Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, {[Ba3(CHCl2O6P2)2(H2O)4]·H2O}n or {[Ba3(Cl2CP2O6H)(H2O)4]·H2O}n, is two-dimensional. The asymmetric unit contains three independent Ba2+ atoms, two chelating and bridging Cl2CP2O6H3- ligands and four aqua ligands, connected in layers parallel to the (100) plane. There are pores between the layers in the direction of the b axis filled with lattice water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104023704/sk1775sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104023704/sk1775Isup2.hkl
Contains datablock I

CCDC reference: 256997

Comment top

Due to the chemical applications of metal bisphosphonates in, for example, ion exchange, sorption and catalysis, research on the chemistry of metal phosphonates has recently focused on the properties of solid materials. The effectiveness of these materials is related to the degree of porosity, and their structures consist of chains, layers or pillared layers. The dimensionality is dependent on the number of donor atoms of the ligand, but also on the length of the organic group between the phosphonate groups and on the degree of protonation of the phosphonate group (Clearfield, 1998; Zhang & Clearfield, 1997; Alberti et al., 1996; Snover et al., 1996; Serre & Férey, 2002). Bisphosphonates also have pharmaceutical applications (Fleisch, 1995; Fleisch et al., 1969; Kanis & McCloskey, 1990; Bijvoet et al., 1995), and one of the best-documented methylene bisphosphonate derivatives in these applications is clodronate, (dichloromethylene)bisphosphonate (Major et al., 2000). Clodronate has six possible O-donor atoms and it also forms polymeric structures that can be utilized in chemical applications.

The previously reported crystal structures of Ca and Sr complexes of clodronate, [M{Cl2C(PO3H)2}(H2O)5] (M is Ca or Sr), revealed that clodronate itself acts only as a bidentate chelating ligand, forming monomeric compounds (Nardelli et al., 1983; Kontturi et al., 2004a). On the other hand, our results show that both clodronate and its partial ester derivative also produce polymers (Kontturi et al., 2002, 2004b). The title novel Ba complex of clodronate, [{Ba3(Cl2CP2O6H)2(H2O)4}·H2O]n, (I), is also a polymer, but its composition differs from the polymeric Ca complexes of clodronate described earlier (Kontturi et al., 2004b). Its preparation and crystal structure are reported here. \sch

Compound (I) is a polymer, the asymmetric unit consisting of three independent Ba2+ atoms, two chelating and bridging Cl2CP2O6H3− ligands and four aqua ligands (Fig. 1). Five O atoms of both Cl2CP2O6H3− ligands are coordinated to Ba atoms, forming four- and six-membered chelate rings and acting as monoatomic bridges between the metal atoms. Two O atoms (O11 and O33) are coordinated simultaneously to all three Ba atoms, the P—O distances being 1.523 (3) and 1.522 (3) Å. The other coordinated O atoms have P—O distances of 1.492 (3)–1.515 (3) Å, and the P—O distances of the remaining, protonated, O atoms are 1.562 (3) and 1.575 (3) Å. The other bond distances and angles of the Cl2CP2O6H3− ligand are all typical (Nardelli et al., 1983; Kontturi et al., 2002, 2004a,b).

Of the three Ba atoms in (I), Ba1 is nine-coordinated, while Ba2 and Ba3 are eight-coordinated. The coordination spheres of all Ba atoms consist of four Cl2CP2O6H3− ligands, the remaining coordination sites being occupied by aqua ligands. The Ba—O bond distances range from 2.653 (3) to 3.292 (4) Å (Table 1). The layers of (I) are parallel to the (100) plane, and they are packed via intermolecular hydrogen bonds, the O···O/Cl distances being 2.606 (4)–3.541 (4) Å (138–173°). The packing diagram (Fig. 2) shows pores between the layers in the direction of the b axis. These pores are filled with lattice water molecules.

Experimental top

Compound (I), [{Ba3(Cl2CP2O6H)2(H2O)4}·H2O]n, was crystallized by the gel method using Na2Cl2C(PO3H)2·4H2O (0.014 mmol, 5.0 mg) and Ba(NO3)2 (0.017 mmol, 4.5 mg). These compounds were dissolved in water (0.8 ml, pH 4), tetramethoxysilane (TMOS, 0.2 ml) was added, and the solution was then shaken until homogenous. After gel formation, acetone (1.0 ml) was placed above the gel as precipitant. Needle-shaped crystals of (I) formed in and above the gel, and they were purified for characterization under the microscope. Analysis found: C 2.45, H 0.71, Ba 41.7%; calculated for C2H12O17Ba3Cl4P4: C 2.44, H 1.23, Ba 41.8%.

Refinement top

H atoms were located in Fourier difference maps with O—H distances ~0.85 Å, and a riding model was used, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms have been omitted. Atoms labelled with the suffixes A, B, C and D are at the symmetry positions (-x, −y, 1 − z), (x, 1/2 − y, 1/2 + z), (-x, 1/2 + y, 1/2 − z) and (-x, 1 − y, 1 − z), respectively.
[Figure 2] Fig. 2. A packing diagram for (I), viewed in the direction of the b axis, indicating the pores between the layers. For clarity, H atoms and the lattice water molecules have been omitted.
Poly[[tetraaqua(µ7-hydrogen dichloromethylenebisphosphonato)(µ5-hydrogen dichloromethylenebisphosphonato)tribarium(II)] monohydrate] top
Crystal data top
[Ba3(CHCl2O6P2)2(H2O)4]·H2OF(000) = 1824
Mr = 985.82Dx = 3.089 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24802 reflections
a = 11.4147 (3) Åθ = 2.8–26.0°
b = 12.9907 (4) ŵ = 6.40 mm1
c = 14.2937 (5) ÅT = 120 K
β = 90.290 (2)°Needle, colourless
V = 2119.51 (11) Å30.25 × 0.10 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
4133 independent reflections
Radiation source: fine-focus sealed tube3746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
type of scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(XPREP in SHELXTL; Bruker, 1998)
h = 1414
Tmin = 0.277, Tmax = 0.528k = 1616
24802 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0176P)2 + 7.3351P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
4133 reflectionsΔρmax = 0.72 e Å3
272 parametersΔρmin = 0.82 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00049 (6)
Crystal data top
[Ba3(CHCl2O6P2)2(H2O)4]·H2OV = 2119.51 (11) Å3
Mr = 985.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4147 (3) ŵ = 6.40 mm1
b = 12.9907 (4) ÅT = 120 K
c = 14.2937 (5) Å0.25 × 0.10 × 0.10 mm
β = 90.290 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4133 independent reflections
Absorption correction: multi-scan
(XPREP in SHELXTL; Bruker, 1998)
3746 reflections with I > 2σ(I)
Tmin = 0.277, Tmax = 0.528Rint = 0.054
24802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.13Δρmax = 0.72 e Å3
4133 reflectionsΔρmin = 0.82 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.11188 (2)0.130025 (18)0.514612 (18)0.01125 (8)
Ba20.01823 (2)0.368685 (18)0.337945 (18)0.01007 (8)
Ba30.18538 (2)0.335076 (19)0.618552 (18)0.01152 (8)
Cl10.37361 (10)0.29439 (8)0.44452 (8)0.0164 (2)
Cl20.42071 (9)0.10881 (8)0.34054 (8)0.0170 (2)
Cl30.29801 (10)0.02586 (8)0.21423 (8)0.0176 (2)
Cl40.31975 (9)0.23672 (8)0.14453 (8)0.0169 (2)
C10.3323 (4)0.1619 (3)0.4317 (3)0.0112 (9)
C20.2255 (4)0.1262 (3)0.1515 (3)0.0107 (9)
P10.17709 (10)0.15788 (8)0.39167 (8)0.0095 (2)
P20.36085 (10)0.09218 (8)0.54189 (8)0.0113 (2)
P30.09084 (9)0.16235 (8)0.21712 (8)0.0092 (2)
P40.19793 (10)0.08175 (8)0.03015 (8)0.0104 (2)
O110.1063 (3)0.2156 (2)0.4649 (2)0.0125 (6)
O120.1739 (3)0.2140 (2)0.2988 (2)0.0116 (6)
O130.1489 (3)0.0443 (2)0.3865 (2)0.0133 (6)
O210.2836 (3)0.1401 (2)0.6136 (2)0.0138 (7)
O220.4910 (3)0.1158 (2)0.5684 (2)0.0157 (7)
H220.54130.07760.54220.023*
O230.3426 (3)0.0208 (2)0.5212 (2)0.0137 (6)
O310.1235 (3)0.1839 (2)0.3177 (2)0.0152 (7)
O320.0154 (3)0.0674 (2)0.2047 (2)0.0148 (6)
O330.0406 (3)0.2576 (2)0.1700 (2)0.0122 (6)
O410.1186 (3)0.1609 (2)0.0118 (2)0.0142 (6)
O420.3229 (3)0.0864 (2)0.0170 (2)0.0165 (7)
H420.32960.14600.04120.025*
O430.1556 (3)0.0275 (2)0.0307 (2)0.0141 (6)
O10.0753 (3)0.0380 (2)0.6134 (2)0.0166 (7)
H1A0.13670.07470.61880.025*
H1B0.07850.00870.65500.025*
O20.3309 (3)0.2321 (3)0.3960 (3)0.0269 (8)
H2A0.27670.20650.36370.040*
H2B0.36140.18430.42850.040*
O30.1996 (3)0.4634 (2)0.2859 (2)0.0160 (7)
H3A0.17210.48480.23430.024*
H3B0.25830.42530.27360.024*
O40.4180 (3)0.4077 (3)0.6269 (3)0.0279 (8)
H4A0.42860.46890.64640.042*
H4B0.47960.38780.60020.042*
O50.4422 (3)0.6004 (3)0.7230 (3)0.0292 (8)
H5A0.43430.64950.68420.044*
H5B0.48240.62190.76890.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01566 (15)0.00770 (13)0.01037 (15)0.00007 (9)0.00102 (10)0.00007 (10)
Ba20.01298 (14)0.00725 (13)0.00998 (14)0.00006 (9)0.00127 (10)0.00002 (10)
Ba30.01581 (15)0.00977 (13)0.00899 (14)0.00212 (10)0.00093 (10)0.00020 (10)
Cl10.0178 (6)0.0119 (5)0.0196 (6)0.0031 (4)0.0012 (4)0.0018 (4)
Cl20.0151 (5)0.0208 (5)0.0151 (6)0.0027 (4)0.0038 (4)0.0037 (5)
Cl30.0180 (6)0.0184 (5)0.0164 (6)0.0071 (4)0.0014 (4)0.0037 (4)
Cl40.0156 (5)0.0166 (5)0.0185 (6)0.0062 (4)0.0005 (4)0.0015 (4)
C10.012 (2)0.0103 (19)0.011 (2)0.0004 (17)0.0031 (17)0.0050 (17)
C20.009 (2)0.0079 (19)0.015 (2)0.0001 (16)0.0014 (17)0.0032 (17)
P10.0105 (5)0.0095 (5)0.0086 (5)0.0005 (4)0.0006 (4)0.0009 (4)
P20.0116 (5)0.0111 (5)0.0111 (6)0.0021 (4)0.0023 (4)0.0003 (4)
P30.0111 (5)0.0077 (5)0.0087 (5)0.0005 (4)0.0014 (4)0.0001 (4)
P40.0128 (6)0.0089 (5)0.0096 (6)0.0015 (4)0.0016 (4)0.0004 (4)
O110.0122 (15)0.0139 (15)0.0113 (15)0.0041 (12)0.0001 (12)0.0013 (13)
O120.0136 (15)0.0126 (14)0.0086 (15)0.0000 (12)0.0011 (12)0.0012 (12)
O130.0198 (17)0.0099 (15)0.0101 (16)0.0008 (12)0.0048 (12)0.0013 (12)
O210.0140 (16)0.0123 (15)0.0152 (17)0.0033 (12)0.0006 (13)0.0011 (13)
O220.0110 (16)0.0159 (15)0.0200 (18)0.0025 (12)0.0047 (13)0.0038 (13)
O230.0132 (16)0.0127 (15)0.0151 (16)0.0030 (12)0.0020 (12)0.0013 (13)
O310.0174 (17)0.0167 (16)0.0115 (16)0.0024 (13)0.0007 (13)0.0020 (13)
O320.0145 (15)0.0087 (14)0.0211 (17)0.0010 (12)0.0044 (13)0.0040 (13)
O330.0162 (16)0.0112 (15)0.0091 (16)0.0014 (12)0.0020 (12)0.0009 (12)
O410.0191 (17)0.0115 (14)0.0119 (16)0.0035 (12)0.0025 (13)0.0014 (13)
O420.0181 (17)0.0157 (16)0.0156 (17)0.0034 (13)0.0069 (13)0.0008 (13)
O430.0213 (17)0.0077 (14)0.0132 (16)0.0011 (12)0.0021 (13)0.0022 (12)
O10.0177 (17)0.0125 (15)0.0195 (17)0.0000 (13)0.0009 (13)0.0041 (13)
O20.0249 (19)0.0231 (18)0.033 (2)0.0077 (15)0.0123 (15)0.0078 (16)
O30.0151 (16)0.0183 (16)0.0145 (17)0.0037 (13)0.0020 (13)0.0034 (13)
O40.0245 (19)0.032 (2)0.028 (2)0.0000 (16)0.0010 (15)0.0098 (17)
O50.032 (2)0.0274 (19)0.029 (2)0.0001 (16)0.0025 (16)0.0001 (17)
Geometric parameters (Å, º) top
Ba1—O13i2.704 (3)C1—P21.844 (5)
Ba1—O41ii2.743 (3)C1—P11.860 (4)
Ba1—O33ii2.776 (3)C2—P31.857 (4)
Ba1—O12.821 (3)C2—P41.857 (5)
Ba1—O112.822 (3)P1—O131.512 (3)
Ba1—O1i2.880 (3)P1—O121.514 (3)
Ba1—O312.902 (3)P1—O111.523 (3)
Ba1—O23i3.032 (3)P2—O211.492 (3)
Ba1—O23.292 (4)P2—O231.512 (3)
Ba2—O32iii2.653 (3)P2—O221.562 (3)
Ba2—O41ii2.689 (3)P3—O311.514 (3)
Ba2—O122.742 (3)P3—O321.515 (3)
Ba2—O43iii2.788 (3)P3—O331.522 (3)
Ba2—O32.869 (3)P4—O411.498 (3)
Ba2—O112.871 (3)P4—O431.500 (3)
Ba2—O332.878 (3)P4—O421.575 (3)
Ba2—O312.909 (3)O22—H220.8473
Ba3—O12ii2.658 (3)O42—H420.8521
Ba3—O212.772 (3)O1—H1A0.8500
Ba3—O43iii2.801 (3)O1—H1B0.8500
Ba3—O42.820 (4)O2—H2A0.8416
Ba3—O112.833 (3)O2—H2B0.8516
Ba3—O32ii2.898 (3)O3—H3A0.8500
Ba3—O33ii2.943 (3)O3—H3B0.8506
Ba3—O3iv2.957 (3)O4—H4A0.8514
Cl1—C11.793 (4)O4—H4B0.8425
Cl2—C11.791 (4)O5—H5A0.8499
Cl3—C21.788 (4)O5—H5B0.8468
Cl4—C21.796 (4)
O13i—Ba1—O41ii153.75 (9)O32ii—Ba3—O3iv57.21 (8)
O13i—Ba1—O33ii93.93 (9)O33ii—Ba3—O3iv107.03 (8)
O41ii—Ba1—O33ii66.25 (9)Cl2—C1—Cl1107.2 (2)
O13i—Ba1—O160.24 (9)Cl2—C1—P2109.5 (2)
O41ii—Ba1—O1120.60 (9)Cl1—C1—P2109.8 (2)
O33ii—Ba1—O166.69 (9)Cl2—C1—P1107.7 (2)
O13i—Ba1—O11127.03 (9)Cl1—C1—P1107.9 (2)
O41ii—Ba1—O1166.38 (9)P2—C1—P1114.4 (2)
O33ii—Ba1—O1174.84 (9)Cl3—C2—Cl4109.4 (2)
O1—Ba1—O1168.01 (9)Cl3—C2—P3108.4 (2)
O13i—Ba1—O1i73.79 (9)Cl4—C2—P3108.7 (2)
O41ii—Ba1—O1i131.84 (9)Cl3—C2—P4108.8 (2)
O33ii—Ba1—O1i149.77 (9)Cl4—C2—P4107.5 (2)
O1—Ba1—O1i83.39 (10)P3—C2—P4114.0 (2)
O11—Ba1—O1i90.46 (9)O13—P1—O12114.99 (17)
O13i—Ba1—O31134.61 (9)O13—P1—O11113.63 (18)
O41ii—Ba1—O3168.08 (9)O12—P1—O11110.79 (17)
O33ii—Ba1—O31131.34 (9)O13—P1—C1104.15 (18)
O1—Ba1—O31128.19 (9)O12—P1—C1105.98 (18)
O11—Ba1—O3172.37 (8)O11—P1—C1106.39 (18)
O1i—Ba1—O3164.71 (9)O21—P2—O23117.27 (18)
O13i—Ba1—O23i63.79 (8)O21—P2—O22108.44 (18)
O41ii—Ba1—O23i114.60 (8)O23—P2—O22111.63 (17)
O33ii—Ba1—O23i129.19 (8)O21—P2—C1106.25 (18)
O1—Ba1—O23i122.76 (8)O23—P2—C1106.63 (18)
O11—Ba1—O23i155.34 (8)O22—P2—C1105.89 (19)
O1i—Ba1—O23i70.53 (8)O31—P3—O32113.86 (18)
O31—Ba1—O23i85.05 (8)O31—P3—O33111.47 (17)
O13i—Ba1—O2119.09 (9)O32—P3—O33113.17 (17)
O41ii—Ba1—O260.63 (9)O31—P3—C2108.61 (19)
O33ii—Ba1—O2114.75 (8)O32—P3—C2101.84 (18)
O1—Ba1—O2178.54 (9)O33—P3—C2107.13 (17)
O11—Ba1—O2112.36 (8)O41—P4—O43117.15 (18)
O1i—Ba1—O295.18 (8)O41—P4—O42110.50 (18)
O31—Ba1—O251.14 (9)O43—P4—O42109.22 (17)
O23i—Ba1—O256.30 (8)O41—P4—C2105.44 (18)
O32iii—Ba2—O41ii108.42 (9)O43—P4—C2110.26 (18)
O32iii—Ba2—O12132.35 (9)O42—P4—C2103.33 (18)
O41ii—Ba2—O12115.95 (9)P1—O11—Ba1116.80 (15)
O32iii—Ba2—O43iii71.97 (9)P1—O11—Ba3129.39 (16)
O41ii—Ba2—O43iii81.84 (9)Ba1—O11—Ba3107.39 (10)
O12—Ba2—O43iii97.42 (9)P1—O11—Ba295.27 (14)
O32iii—Ba2—O360.88 (9)Ba1—O11—Ba297.20 (9)
O41ii—Ba2—O376.24 (9)Ba3—O11—Ba2102.70 (9)
O12—Ba2—O3145.39 (9)P1—O12—Ba3v137.15 (17)
O43iii—Ba2—O3116.80 (9)P1—O12—Ba2100.77 (14)
O32iii—Ba2—O11145.42 (9)Ba3v—O12—Ba2114.12 (10)
O41ii—Ba2—O1166.37 (9)P1—O13—Ba1i145.65 (17)
O12—Ba2—O1152.84 (8)P2—O21—Ba3129.72 (17)
O43iii—Ba2—O1173.45 (8)P2—O22—H22115.0
O3—Ba2—O11139.58 (9)P2—O23—Ba1i127.31 (16)
O32iii—Ba2—O33107.09 (9)P3—O31—Ba1150.05 (17)
O41ii—Ba2—O33117.43 (9)P3—O31—Ba296.14 (14)
O12—Ba2—O3367.09 (8)Ba1—O31—Ba294.59 (9)
O43iii—Ba2—O33158.82 (9)P3—O32—Ba2vi144.34 (17)
O3—Ba2—O3378.51 (8)P3—O32—Ba3v98.36 (14)
O11—Ba2—O33105.04 (8)Ba2vi—O32—Ba3v109.66 (10)
O32iii—Ba2—O31140.73 (9)P3—O33—Ba1v132.21 (16)
O41ii—Ba2—O3168.67 (9)P3—O33—Ba297.17 (13)
O12—Ba2—O3174.66 (9)Ba1v—O33—Ba2118.01 (10)
O43iii—Ba2—O31140.96 (8)P3—O33—Ba3v96.38 (13)
O3—Ba2—O3181.21 (9)Ba1v—O33—Ba3v105.62 (9)
O11—Ba2—O3171.58 (8)Ba2—O33—Ba3v102.27 (9)
O33—Ba2—O3151.39 (8)P4—O41—Ba2v125.22 (16)
O12ii—Ba3—O2180.06 (9)P4—O41—Ba1v129.87 (17)
O12ii—Ba3—O43iii152.20 (9)Ba2v—O41—Ba1v103.62 (10)
O21—Ba3—O43iii127.65 (9)P4—O42—H42106.8
O12ii—Ba3—O495.18 (10)P4—O43—Ba2vi129.88 (17)
O21—Ba3—O485.74 (10)P4—O43—Ba3vi124.17 (16)
O43iii—Ba3—O485.98 (10)Ba2vi—O43—Ba3vi105.70 (9)
O12ii—Ba3—O11127.08 (9)Ba1—O1—Ba1i96.61 (10)
O21—Ba3—O1166.86 (8)Ba1—O1—H1A115.4
O43iii—Ba3—O1173.84 (8)Ba1i—O1—H1A111.1
O4—Ba3—O11120.82 (9)Ba1—O1—H1B133.0
O12ii—Ba3—O32ii69.49 (9)Ba1i—O1—H1B84.2
O21—Ba3—O32ii136.97 (9)H1A—O1—H1B107.7
O43iii—Ba3—O32ii87.24 (9)Ba1—O2—H2A64.3
O4—Ba3—O32ii125.61 (9)Ba1—O2—H2B74.8
O11—Ba3—O32ii108.62 (8)H2A—O2—H2B108.3
O12ii—Ba3—O33ii67.18 (8)Ba2—O3—Ba3iv102.39 (9)
O21—Ba3—O33ii89.30 (9)Ba2—O3—H3A92.4
O43iii—Ba3—O33ii110.34 (8)Ba3iv—O3—H3A95.3
O4—Ba3—O33ii162.28 (9)Ba2—O3—H3B119.0
O11—Ba3—O33ii72.14 (8)Ba3iv—O3—H3B130.7
O32ii—Ba3—O33ii51.45 (8)H3A—O3—H3B107.7
O12ii—Ba3—O3iv76.55 (9)Ba3—O4—H4A117.3
O21—Ba3—O3iv143.11 (9)Ba3—O4—H4B131.8
O43iii—Ba3—O3iv78.09 (8)H4A—O4—H4B108.5
O4—Ba3—O3iv68.59 (9)H5A—O5—H5B108.2
O11—Ba3—O3iv149.26 (8)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x, y+1/2, z1/2; (vi) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O23vii0.851.772.606 (4)169
O42—H42···O2v0.851.822.667 (4)173
O1—H1A···O210.851.882.722 (4)170
O1—H1B···O32i0.852.273.020 (4)148
O2—H2A···O310.841.892.697 (5)159
O2—H2B···O23i0.852.252.992 (5)146
O3—H3A···O13iii0.851.912.744 (4)166
O3—H3B···O5iv0.852.132.893 (5)150
O4—H4A···O50.852.032.868 (5)166
O5—H5A···O2iv0.852.253.037 (5)154
O5—H5B···O22viii0.852.353.081 (5)146
Symmetry codes: (i) x, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x, y+1/2, z1/2; (vii) x+1, y, z+1; (viii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ba3(CHCl2O6P2)2(H2O)4]·H2O
Mr985.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.4147 (3), 12.9907 (4), 14.2937 (5)
β (°) 90.290 (2)
V3)2119.51 (11)
Z4
Radiation typeMo Kα
µ (mm1)6.40
Crystal size (mm)0.25 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(XPREP in SHELXTL; Bruker, 1998)
Tmin, Tmax0.277, 0.528
No. of measured, independent and
observed [I > 2σ(I)] reflections
24802, 4133, 3746
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.057, 1.13
No. of reflections4133
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.82

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Bruker, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
Ba1—O13i2.704 (3)Ba3—O43iii2.801 (3)
Ba1—O41ii2.743 (3)Ba3—O42.820 (4)
Ba1—O33ii2.776 (3)Ba3—O112.833 (3)
Ba1—O12.821 (3)Ba3—O32ii2.898 (3)
Ba1—O112.822 (3)Ba3—O33ii2.943 (3)
Ba1—O1i2.880 (3)Ba3—O3iv2.957 (3)
Ba1—O312.902 (3)P1—O131.512 (3)
Ba1—O23i3.032 (3)P1—O121.514 (3)
Ba1—O23.292 (4)P1—O111.523 (3)
Ba2—O32iii2.653 (3)P2—O211.492 (3)
Ba2—O41ii2.689 (3)P2—O231.512 (3)
Ba2—O122.742 (3)P2—O221.562 (3)
Ba2—O43iii2.788 (3)P3—O311.514 (3)
Ba2—O32.869 (3)P3—O321.515 (3)
Ba2—O112.871 (3)P3—O331.522 (3)
Ba2—O332.878 (3)P4—O411.498 (3)
Ba2—O312.909 (3)P4—O431.500 (3)
Ba3—O12ii2.658 (3)P4—O421.575 (3)
Ba3—O212.772 (3)
P2—C1—P1114.4 (2)O22—P2—C1105.89 (19)
P3—C2—P4114.0 (2)O31—P3—C2108.61 (19)
O13—P1—C1104.15 (18)O32—P3—C2101.84 (18)
O12—P1—C1105.98 (18)O33—P3—C2107.13 (17)
O11—P1—C1106.39 (18)O41—P4—C2105.44 (18)
O21—P2—C1106.25 (18)O43—P4—C2110.26 (18)
O23—P2—C1106.63 (18)O42—P4—C2103.33 (18)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H22···O23v0.851.772.606 (4)169
O42—H42···O2vi0.851.822.667 (4)173
O1—H1A···O210.851.882.722 (4)170
O1—H1B···O32i0.852.273.020 (4)148
O2—H2A···O310.841.892.697 (5)159
O2—H2B···O23i0.852.252.992 (5)146
O3—H3A···O13iii0.851.912.744 (4)166
O3—H3B···O5iv0.852.132.893 (5)150
O4—H4A···O50.852.032.868 (5)166
O5—H5A···O2iv0.852.253.037 (5)154
O5—H5B···O22vii0.852.353.081 (5)146
Symmetry codes: (i) x, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y, z+1; (vi) x, y+1/2, z1/2; (vii) x+1, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds