Download citation
Download citation
link to html
The title compounds, both C23H34O5, are the 5[alpha] and 5[beta] configurations of two diacetate epimers. The 5[beta]-diacetate crystallizes in an hexagonal structure, unusual for steroid molecules. The unit cell has an accessible solvent volume of 358 Å3, responsible for clathrate behaviour. The 5[beta]-epimer also features some shorter than average bond lengths in the 3[alpha],4[beta]-acetoxy groups. The conformations of the molecules of both epimers are compared with those obtained through ab initio quantum chemistry calculations. Cohesion of the crystals can be attributed to van der Waals and weak molecular C-H...O interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104034250/sk1786sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104034250/sk1786Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104034250/sk1786IIsup3.hkl
Contains datablock II

CCDC references: 268092; 268093

Comment top

The title compounds, (I) and (II), are the diacetate forms of 3α,4β-dihydroxy-5β-androstan-17-one (Andrade et al., 2003) and 3α,4β-dihydroxy-5α-androstan-17-one (Paixão, Andrade, de Almeida, Costa et al., 1998), respectively. These diols have been prepared as new key intermediates in recently developed strategies for the syntheses of formestane (Tavares da Silva et al., 1996, 2002), a potent aromatase inhibitor clinically used as an antitumor agent in the treatment of estrogen-dependent breast cancers, and of related ring-D lactone derivates (Andrade et al., 1999; Tavares da Silva et al., 1997; Paixão, Andrade, de Almeida, Tavares da Silva et al., 1998). Following our work on the determination of the molecular and crystal structures of potential aromatase inhibitors and intermediates of their syntheses, the present X-ray analysis aims to contribute to the elucidation of the different reactivities of the precursors of the above-mentioned intermediates (Tavares da Silva et al., 2002).

ORTEPII (Johnson, 1976) drawings of the molecules of 17-oxo-5α-androstane-3α,4β-diyl diacetate, (I), and 17-oxo-5β-androstane-3α,4β-diyl diacetate, (II), with the corresponding atomic numbering schemes and ring labels are shown in Figs. 1 and 2. The 5β diacetate (II) crystallizes in a hexagonal structure, space group P65. During structure analysis it became evident that the hexagonal symmetry, most unusual for this type of compound creates large accessible voids in the crystal structure that tend to host disordered solvent molecules. Crystals from two samples, A and B, prepared with different solvents were used to collect crystal data, but both evidenced the same chlatrate behavior. This affects the diffraction pattern mostly at low scattering angles; this diffuse scattering effect was corrected with the SQUEEZE program (Spek, 2003). The reported X-ray results for this compound were obtained with a crystal from sample A, grown from diethyl ether/diisopropyl ether solution.

For both molecules under study, most bond lengths and angles are within the expected ranges (Allen et al., 1987) [average values Csp3—Csp3 = 1.532 (11) and 1.530 (14) Å, Csp3—Csp2 = 1.501 (15) and 1.502 (6) Å, CO = 1.197 (6) and 1.195 (20) Å, Csp3—O = 1.457 (1) and 1.451 (3) Å, and Csp2—O = 1.349 (3) and 1.316 (2) Å, respectively, for the molecules of (I) and (II)]. The short C2—C3 bond lengths [1.511 (5) and 1.502 (5) Å, respectively, for the molecules of (I) and (II)] common to other related steroids were also found in this study. Compound (II) contains a very short C20O20 bond, of 1.161 (5) Å, and a significantly shorter than average distance for both Csp2—O bonds. This short C20O20 bond distance is probably an artifact of the relatively large anisotropic displacement tensor of atom O20. The distances between the terminal atoms are 11.040 (5) and 10.95 (5) Å (O20···O17), and 10.684 (5) and 8.501 (5) Å (O22···C17), for the two molecules. The C19—C10—C13—C18 pseudo-torsion angles are 0.6 (3) and 0.6 (4)° for molecules (I) and (II), showing that the steroid nuclei are essentially untwisted. Rings A, B and C have slightly flattened chair conformations, with average torsion angles of 52 (2), 56 (3) and 56 (2)°, respectively, for molecule (I), and 56 (2), 54.5 (2) and 55 (2)° for molecule (II); the presence of the acetoxy groups bonded to atoms C3 and C4 does not disturb the usual chair conformation of ring A of the steroid nucleus. The A/B ring junction is −5α,10β-quasi-trans [C1—C10—C5—C4 = −50.9 (4)° and C9—C10—C5—C6 = 59.4 (4)°] for molecule (I) and 5β,10β-quasi-cis [C1—C10—C5—C4 = 49.6 (4)° and C9—C10—C5—C6 = 53.8 (3)°], with a bowing angle of 67.5 (1)°, for molecule (II). Both five-membered rings D assume a conformation intermediate between a 14α-envelope and a 13β,14α-half-chair, being closer to the second in molecule (I) and to the first in molecule (II) [puckering parameters (Cremer & Pople, 1975; Boeyens, 1978), calculated using the atom sequence C13–C17: q2 = 0.434 (4) and 0.421 (5) Å, ϕ2 = 205.2 (5) and 208.0 (7)°; pseudo-rotation (Altona et al., 1968) and asymmetry parameters: Δ = −13.8 (7) and −18.8 (7)°, ϕm = 44.5 (4) and 43.4 (3)°, ΔCs(13) = 23.4 (4) and 24.5 (4)°, ΔCs(14) = 10.4 (4) and 7.8 (4)° and ΔC2(13,14) = 8.3 (4) and 11.1 (4)°, respectively, for molecules (I) and (II)]. The environment around atom C17 is planar [the sum of the valence angles is 360.0 (6)° in (I) and 360.0 (7) in (II)]. For the 5α molecule (I), the two 3α,4β ring substituents are axial (Luger & Bulow, 1983), with angles of 4.9 (2) and 8.3 (2)°, respectively, being equatorial, with angles of 68.4 (2) and 62.4 (2)°, respectively, for the 5β-one epimer (II). The acetoxy groups attached to ring A are planar [the sums of the valence angles around atoms C20 and C22 are all equal to 360.0 within the s.u. values]. For molecule (I), the angles subtended by the C3/O3/C20/O20/C21 and C4/O4/C22/O22/C23 least-square planes to the C1–C17 reference plane are 89.44 (13) and 72.17 (12)°, respectively, and the angle between these two planes is 67.84 (12)°, showing a twist of the two groups; for molecule (II), the angles between the acetoxy least-square planes and the plane of ring A are 82.1 (17) and 88.27 (13)°, respectively, and the angle between those two planes is 51.17 (18)°.

In order to infer whether the peculiarities of the 3α,4β-substituent bond lengths of (II) are intrinsic to the molecular configuration or solid state effects, a quantum chemistry calculation of the optimized geometry of the isolated molecules of (I) and (II) was performed using the computer program GAMESS (Schmidt et al., 1993). The Roothaan Hartree–Fock molecular orbital (MO) method was used for the ab-initio calculations. An extended 6–31 G(d,p) basis set was used with tight conditions for convergence of both the self-consistent field (SCF) cycles and the maximum energy and density gradients at the final optimized geometry (10−5 atomic units). The code was run in parallel on cluster of 12 Compac XP1000 workstations (Alpha EV67 processors, 667 MHz) running Linux.

The conformations of the steroid nuclei determined from the X-ray diffraction are well reproduced by the ab-initio MO calculations [(II): C4—C5—C6—C7: calculated 72.06, observed 73.1 (4)°; O3—C3—C4—O4: calculated −65.1, observed −66.9°]. The bond angles and lengths are also well reproduced by the calculations; however they predict for both epimers Csp2—O bond lengths that are closer to the values observed for the 5β epimer [O3—C20 calculated (I) 1.329, (II) 1.329 Å; O4—C22 (I) 1.331; (II) 1.328 Å]. The calculated values of the carbonyl C17O17, C20 O20 and C22O22 bonds are 1.19 Å for both epimers.

Owing to the absence of any strong donor group, cohesion of these structures is mainly achieved by van der Waals interactions and weak hydrogen bonds involving C–H groups. Indeed, in both compounds, a few short contacts with suitable geometry to be classified as potential weak hydrogen bonds can be identified between the methylene H atoms of the acetoxy groups and the carbonyl O atoms attached to either ring D or the acetoxy group of a neighbouring molecule.

Experimental top

To prepare the title compound, 3α,4β-dihydroxy-5β-androstan-17-one (33.5 mg, 0.11 mmol) was dissolved in dry pyridine (1.5 ml), and acetic anhydride (0.3 ml) was added. After 120 h of stirring at room temperature, the solution was diluted with dichloromethane (100 ml), and the organic phase was washed with 10% aqueous hydrochloric acid (3 × 100 ml), 10% sodium hydrogen carbonate (2 × 100 ml) and water (2 × 100 ml), dried, and evaporated to dryness to give 5β-androstan-17-one-3α,4β-diyl diacetate (36.5 mg, 86%). 1H NMR (300 MHz, CDCl3, Me4Si): δH 0.85 (3H, s, 19-H3), 1.02 (3H, s, 18-H3), 2.01 (3H, s, COCH3), 2.04 (3H, s, COCH3), 2.44 (1H, dd, J16β,16α = 19.0 Hz, J16β,15β = 8.0 Hz, 16β-H), 4.79 (1H, ddd, J3β,2α = 12.5 Hz, J3β,4α = 9.5 Hz, J3β,2α = 5.0 Hz, 3β-H), 5.38 (1H, dd, J4α,5β = 11.0 Hz, J4α,3β = 9.5 Hz, 4α-H); 13C NMR (75.6 MHz, CDCl3, Me4Si): δC 13.8, 20.1, 20.9, 21.1, 21.2, 21.7, 23.3, 24.8, 25.0, 31.0, 31.6, 34.1, 35.0, 35.9, 37.0, 42.2, 46.9, 51.2, 71.4, 75.8, 170.6, 170.8, 221.1. Crystals of samples A and B suitable for X-ray analysis were obtained by slow evaporation of solutions of the steroid in diethyl ether/diisopropyl ether and in acetone/n-hexane, respectively. The treatment of 3α,4β-dihydroxy-5α-androstan-17-one with the same conditions as described above gives an identical yield of the 3α,4β-diacetate derivative 5α-androstan-17-one-3α,4β-diyl diacetate. 1H NMR (300 MHz, CDCl3, Me4Si): δH 0.86 (3H, s, 19-H3), 1.02 (3H, s, 18-H3), 2.07 (3H, s, COCH3), 2.08 (3H, s, COCH3), 2.45 (1H, dd, J16β,16α = 19.0 Hz, J16β,15β = 9.0 Hz, 16β-H), 4.84 (2H, m, 3-H, 4-H); 13C NMR (75.6 MHz, CDCl3, Me4Si): δC 13.6, 13.8, 19.6, 21.1, 21.3, 21.7, 22.2, 24.4, 31.0, 31.4, 32.0, 34.8, 35.7, 35.8, 44.0, 47.7, 51.5, 55.0, 69.4, 73.2, 169.8, 169.9, 221.3. Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the steroid in diethyl ether/diisopropyl ether.

Refinement top

All H atoms were refined as riding on their parent atoms using SHELXL97 defaults [C—H = 0.96–0.98 Å, and Uiso = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) for the other H atoms]. Owing to the absence of any significant anomalous scatterers, the absolute configuration of the molecules was not determined from the X-ray data but was known from the synthesis route. Therefore, Friedel pairs were merged before the refinement and the absolute configuration was assigned to correspond with that of the known chiral centers in the precursor molecule, which remained unchanged during the synthesis of compounds (I) and (II). A correction for diffuse effects due to the inclusion of disordered solvent molecules in the crystal structure was made for (I) using the SQUEEZE option of PLATON (van der Sluis & Spek, 1990; Spek, 2003). The total potential solvent volume per unit cell was calculated to be 358 Å3 (9.9% of the cell volume). The main void is located around the origin (0.000, 0.000, −0.038) corresponding to a volume of 356.3 Å3 and a diffuse electron count of 8.9 electrons as determined by the SQUEEZE procedure.

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: HELENA for (I); ORTEPII (Johnson, 1976) for (II). For both compounds, software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(I) 17-Oxo-5α-androstane-3α,4β-diyl diacetate top
Crystal data top
C23H34O5F(000) = 848
Mr = 390.50Dx = 1.220 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 6.742 (7) Åθ = 4.8–9.3°
b = 12.174 (4) ŵ = 0.08 mm1
c = 25.893 (6) ÅT = 293 K
V = 2125 (2) Å3Plate, colourless
Z = 40.50 × 0.45 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.035
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 3.1°
Graphite monochromatorh = 88
ω–2θ scansk = 1515
5566 measured reflectionsl = 3333
2812 independent reflections3 standard reflections every 200 min
1613 reflections with I > 2σ(I) intensity decay: 5.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.8677P]
where P = (Fo2 + 2Fc2)/3
2812 reflections(Δ/σ)max = 0.047
257 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C23H34O5V = 2125 (2) Å3
Mr = 390.50Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.742 (7) ŵ = 0.08 mm1
b = 12.174 (4) ÅT = 293 K
c = 25.893 (6) Å0.50 × 0.45 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.035
5566 measured reflections3 standard reflections every 200 min
2812 independent reflections intensity decay: 5.4%
1613 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
2812 reflectionsΔρmin = 0.20 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.3026 (4)0.4847 (2)0.95223 (9)0.0557 (6)
O40.1361 (3)0.63468 (19)0.91701 (10)0.0555 (6)
O170.5712 (5)0.4909 (2)0.60155 (13)0.0941 (11)
O200.2409 (5)0.3618 (3)1.01471 (11)0.0841 (10)
O220.0785 (5)0.8036 (2)0.94799 (13)0.0818 (9)
C10.1129 (6)0.4077 (3)0.85417 (13)0.0529 (9)
H1A0.05770.34870.83350.064*
H1B0.25390.39420.85780.064*
C20.0173 (6)0.4050 (3)0.90745 (14)0.0564 (10)
H2A0.12540.41140.90370.068*
H2B0.04550.33490.92360.068*
C30.0913 (5)0.4964 (3)0.94194 (14)0.0527 (9)
H30.01740.49620.97450.063*
C40.0749 (5)0.6084 (3)0.91636 (14)0.0502 (9)
H40.14660.66260.93720.060*
C50.1574 (5)0.6096 (2)0.86162 (12)0.0452 (8)
H50.29950.59530.86580.054*
C60.1475 (6)0.7228 (2)0.83641 (13)0.0495 (9)
H6A0.01090.74050.82820.059*
H6B0.19690.77790.86020.059*
C70.2719 (6)0.7238 (2)0.78729 (13)0.0513 (9)
H7A0.25460.79400.77010.062*
H7B0.41070.71700.79660.062*
C80.2188 (5)0.6325 (2)0.74979 (12)0.0429 (8)
H80.08570.64650.73610.051*
C90.2194 (5)0.5195 (2)0.77653 (12)0.0434 (8)
H90.35490.50890.78930.052*
C100.0834 (5)0.5167 (3)0.82541 (13)0.0434 (8)
C110.1820 (6)0.4252 (3)0.73848 (13)0.0549 (10)
H11A0.04690.43010.72580.066*
H11B0.19560.35580.75650.066*
C120.3257 (6)0.4268 (3)0.69220 (14)0.0562 (10)
H12A0.45960.41240.70410.067*
H12B0.28940.36950.66800.067*
C130.3187 (5)0.5370 (3)0.66553 (13)0.0490 (8)
C140.3651 (5)0.6281 (2)0.70455 (13)0.0464 (8)
H140.49330.60830.71980.056*
C150.4054 (6)0.7289 (3)0.67123 (15)0.0594 (10)
H15A0.48290.78300.68990.071*
H15B0.28280.76240.65960.071*
C160.5235 (6)0.6808 (3)0.62555 (16)0.0663 (11)
H16A0.47960.71280.59320.080*
H16B0.66420.69500.62970.080*
C170.4818 (6)0.5582 (3)0.62657 (17)0.0618 (11)
C180.1199 (6)0.5530 (3)0.63688 (15)0.0632 (11)
H18A0.12240.62140.61840.076*
H18B0.01330.55400.66140.076*
H18C0.10040.49370.61300.076*
C190.1371 (5)0.5297 (3)0.80993 (14)0.0564 (10)
H19A0.17510.46990.78780.068*
H19B0.15480.59790.79200.068*
H19C0.21820.52920.84040.068*
C200.3551 (6)0.4167 (3)0.99094 (14)0.0576 (10)
C210.5746 (6)0.4199 (4)0.99988 (17)0.0746 (13)
H21A0.60190.45861.03140.090*
H21B0.63790.45700.97160.090*
H21C0.62470.34631.00230.090*
C220.1933 (6)0.7342 (3)0.93472 (14)0.0562 (10)
C230.4110 (6)0.7443 (3)0.93425 (17)0.0694 (12)
H23A0.44760.81880.94180.083*
H23B0.46670.69640.95990.083*
H23C0.46060.72430.90080.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0490 (14)0.0636 (15)0.0544 (14)0.0013 (13)0.0008 (12)0.0122 (13)
O40.0437 (14)0.0567 (14)0.0660 (15)0.0011 (12)0.0019 (13)0.0121 (13)
O170.093 (2)0.0694 (18)0.119 (3)0.0044 (19)0.049 (2)0.0211 (19)
O200.090 (2)0.096 (2)0.0665 (18)0.0169 (19)0.0015 (18)0.0296 (17)
O220.079 (2)0.0588 (16)0.107 (2)0.0063 (17)0.020 (2)0.0233 (17)
C10.056 (2)0.0397 (17)0.063 (2)0.0078 (18)0.0006 (19)0.0020 (16)
C20.060 (2)0.0452 (18)0.064 (2)0.0079 (18)0.006 (2)0.0056 (17)
C30.049 (2)0.058 (2)0.051 (2)0.0039 (18)0.0015 (17)0.0038 (17)
C40.044 (2)0.0499 (19)0.056 (2)0.0016 (16)0.0038 (18)0.0048 (17)
C50.041 (2)0.0394 (17)0.0548 (19)0.0006 (15)0.0039 (17)0.0026 (14)
C60.052 (2)0.0388 (16)0.058 (2)0.0011 (16)0.0033 (18)0.0042 (16)
C70.054 (2)0.0330 (16)0.067 (2)0.0024 (17)0.002 (2)0.0020 (16)
C80.0410 (18)0.0370 (16)0.0507 (18)0.0011 (16)0.0065 (17)0.0023 (15)
C90.0438 (17)0.0335 (15)0.0530 (19)0.0006 (15)0.0070 (16)0.0006 (15)
C100.0423 (18)0.0373 (16)0.0507 (19)0.0037 (16)0.0037 (17)0.0011 (15)
C110.067 (3)0.0377 (17)0.060 (2)0.0085 (19)0.001 (2)0.0006 (16)
C120.064 (3)0.0379 (18)0.067 (2)0.0005 (19)0.003 (2)0.0095 (17)
C130.047 (2)0.0444 (18)0.056 (2)0.0027 (16)0.0024 (18)0.0037 (16)
C140.0391 (19)0.0367 (16)0.063 (2)0.0005 (16)0.0019 (17)0.0014 (16)
C150.061 (2)0.0462 (19)0.071 (3)0.0030 (19)0.004 (2)0.0021 (18)
C160.066 (3)0.055 (2)0.078 (3)0.008 (2)0.016 (2)0.001 (2)
C170.057 (2)0.056 (2)0.072 (3)0.001 (2)0.008 (2)0.008 (2)
C180.061 (2)0.072 (3)0.057 (2)0.008 (2)0.006 (2)0.005 (2)
C190.047 (2)0.056 (2)0.066 (2)0.0066 (19)0.0040 (18)0.0080 (18)
C200.068 (3)0.061 (2)0.044 (2)0.001 (2)0.002 (2)0.0078 (18)
C210.061 (3)0.094 (3)0.069 (3)0.011 (3)0.002 (2)0.018 (3)
C220.067 (3)0.054 (2)0.047 (2)0.005 (2)0.002 (2)0.0026 (18)
C230.061 (3)0.075 (3)0.073 (3)0.015 (2)0.011 (2)0.007 (2)
Geometric parameters (Å, º) top
O3—C201.347 (4)C10—C191.548 (5)
O3—C31.456 (4)C11—C121.541 (5)
O4—C221.352 (4)C11—H11A0.9700
O4—C41.458 (4)C11—H11B0.9700
O17—C171.206 (4)C12—C131.509 (5)
O20—C201.191 (5)C12—H12A0.9700
O22—C221.196 (4)C12—H12B0.9700
C1—C21.523 (5)C13—C171.515 (5)
C1—C101.534 (4)C13—C141.532 (4)
C1—H1A0.9700C13—C181.544 (5)
C1—H1B0.9700C14—C151.524 (5)
C2—C31.511 (5)C14—H140.9800
C2—H2A0.9700C15—C161.541 (5)
C2—H2B0.9700C15—H15A0.9700
C3—C41.520 (5)C15—H15B0.9700
C3—H30.9800C16—C171.519 (5)
C4—C51.523 (5)C16—H16A0.9700
C4—H40.9800C16—H16B0.9700
C5—C61.526 (4)C18—H18A0.9600
C5—C101.552 (4)C18—H18B0.9600
C5—H50.9800C18—H18C0.9600
C6—C71.523 (5)C19—H19A0.9600
C6—H6A0.9700C19—H19B0.9600
C6—H6B0.9700C19—H19C0.9600
C7—C81.519 (4)C20—C211.499 (6)
C7—H7A0.9700C21—H21A0.9600
C7—H7B0.9700C21—H21B0.9600
C8—C141.532 (5)C21—H21C0.9600
C8—C91.541 (4)C22—C231.473 (6)
C8—H80.9800C23—H23A0.9600
C9—C111.533 (4)C23—H23B0.9600
C9—C101.563 (5)C23—H23C0.9600
C9—H90.9800
C20—O3—C3116.9 (3)C12—C11—H11B109.0
C22—O4—C4118.6 (3)H11A—C11—H11B107.8
C2—C1—C10113.8 (3)C13—C12—C11110.3 (3)
C2—C1—H1A108.8C13—C12—H12A109.6
C10—C1—H1A108.8C11—C12—H12A109.6
C2—C1—H1B108.8C13—C12—H12B109.6
C10—C1—H1B108.8C11—C12—H12B109.6
H1A—C1—H1B107.7H12A—C12—H12B108.1
C3—C2—C1112.3 (3)C12—C13—C17115.7 (3)
C3—C2—H2A109.1C12—C13—C14109.6 (3)
C1—C2—H2A109.1C17—C13—C1499.6 (3)
C3—C2—H2B109.1C12—C13—C18111.0 (3)
C1—C2—H2B109.1C17—C13—C18106.8 (3)
H2A—C2—H2B107.9C14—C13—C18113.7 (3)
O3—C3—C2111.1 (3)C15—C14—C8121.3 (3)
O3—C3—C4103.8 (3)C15—C14—C13104.2 (3)
C2—C3—C4112.3 (3)C8—C14—C13113.5 (3)
O3—C3—H3109.9C15—C14—H14105.5
C2—C3—H3109.9C8—C14—H14105.5
C4—C3—H3109.9C13—C14—H14105.5
O4—C4—C3105.2 (3)C14—C15—C16102.8 (3)
O4—C4—C5111.4 (3)C14—C15—H15A111.2
C3—C4—C5112.8 (3)C16—C15—H15A111.2
O4—C4—H4109.1C14—C15—H15B111.2
C3—C4—H4109.1C16—C15—H15B111.2
C5—C4—H4109.1H15A—C15—H15B109.1
C4—C5—C6113.0 (3)C17—C16—C15105.3 (3)
C4—C5—C10116.0 (3)C17—C16—H16A110.7
C6—C5—C10112.7 (3)C15—C16—H16A110.7
C4—C5—H5104.6C17—C16—H16B110.7
C6—C5—H5104.6C15—C16—H16B110.7
C10—C5—H5104.6H16A—C16—H16B108.8
C7—C6—C5109.9 (3)O17—C17—C13127.2 (4)
C7—C6—H6A109.7O17—C17—C16124.5 (4)
C5—C6—H6A109.7C13—C17—C16108.3 (3)
C7—C6—H6B109.7C13—C18—H18A109.5
C5—C6—H6B109.7C13—C18—H18B109.5
H6A—C6—H6B108.2H18A—C18—H18B109.5
C8—C7—C6113.5 (3)C13—C18—H18C109.5
C8—C7—H7A108.9H18A—C18—H18C109.5
C6—C7—H7A108.9H18B—C18—H18C109.5
C8—C7—H7B108.9C10—C19—H19A109.5
C6—C7—H7B108.9C10—C19—H19B109.5
H7A—C7—H7B107.7H19A—C19—H19B109.5
C7—C8—C14111.3 (3)C10—C19—H19C109.5
C7—C8—C9111.5 (3)H19A—C19—H19C109.5
C14—C8—C9108.1 (3)H19B—C19—H19C109.5
C7—C8—H8108.6O20—C20—O3124.1 (4)
C14—C8—H8108.6O20—C20—C21125.0 (4)
C9—C8—H8108.6O3—C20—C21111.0 (3)
C11—C9—C8112.3 (3)C20—C21—H21A109.5
C11—C9—C10114.0 (3)C20—C21—H21B109.5
C8—C9—C10112.4 (3)H21A—C21—H21B109.5
C11—C9—H9105.7C20—C21—H21C109.5
C8—C9—H9105.7H21A—C21—H21C109.5
C10—C9—H9105.7H21B—C21—H21C109.5
C1—C10—C19109.8 (3)O22—C22—O4123.1 (4)
C1—C10—C5107.2 (3)O22—C22—C23126.1 (4)
C19—C10—C5113.0 (3)O4—C22—C23110.9 (4)
C1—C10—C9109.6 (3)C22—C23—H23A109.5
C19—C10—C9110.6 (3)C22—C23—H23B109.5
C5—C10—C9106.5 (3)H23A—C23—H23B109.5
C9—C11—C12112.7 (3)C22—C23—H23C109.5
C9—C11—H11A109.0H23A—C23—H23C109.5
C12—C11—H11A109.0H23B—C23—H23C109.5
C9—C11—H11B109.0
C10—C1—C2—C357.1 (4)C8—C9—C10—C1966.5 (4)
C20—O3—C3—C283.9 (4)C11—C9—C10—C5174.1 (3)
C20—O3—C3—C4155.3 (3)C8—C9—C10—C556.6 (3)
C1—C2—C3—O363.7 (4)C8—C9—C11—C1253.6 (4)
C1—C2—C3—C452.0 (4)C10—C9—C11—C12177.0 (3)
C22—O4—C4—C3130.6 (3)C9—C11—C12—C1354.7 (4)
C22—O4—C4—C5106.8 (4)C11—C12—C13—C17167.8 (3)
O3—C3—C4—O4166.5 (3)C11—C12—C13—C1456.2 (4)
C2—C3—C4—O473.5 (4)C11—C12—C13—C1870.3 (4)
O3—C3—C4—C571.9 (4)C7—C8—C14—C1554.9 (4)
C2—C3—C4—C548.2 (4)C9—C8—C14—C15177.6 (3)
O4—C4—C5—C663.8 (4)C7—C8—C14—C13179.8 (3)
C3—C4—C5—C6178.1 (3)C9—C8—C14—C1357.1 (4)
O4—C4—C5—C1068.5 (4)C12—C13—C14—C15166.0 (3)
C3—C4—C5—C1049.6 (4)C17—C13—C14—C1544.2 (4)
C4—C5—C6—C7167.6 (3)C18—C13—C14—C1569.0 (4)
C10—C5—C6—C758.5 (4)C12—C13—C14—C860.0 (4)
C5—C6—C7—C853.5 (4)C17—C13—C14—C8178.2 (3)
C6—C7—C8—C14172.6 (3)C18—C13—C14—C864.9 (4)
C6—C7—C8—C951.9 (4)C8—C14—C15—C16168.9 (3)
C7—C8—C9—C11175.6 (3)C13—C14—C15—C1639.5 (4)
C14—C8—C9—C1153.0 (4)C14—C15—C16—C1718.5 (4)
C7—C8—C9—C1054.2 (4)C12—C13—C17—O1727.6 (6)
C14—C8—C9—C10176.8 (3)C14—C13—C17—O17144.9 (5)
C2—C1—C10—C1969.2 (4)C18—C13—C17—O1796.5 (5)
C2—C1—C10—C553.9 (4)C12—C13—C17—C16149.8 (3)
C2—C1—C10—C9169.2 (3)C14—C13—C17—C1632.5 (4)
C4—C5—C10—C150.9 (4)C18—C13—C17—C1686.1 (4)
C6—C5—C10—C1176.7 (3)C15—C16—C17—O17168.4 (4)
C4—C5—C10—C1970.2 (4)C15—C16—C17—C139.1 (4)
C6—C5—C10—C1962.2 (4)C3—O3—C20—O204.6 (5)
C4—C5—C10—C9168.1 (3)C3—O3—C20—C21175.4 (3)
C6—C5—C10—C959.4 (4)C4—O4—C22—O223.1 (6)
C11—C9—C10—C158.4 (4)C4—O4—C22—C23177.9 (3)
C8—C9—C10—C1172.3 (3)C19—C10—C13—C180.6 (3)
C11—C9—C10—C1962.8 (4)
(II) 17-Oxo-5β-androstane-3α,4β-diyl diacetate top
Crystal data top
C23H34O5Dx = 1.078 Mg m3
Mr = 390.50Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P65Cell parameters from 25 reflections
Hall symbol: P 65θ = 8.8–18.5°
a = 22.885 (3) ŵ = 0.08 mm1
c = 7.9582 (12) ÅT = 293 K
V = 3609.4 (9) Å3Prism, colourless
Z = 60.37 × 0.24 × 0.24 mm
F(000) = 1272
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.033
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.1°
Graphite monochromatorh = 1825
ω–2θ scansk = 1625
7826 measured reflectionsl = 1010
2953 independent reflections3 standard reflections every 150 min
1369 reflections with I > 2σ(I) intensity decay: 6.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0825P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
2953 reflectionsΔρmax = 0.19 e Å3
258 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (12)
Crystal data top
C23H34O5Z = 6
Mr = 390.50Mo Kα radiation
Hexagonal, P65µ = 0.08 mm1
a = 22.885 (3) ÅT = 293 K
c = 7.9582 (12) Å0.37 × 0.24 × 0.24 mm
V = 3609.4 (9) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.033
7826 measured reflections3 standard reflections every 150 min
2953 independent reflections intensity decay: 6.5%
1369 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.140H-atom parameters constrained
S = 0.87Δρmax = 0.19 e Å3
2953 reflectionsΔρmin = 0.16 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.08172 (11)0.25266 (11)0.2307 (4)0.0668 (8)
O40.12401 (11)0.35112 (11)0.0174 (4)0.0627 (7)
O170.31483 (14)0.23121 (19)0.1126 (5)0.1158 (12)
O200.18538 (16)0.29103 (17)0.3172 (7)0.1378 (18)
O220.05760 (16)0.26578 (17)0.1883 (4)0.0990 (10)
C10.0375 (2)0.3760 (2)0.4114 (6)0.0788 (12)
H1A0.08280.41000.44430.095*
H1B0.00720.37250.50100.095*
C20.0351 (2)0.3081 (2)0.3946 (5)0.0717 (11)
H2A0.04710.29580.50030.086*
H2B0.01000.27300.36340.086*
C30.08484 (17)0.31670 (16)0.2603 (5)0.0573 (10)
H30.13050.35040.29610.069*
C40.06884 (16)0.33755 (16)0.0952 (5)0.0504 (9)
H40.02640.30100.05020.061*
C50.06531 (16)0.40238 (15)0.1082 (5)0.0542 (9)
H50.11080.43870.13640.065*
C60.04707 (17)0.42064 (18)0.0605 (5)0.0662 (11)
H6A0.05630.46690.05630.079*
H6B0.07530.41790.14750.079*
C70.02616 (17)0.37473 (18)0.1059 (5)0.0580 (9)
H7A0.03380.32960.12550.070*
H7B0.03590.39040.20970.070*
C80.07444 (15)0.37179 (15)0.0302 (4)0.0471 (8)
H80.06910.41680.04160.057*
C90.05700 (15)0.35191 (15)0.2007 (4)0.0486 (8)
H90.06150.30750.18340.058*
C100.01821 (18)0.39998 (16)0.2502 (5)0.0577 (10)
C110.10806 (19)0.3422 (2)0.3384 (5)0.0671 (11)
H11A0.09840.32390.43760.081*
H11B0.10230.38580.36800.081*
C120.18131 (18)0.2955 (2)0.2876 (6)0.0703 (11)
H12A0.18940.24990.27420.084*
H12B0.21090.29500.37550.084*
C130.19691 (17)0.31856 (18)0.1262 (5)0.0594 (9)
C140.14760 (16)0.32248 (16)0.0104 (4)0.0505 (8)
H140.15150.27780.01290.061*
C150.17840 (19)0.3285 (2)0.1740 (5)0.0661 (11)
H15A0.16200.31430.26910.079*
H15B0.16890.37430.19240.079*
C160.2551 (2)0.2795 (2)0.1439 (7)0.0861 (14)
H16A0.28160.29850.18770.103*
H16B0.26970.23640.19830.103*
C170.2630 (2)0.2710 (2)0.0429 (6)0.0732 (12)
C180.1973 (2)0.3857 (2)0.1485 (7)0.0837 (13)
H18A0.15370.42030.18590.126*
H18B0.23070.37960.23030.126*
H18C0.20780.39870.04300.126*
C190.0318 (2)0.47211 (18)0.2829 (8)0.0966 (17)
H19A0.01800.48760.18680.145*
H19B0.07910.50160.30250.145*
H19C0.00670.47210.37970.145*
C200.13576 (19)0.2479 (2)0.2602 (7)0.0809 (14)
C210.1253 (2)0.1802 (2)0.2039 (9)0.111 (2)
H21A0.08420.14480.25120.167*
H21B0.16250.17530.24130.167*
H21C0.12270.17750.08350.167*
C220.1128 (2)0.3105 (2)0.1460 (6)0.0728 (11)
C230.1771 (3)0.3281 (3)0.2352 (8)0.126 (2)
H23A0.20640.37620.23420.189*
H23B0.16730.31250.34930.189*
H23C0.19890.30700.17940.189*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0515 (13)0.0587 (13)0.096 (2)0.0322 (11)0.0187 (13)0.0035 (14)
O40.0515 (13)0.0682 (15)0.0676 (17)0.0294 (12)0.0071 (13)0.0090 (15)
O170.0577 (16)0.127 (3)0.128 (3)0.0207 (18)0.025 (2)0.014 (3)
O200.074 (2)0.098 (2)0.245 (5)0.0457 (19)0.073 (3)0.032 (3)
O220.090 (2)0.112 (2)0.071 (2)0.0321 (19)0.0024 (19)0.029 (2)
C10.076 (2)0.111 (3)0.061 (3)0.056 (2)0.010 (2)0.031 (3)
C20.074 (2)0.098 (3)0.051 (3)0.049 (2)0.007 (2)0.008 (2)
C30.0490 (19)0.0510 (19)0.068 (3)0.0221 (15)0.009 (2)0.0051 (19)
C40.0466 (17)0.0491 (17)0.059 (2)0.0263 (15)0.0023 (17)0.0062 (18)
C50.0487 (17)0.0406 (17)0.071 (3)0.0205 (15)0.0036 (19)0.0078 (18)
C60.063 (2)0.059 (2)0.081 (3)0.0346 (18)0.018 (2)0.023 (2)
C70.064 (2)0.073 (2)0.050 (2)0.0430 (19)0.0133 (19)0.0141 (19)
C80.062 (2)0.0435 (17)0.046 (2)0.0337 (16)0.0073 (17)0.0064 (16)
C90.0545 (19)0.0466 (17)0.050 (2)0.0292 (15)0.0043 (17)0.0010 (17)
C100.064 (2)0.0545 (19)0.058 (2)0.0324 (17)0.009 (2)0.0180 (19)
C110.082 (3)0.083 (3)0.050 (3)0.052 (2)0.011 (2)0.001 (2)
C120.065 (2)0.081 (3)0.064 (3)0.035 (2)0.019 (2)0.012 (2)
C130.057 (2)0.068 (2)0.063 (3)0.0381 (18)0.009 (2)0.007 (2)
C140.0545 (18)0.0503 (18)0.052 (2)0.0304 (15)0.0071 (17)0.0080 (17)
C150.070 (2)0.083 (3)0.059 (3)0.048 (2)0.002 (2)0.003 (2)
C160.068 (3)0.092 (3)0.097 (4)0.039 (2)0.013 (3)0.005 (3)
C170.060 (2)0.086 (3)0.078 (3)0.040 (2)0.010 (2)0.008 (2)
C180.094 (3)0.093 (3)0.092 (3)0.068 (3)0.006 (3)0.003 (3)
C190.089 (3)0.059 (2)0.143 (5)0.038 (2)0.002 (3)0.038 (3)
C200.049 (2)0.066 (2)0.124 (4)0.027 (2)0.013 (3)0.009 (3)
C210.093 (3)0.082 (3)0.181 (6)0.060 (3)0.021 (4)0.001 (4)
C220.077 (3)0.089 (3)0.058 (3)0.046 (2)0.010 (2)0.000 (3)
C230.103 (4)0.183 (5)0.093 (4)0.073 (4)0.034 (4)0.022 (4)
Geometric parameters (Å, º) top
O3—C201.315 (4)C10—C191.541 (5)
O3—C31.451 (4)C11—C121.524 (5)
O4—C221.319 (5)C11—H11A0.9700
O4—C41.449 (4)C11—H11B0.9700
O17—C171.210 (5)C12—C131.498 (6)
O20—C201.161 (5)C12—H12A0.9700
O22—C221.211 (5)C12—H12B0.9700
C1—C21.532 (5)C13—C171.505 (5)
C1—C101.544 (6)C13—C141.537 (5)
C1—H1A0.9700C13—C181.551 (5)
C1—H1B0.9700C14—C151.519 (5)
C2—C31.502 (5)C14—H140.9800
C2—H2A0.9700C15—C161.558 (6)
C2—H2B0.9700C15—H15A0.9700
C3—C41.505 (5)C15—H15B0.9700
C3—H30.9800C16—C171.499 (7)
C4—C51.529 (4)C16—H16A0.9700
C4—H40.9800C16—H16B0.9700
C5—C61.526 (5)C18—H18A0.9600
C5—C101.544 (5)C18—H18B0.9600
C5—H50.9800C18—H18C0.9600
C6—C71.511 (5)C19—H19A0.9600
C6—H6A0.9700C19—H19B0.9600
C6—H6B0.9700C19—H19C0.9600
C7—C81.525 (5)C20—C211.513 (6)
C7—H7A0.9700C21—H21A0.9600
C7—H7B0.9700C21—H21B0.9600
C8—C141.514 (4)C21—H21C0.9600
C8—C91.546 (5)C22—C231.496 (6)
C8—H80.9800C23—H23A0.9600
C9—C111.534 (5)C23—H23B0.9600
C9—C101.560 (5)C23—H23C0.9600
C9—H90.9800
C20—O3—C3118.8 (3)C9—C11—H11B108.8
C22—O4—C4119.2 (3)H11A—C11—H11B107.7
C2—C1—C10114.6 (3)C13—C12—C11110.7 (3)
C2—C1—H1A108.6C13—C12—H12A109.5
C10—C1—H1A108.6C11—C12—H12A109.5
C2—C1—H1B108.6C13—C12—H12B109.5
C10—C1—H1B108.6C11—C12—H12B109.5
H1A—C1—H1B107.6H12A—C12—H12B108.1
C3—C2—C1106.8 (3)C12—C13—C17116.9 (3)
C3—C2—H2A110.4C12—C13—C14109.2 (3)
C1—C2—H2A110.4C17—C13—C14100.0 (3)
C3—C2—H2B110.4C12—C13—C18111.8 (4)
C1—C2—H2B110.4C17—C13—C18105.4 (3)
H2A—C2—H2B108.6C14—C13—C18113.0 (3)
O3—C3—C2109.4 (3)C8—C14—C15120.4 (3)
O3—C3—C4106.4 (3)C8—C14—C13113.5 (3)
C2—C3—C4112.0 (3)C15—C14—C13104.5 (3)
O3—C3—H3109.7C8—C14—H14105.8
C2—C3—H3109.7C15—C14—H14105.8
C4—C3—H3109.7C13—C14—H14105.8
O4—C4—C3106.5 (3)C14—C15—C16102.1 (3)
O4—C4—C5107.3 (3)C14—C15—H15A111.3
C3—C4—C5112.8 (3)C16—C15—H15A111.3
O4—C4—H4110.1C14—C15—H15B111.3
C3—C4—H4110.1C16—C15—H15B111.3
C5—C4—H4110.1H15A—C15—H15B109.2
C6—C5—C4111.1 (3)C17—C16—C15105.3 (4)
C6—C5—C10111.9 (3)C17—C16—H16A110.7
C4—C5—C10112.9 (3)C15—C16—H16A110.7
C6—C5—H5106.8C17—C16—H16B110.7
C4—C5—H5106.8C15—C16—H16B110.7
C10—C5—H5106.8H16A—C16—H16B108.8
C7—C6—C5112.4 (3)O17—C17—C16124.1 (4)
C7—C6—H6A109.1O17—C17—C13126.5 (4)
C5—C6—H6A109.1C16—C17—C13109.3 (4)
C7—C6—H6B109.1C13—C18—H18A109.5
C5—C6—H6B109.1C13—C18—H18B109.5
H6A—C6—H6B107.9H18A—C18—H18B109.5
C6—C7—C8112.8 (3)C13—C18—H18C109.5
C6—C7—H7A109.0H18A—C18—H18C109.5
C8—C7—H7A109.0H18B—C18—H18C109.5
C6—C7—H7B109.0C10—C19—H19A109.5
C8—C7—H7B109.0C10—C19—H19B109.5
H7A—C7—H7B107.8H19A—C19—H19B109.5
C14—C8—C7112.9 (3)C10—C19—H19C109.5
C14—C8—C9108.7 (3)H19A—C19—H19C109.5
C7—C8—C9110.4 (2)H19B—C19—H19C109.5
C14—C8—H8108.3O20—C20—O3124.0 (4)
C7—C8—H8108.3O20—C20—C21124.9 (4)
C9—C8—H8108.3O3—C20—C21111.0 (4)
C11—C9—C8112.3 (2)C20—C21—H21A109.5
C11—C9—C10114.5 (3)C20—C21—H21B109.5
C8—C9—C10111.7 (3)H21A—C21—H21B109.5
C11—C9—H9105.9C20—C21—H21C109.5
C8—C9—H9105.9H21A—C21—H21C109.5
C10—C9—H9105.9H21B—C21—H21C109.5
C5—C10—C19108.8 (3)O22—C22—O4124.3 (4)
C5—C10—C1107.6 (3)O22—C22—C23124.5 (4)
C19—C10—C1107.5 (3)O4—C22—C23111.1 (4)
C5—C10—C9110.2 (3)C22—C23—H23A109.5
C19—C10—C9111.0 (3)C22—C23—H23B109.5
C1—C10—C9111.7 (3)H23A—C23—H23B109.5
C12—C11—C9113.8 (3)C22—C23—H23C109.5
C12—C11—H11A108.8H23A—C23—H23C109.5
C9—C11—H11A108.8H23B—C23—H23C109.5
C12—C11—H11B108.8
C10—C1—C2—C360.8 (4)C8—C9—C10—C1965.8 (4)
C20—O3—C3—C2117.8 (4)C11—C9—C10—C156.6 (4)
C20—O3—C3—C4121.1 (4)C8—C9—C10—C1174.3 (3)
C1—C2—C3—O3176.3 (3)C8—C9—C11—C1250.8 (4)
C1—C2—C3—C458.6 (4)C10—C9—C11—C12179.6 (3)
C22—O4—C4—C3111.6 (4)C9—C11—C12—C1353.7 (4)
C22—O4—C4—C5127.4 (3)C11—C12—C13—C17169.0 (3)
O3—C3—C4—O466.5 (3)C11—C12—C13—C1456.5 (4)
C2—C3—C4—O4174.0 (3)C11—C12—C13—C1869.4 (4)
O3—C3—C4—C5176.0 (2)C7—C8—C14—C1555.5 (4)
C2—C3—C4—C556.6 (4)C9—C8—C14—C15178.3 (3)
O4—C4—C5—C664.6 (3)C7—C8—C14—C13179.6 (3)
C3—C4—C5—C6178.4 (3)C9—C8—C14—C1356.8 (3)
O4—C4—C5—C10168.7 (3)C12—C13—C14—C860.9 (4)
C3—C4—C5—C1051.8 (4)C17—C13—C14—C8175.9 (3)
C4—C5—C6—C773.2 (4)C18—C13—C14—C864.3 (4)
C10—C5—C6—C754.1 (4)C12—C13—C14—C15166.1 (3)
C5—C6—C7—C854.6 (4)C17—C13—C14—C1542.8 (3)
C6—C7—C8—C14176.4 (3)C18—C13—C14—C1568.8 (4)
C6—C7—C8—C954.6 (4)C8—C14—C15—C16168.2 (3)
C14—C8—C9—C1150.6 (3)C13—C14—C15—C1639.2 (4)
C7—C8—C9—C11174.9 (3)C14—C15—C16—C1719.9 (4)
C14—C8—C9—C10179.2 (3)C15—C16—C17—O17172.6 (4)
C7—C8—C9—C1054.9 (3)C15—C16—C17—C136.8 (5)
C6—C5—C10—C1968.1 (4)C12—C13—C17—O1731.6 (6)
C4—C5—C10—C19165.7 (3)C14—C13—C17—O17149.3 (4)
C6—C5—C10—C1175.8 (3)C18—C13—C17—O1793.3 (5)
C4—C5—C10—C149.6 (4)C12—C13—C17—C16147.8 (4)
C6—C5—C10—C953.8 (3)C14—C13—C17—C1630.1 (4)
C4—C5—C10—C972.4 (4)C18—C13—C17—C1687.3 (4)
C2—C1—C10—C556.2 (4)C3—O3—C20—O204.2 (8)
C2—C1—C10—C19173.2 (4)C3—O3—C20—C21173.6 (4)
C2—C1—C10—C964.9 (4)C4—O4—C22—O227.9 (6)
C11—C9—C10—C5176.1 (3)C4—O4—C22—C23173.5 (4)
C8—C9—C10—C554.8 (3)C19—C10—C13—C180.7 (4)
C11—C9—C10—C1963.3 (4)

Experimental details

(I)(II)
Crystal data
Chemical formulaC23H34O5C23H34O5
Mr390.50390.50
Crystal system, space groupOrthorhombic, P212121Hexagonal, P65
Temperature (K)293293
a, b, c (Å)6.742 (7), 12.174 (4), 25.893 (6)22.885 (3), 22.885 (4), 7.9582 (12)
α, β, γ (°)90, 90, 9090, 90, 120
V3)2125 (2)3609.4 (9)
Z46
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.50 × 0.45 × 0.100.37 × 0.24 × 0.24
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5566, 2812, 1613 7826, 2953, 1369
Rint0.0350.033
(sin θ/λ)max1)0.6510.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.127, 1.00 0.046, 0.140, 0.87
No. of reflections28122953
No. of parameters257258
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.200.19, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software, HELENA (Spek, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), HELENA, ORTEPII (Johnson, 1976), SHELXL97.

Selected bond lengths (Å) for (I) top
O3—C201.347 (4)O20—C201.191 (5)
O4—C221.352 (4)C2—C31.511 (5)
Selected bond lengths (Å) for (II) top
O3—C201.315 (4)O20—C201.161 (5)
O4—C221.319 (5)C2—C31.502 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds