13)C23—C24—H24B109.5
C14—C11—C12111.50 (14)C23—C24—H24C109.5
C14—C11—C10123.76 (14)C23—C25—H25A109.5
C12—C11—C10124.73 (14)C23—C25—H25B109.5
C13—C12—C11113.04 (15)C23—C25—H25C109.5
C13—C12—H12123.5C23—C26—H26A109.5
C11—C12—H12123.5C23—C26—H26B109.5
C12—C13—S1111.33 (13)C23—C26—H26C109.5
C12—C13—H13124.3C23—C24'—H24D109.5
S1—C13—H13124.3C23—C24'—H24E109.5
C11—C14—S1112.06 (13)H24D—C24'—H24E109.5
C11—C14—H14124.0C23—C24'—H24F109.5
S1—C14—H14124.0H24D—C24'—H24F109.5
N2—C15—C10179.16 (18)H24E—C24'—H24F109.5
N1—C16—C17112.75 (12)C23—C25'—H25D109.5
N1—C16—H16A109.0C23—C25'—H25E109.5
C17—C16—H16A109.0H25D—C25'—H25E109.5
N1—C16—H16B109.0C23—C25'—H25F109.5
C17—C16—H16B109.0H25D—C25'—H25F109.5
H16A—C16—H16B107.8H25E—C25'—H25F109.5
C22—C17—C18117.73 (15)C23—C26'—H26D109.5
C22—C17—C16121.66 (15)C23—C26'—H26E109.5
C18—C17—C16120.58 (15)H26D—C26'—H26E109.5
C19—C18—C17120.98 (16)C23—C26'—H26F109.5
C19—C18—H18119.5H26D—C26'—H26F109.5
C17—C18—H18119.5H26E—C26'—H26F109.5
C3—N1—C2—C10.16 (17)C10—C11—C12—C13178.48 (14)
C16—N1—C2—C1176.25 (13)C11—C12—C13—S10.43 (17)
C9—C1—C2—N1173.82 (14)C14—S1—C13—C120.25 (13)
C8—C1—C2—N10.81 (17)C12—C11—C14—S10.24 (18)
C2—N1—C3—C4175.45 (15)C10—C11—C14—S1178.69 (12)
C16—N1—C3—C48.4 (2)C13—S1—C14—C110.00 (13)
C2—N1—C3—C80.59 (16)C2—N1—C16—C1794.63 (17)
C16—N1—C3—C8175.51 (13)C3—N1—C16—C1780.84 (18)
N1—C3—C4—C5175.11 (15)N1—C16—C17—C22122.63 (17)
C8—C3—C4—C50.4 (2)N1—C16—C17—C1859.2 (2)
C3—C4—C5—C61.2 (2)C22—C17—C18—C190.4 (3)
C4—C5—C6—C70.9 (3)C16—C17—C18—C19178.65 (15)
C5—C6—C7—C80.2 (3)C17—C18—C19—C200.7 (3)
C6—C7—C8—C30.9 (2)C18—C19—C20—C211.1 (3)
C6—C7—C8—C1173.70 (16)C18—C19—C20—C23179.62 (16)
N1—C3—C8—C7177.02 (13)C19—C20—C21—C220.4 (3)
C4—C3—C8—C70.7 (2)C23—C20—C21—C22178.97 (18)
N1—C3—C8—C11.07 (16)C18—C17—C22—C211.0 (3)
C4—C3—C8—C1175.28 (14)C16—C17—C22—C21179.25 (17)
C2—C1—C8—C7176.22 (17)C20—C21—C22—C170.6 (3)
C9—C1—C8—C71.1 (3)C19—C20—C23—C25'69.7 (6)
C2—C1—C8—C31.15 (16)C21—C20—C23—C25'111.8 (6)
C9—C1—C8—C3173.94 (13)C19—C20—C23—C2599.3 (3)
C2—C1—C9—C106.8 (3)C21—C20—C23—C2579.2 (3)
C8—C1—C9—C10167.02 (15)C19—C20—C23—C24'159.2 (6)
C1—C9—C10—C150.2 (2)C21—C20—C23—C24'19.3 (6)
C1—C9—C10—C11178.88 (14)C19—C20—C23—C2423.2 (4)
C9—C10—C11—C14169.61 (16)C21—C20—C23—C24158.3 (3)
C15—C10—C11—C149.1 (2)C19—C20—C23—C26140.7 (2)
C9—C10—C11—C129.2 (2)C21—C20—C23—C2640.8 (3)
C15—C10—C11—C12172.11 (14)C19—C20—C23—C26'44.7 (5)
C14—C11—C12—C130.4 (2)C21—C20—C23—C26'133.7 (5)

Experimental details

(I)(II)
Crystal data
Chemical formulaC15H10N2SC26H24N2S
Mr250.31396.53
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)9090
a, b, c (Å)12.8530 (2), 5.6020 (6), 16.5980 (8)25.4535 (4), 6.2152 (1), 28.1787 (4)
β (°) 93.241 (2) 102.797 (1)
V3)1193.19 (14)4347.10 (12)
Z48
Radiation typeMo KαCu Kα
µ (mm1)0.251.41
Crystal size (mm)0.40 × 0.15 × 0.020.25 × 0.10 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(APEX2; Bruker–Nonius, 2004)
Tmin, Tmax0.894, 0.9950.660, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
9660, 2713, 1853 15461, 3907, 3478
Rint0.0870.044
(sin θ/λ)max1)0.6480.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.116, 1.03 0.043, 0.116, 1.04
No. of reflections27133907
No. of parameters189311
No. of restraints1366
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.280.31, 0.32

Computer programs: COLLECT (Nonius, 1999), APEX2 (Bruker–Nonius, 2004), SCALEPACK (Otwinowski & Minor, 1997), APEX2, DENZO–SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Sheldrick, 1995), SHELX97-2 (Sheldrick, 1997) and local procedures, SHELX97 and local procedures.

Selected geometric parameters (Å, º) for (I) top
C1—C91.433 (3)C10—C111.485 (3)
C2—N11.359 (3)C13—S11.748 (3)
C9—C101.356 (3)S1—C141.693 (2)
C10—C151.438 (3)C15—N21.147 (3)
C2—C1—C9130.43 (19)C9—C10—C11124.4 (2)
C10—C9—C1130.2 (2)C15—C10—C11115.4 (2)
C9—C10—C15120.07 (19)C14—C11—C10124.2 (2)
C9—C1—C2—N1175.73 (19)C1—C9—C10—C11174.7 (3)
C2—C1—C9—C107.4 (4)C9—C10—C11—C14168.7 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.232.971 (3)141
Symmetry code: (i) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
S1—C141.7117 (18)C1—C91.440 (2)
S1—C131.7161 (18)C9—C101.356 (2)
N1—C21.361 (2)C10—C151.439 (2)
N2—C151.150 (2)C10—C111.467 (2)
C2—C1—C9130.42 (15)C9—C10—C11124.71 (14)
C10—C9—C1129.60 (15)C15—C10—C11115.49 (13)
C9—C10—C15119.79 (14)C14—C11—C10123.76 (14)
C9—C1—C2—N1173.82 (14)C1—C9—C10—C11178.88 (14)
C2—C1—C9—C106.8 (3)C9—C10—C11—C14169.61 (16)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds