Download citation
Download citation
link to html
The title compounds, C22H20N2O3S, (I), and C22H22N2O3S, (II), crystallize in space groups P\overline 1 and P212121, respectively. The indole rings are planar and the benzene ring of the phenylsulfonyl group makes a dihedral angle with the mean plane of the indole ring of 90.2 (2)° in (I) and 94.0 (2)° in (II). In both mol­ecules, the double bond connecting the aza-bicyclic and indole moieties has a Z geometry. Compound (II) was obtained as an enantiomerically pure crystal and has the 3S configuration.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104015847/sk1739sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104015847/sk1739Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104015847/sk1739IIsup3.hkl
Contains datablock II

CCDC references: 251321; 251322

Comment top

Glutamate cysteine ligase, the rate-limiting enzyme in the synthesis of glutathione, is a novel target of chemoprevention paradigms. GCLC and GCLM, the genes encoding glutamate cysteine ligase subunits, are induced by indoles, such as indomethacin (Sekhar et al., 2002). In this regard, novel functionalized indole analogues and other structurally related compounds have been synthesized and utilized for comparative structure analysis of GCLC induction (Sekhar et al., 2003). The second of the title compounds, (II), was found to be ten times more active than indomethacin in inducing GCLC, whereas the first of the title compounds, (I), is inactive. Aldol condensation of 1-benzenesulfonyl-1H-indole-3-carboxaldehyde with 1-aza-bicyclo[2.2.2]octan-3-one affords (I) as a single geometric isomer. Compound (I) was reduced to the corresponding alcohol with sodium borohydride in methanol. The compositions of (I) and (II) were initially identified by NMR spectroscopy. In order to confirm the double-bond geometry of these compounds, and to obtain more detailed information about the structural conformation of the molecules that may be of value in structure–activity analysis, their X-ray structure determination has also been carried out.

X-ray analysis confirms the molecular structure and atom connectivity for (I) and (II), as illustrated in Figs. 1 and 2. Selected geometric parameters are presented in Table 1 and Table 2, respectively. For each structure, the indole ring is planar, with bond distances and angles comparable to those reported previously for other indole derivatives (Mason et al., 2003; Zarza et al., 1988). The geometries around the S atoms are distorted from ideal tetrahedral, the largest deviations being in the O—S—O [O2—S1—O1 in (I) is 121.08 (6)°, and in (II) is 120.64 (9)°] and O—S—N angles [O2—S1—N1 and O1—S1—N1 in (I) are 106.87 (6) and 105.68 (5)°, and in (II) are 106.61 (9) and 105.48 (8)°]. This type of deviation in the sulfonyl group has been reported previously and is due to the repulsive interaction between the short S=O bonds (Seshadri et al., 2002). The S—O, S—C and S—N distances are comparable to those found in N-phenylsulfonamides (Gomes et al., 1993). The conformation of the phenylsulfonyl group with respect to the indole ring is described by the O1—S1—N1—C2, O2—S1—N1—C9 and N1—S1—C19—C20 torsion angles. The phenyl ring linked to the sulfonyl group is orthogonal to the indole ring system, forming dihedral angles of 90.2 (2)° in (I) and 94.0 (2)° in (II).

Compounds (I) and (II) are both Z isomers; the C11—C18 bond is in a trans disposition with respect to the C3—C10 bond. The double bond has a nearly planar arrangement, with an r.m.s. deviation from the mean plane passing through atoms N12, C11, C18, C10 and C3 of 0.008 (11) Å in (I) and 0.0021 (11) Å in (II), respectively. Deviations from ideal geometry are observed in the bond angles around atoms C3, C10 and C11. While the C10—C11—C18 angle is close to the ideal value of 120°, the C2—C3—C10, C3—C10—C11 and N12—C11—C18 angles are more distorted in both molecules as a consequence of the strain induced by the double-bond linkage at C10—C11. In both molecules, the azabicyclic system exhibits very small distortions around atoms N12, C13, C14, C15, C16 and C17. The value of the C2—C3—C10—C11 torsion angle [−2.2 (2)° in (I) and 21.0 (3)° in (II)] indicates that the deviation of the indole ring from the plane of the double bond connected to the azabicyclic ring is greater in (II) than it is in (I). The C3—C10 bond length, when compared with the standard value for a single bond connecting a Car atom to a Csp2 atom [1.470 (15) Å; Wilson, 1992], suggests extensive conjugation, beginning at atom O18 and extending through to the aromatic ring in (I), which is also evident from the C11—C18 bond lengths and C18—O18. However, in the case of (II), where the carbonyl group has been reduced to the corresponding alcohol, the C11—C18 and C18—O18 bond lengths are purely single-bond character, and conjugation begins at C11 and extends to the aromatic ring. This extended conjugation in (I) and (II) explains the difference in the C2—C3—C10—C11 torsion angle.

In the crystal structure of (II), the H atom attached to atom O18 is involved in an intermolecular hydrogen bond [2.30 Å] with atom O18 of another molecule (Table 3), thus forming an infinite chain running in the a direction. In addition to C—H.·O and C—H..π weak interactions, Van der Waals forces contribute to the stabilization of the crystal structures of (I) and (II).

Experimental top

To a stirred solution of diisopropylamine (1.923 g, 19 mmol) in THF (20 ml) at 273 K under nitrogen was added a solution of 2.0 M n-butyllithium (9 ml, 18.8 mmol) and the mixture stirred at 273 K for 30 min. To this solution at 273 K, was added 1-aza-bicyclo[2.2.2]octan-3-one hydrochloride (1.5 g, 9.28 mmol) in one portion and stirring was continued until the mixture completely dissolved (20 min). The temperature was lowered to 195 K and a solution of 1-benzenesulfonyl-1H-indole-3-carboxaldehyde (2.63 g, 9.2 mmol) in THF (30 ml) was added dropwise. Stirring was continued for 30 min at this temperature and then at 273 K for 90 min. The reaction mixture was poured into aqueous saturated NaHCO3 solution at 273 K and the resulting solution was extracted with CHCl3 (3 τimes 15 ml). The combined organic extracts were dried over anhydrous Na2SO4, filtered and evaporated to afford a yellow solid. Crystallization from methanol gave a yellow crystalline product suitable for X-ray analysis. 1H NMR (CDCl3): δ 1.85- 1.91 (m, 4H), 2.49 (p, 1H), 2.78–2.87 (m, 2H), 3.02–3.11 (m, 2H), 7.07 (s, 1H), 7.10–7.21 (m, 2H), 7.27–7.32 (m, 2H), 7.36–7.42 (m, 1H), 7.56– 7.59 (dd, 1H), 7.73–7.76 (m, 2H), 7.79–7.82 (dd, J = 1.5, 7.7 Hz,1H), 8.52 (s, 1H). 13C NMR (CDCl3): δ 26.4, 40.7, 47.5, 113.7, 115.0, 116.1, 119.4, 124.0, 125.3, 127.0, 129.5, 130.5, 134.2, 134.5, 138.0, 144.9, 205.3. To a stirred solution of (I) (0.392 g, 1 mmol) in methanol (15 ml) at 273 K was added NaBH4 (0.379 g, 10 mmol) over 15 min and stirring was continued for 2 h at room temperature. Water (50 ml) was added and the mixture was extracted with CHCl3 (3 τimes 10 ml). The combined organic layers were dried over Na2SO4 and evaporated to give (II) as a colourless solid. Crystallization from methanol afforded colourless needles, suitable for X-ray analysis. 1H NMR (CDCl3): δ 1.46–1.61 (m, 2H), 1.72– 1.90 (m, 4H), 2.05–2.08 (p, 1H), 4.38 (s, 1H), 6.42 (d, 1H), 7.21–7.32 (m, 2H), 7.37–7.43 (m, 2H), 7.47–7.52 (m, 1H), 7.6 (d, 1H), 7.86 (d, 2H), 7.98 (d, 1H), 8.42 (s, 1H). 13C NMR (CDCl3): δ 19.4, 25.7, 31.5, 46.9, 48.0, 71.4, 110.9, 111.0, 113.8, 117.5, 119.1, 123.4, 124.7, 126.4, 126.8, 129.3, 130.7, 133.8, 134.6, 138.3, 153.2.

Refinement top

All H atoms were located in difference Fourier syntheses, and were subsequently positioned geometrically and treated as riding, with bond distances to parent atoms of 0.95 (Car—H), 0.99 (Csec—H), 1.00 (Ctert—H) and 0.89 Å (O—H). The absolute structure of (II) was determined by refinement of the Flack (Flack, 1983; Bernardinelli & Flack, 1985) parameter, the value of which indicates the probable correctness of the assignment.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELX97-2 (Sheldrick, 1997) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the molecule (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the molecule (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms, except that linked to atom O18, have been omitted for clarity.
(I) (Z)-2-(1-Benzenesulfonyl-1H-indol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-one top
Crystal data top
C22H20N2O3SZ = 2
Mr = 392.46F(000) = 412
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7070 (1) ÅCell parameters from 4073 reflections
b = 10.7080 (2) Åθ = 1.0–27.5°
c = 12.3080 (2) ŵ = 0.21 mm1
α = 94.5900 (7)°T = 90 K
β = 104.1170 (7)°Irregular wedge, yellow
γ = 110.1160 (7)°0.35 × 0.25 × 0.15 mm
V = 909.86 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
3720 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
Detector resolution: 18 pixels mm-1h = 99
ω scans at fixed χ = 55°k = 1313
8085 measured reflectionsl = 1515
4145 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.4878P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4145 reflectionsΔρmax = 0.36 e Å3
254 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (3)
Crystal data top
C22H20N2O3Sγ = 110.1160 (7)°
Mr = 392.46V = 909.86 (3) Å3
Triclinic, P1Z = 2
a = 7.7070 (1) ÅMo Kα radiation
b = 10.7080 (2) ŵ = 0.21 mm1
c = 12.3080 (2) ÅT = 90 K
α = 94.5900 (7)°0.35 × 0.25 × 0.15 mm
β = 104.1170 (7)°
Data collection top
Nonius KappaCCD
diffractometer
3720 reflections with I > 2σ(I)
8085 measured reflectionsRint = 0.018
4145 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
4145 reflectionsΔρmin = 0.49 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The extinction correction that was refined for this structure is about 2.7su and therefore does not quite meet the arbitrary cut-off of 3su. Nevertheless, we feel that the extinction correction is warranted. Since we know that extinction primarily affects the strong low-angle data, we performed tests in which the extinction parameter was refined for several high-resolution cutoffs. For data truncated at 40,45,50,53 and 54 degrees in 2theta, the extinction:SU ratios were 7.6, 6.2, 4.0, 3.2 and 2.8. From these tests it is readily apparent that an extinction correction is needed because it is the low-angle data that are affected by extinction effects.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32935 (4)0.32107 (3)0.64002 (2)0.01552 (10)
O10.29704 (15)0.42210 (10)0.57799 (8)0.0217 (2)
N10.26764 (16)0.18446 (11)0.54245 (9)0.0160 (2)
O20.23334 (13)0.27857 (10)0.72397 (7)0.0189 (2)
C20.29258 (18)0.19292 (13)0.43398 (10)0.0157 (2)
H20.31510.27170.40040.019*
C30.27949 (17)0.07026 (12)0.38404 (10)0.0138 (2)
C40.25055 (17)0.01966 (12)0.46554 (10)0.0137 (2)
C50.22573 (18)0.15570 (13)0.46092 (11)0.0162 (2)
H50.22750.20690.39470.019*
C60.19853 (19)0.21447 (13)0.55475 (11)0.0193 (3)
H60.18290.30660.55310.023*
C70.19377 (19)0.13993 (14)0.65217 (11)0.0197 (3)
H70.17510.18280.71540.024*
C80.21562 (18)0.00533 (13)0.65859 (10)0.0174 (3)
H80.21030.04470.72420.021*
C90.24569 (17)0.05301 (12)0.56428 (10)0.0146 (2)
C100.28881 (17)0.03065 (12)0.27087 (10)0.0147 (2)
H100.28120.05940.25290.018*
C110.30674 (17)0.10428 (12)0.18825 (10)0.0142 (2)
N120.32003 (15)0.24292 (10)0.19814 (9)0.0149 (2)
C130.51012 (19)0.32820 (13)0.18690 (10)0.0172 (3)
H13A0.61360.32900.25320.021*
H13B0.51690.42220.18700.021*
C140.54436 (19)0.27581 (13)0.07567 (11)0.0180 (3)
H14A0.57610.34930.03130.022*
H14B0.65390.24530.09440.022*
C150.35952 (18)0.15734 (12)0.00525 (10)0.0156 (3)
H150.37440.12240.06840.019*
C160.1907 (2)0.20693 (14)0.01534 (11)0.0199 (3)
H16A0.07020.13330.06240.024*
H16B0.21740.28400.05640.024*
C170.16752 (19)0.25149 (14)0.10198 (11)0.0187 (3)
H17A0.17340.34570.10830.022*
H17B0.03930.19310.10680.022*
O180.29965 (14)0.06823 (9)0.04749 (8)0.0199 (2)
C180.31991 (17)0.04895 (12)0.07698 (10)0.0146 (2)
C190.57933 (18)0.36889 (12)0.70246 (10)0.0154 (2)
C200.7078 (2)0.45363 (13)0.65299 (11)0.0202 (3)
H200.66190.48670.58700.024*
C210.9040 (2)0.48871 (14)0.70195 (13)0.0242 (3)
H210.99370.54620.66920.029*
C220.9704 (2)0.44045 (14)0.79854 (13)0.0235 (3)
H221.10530.46540.83160.028*
C230.8411 (2)0.35594 (13)0.84723 (12)0.0206 (3)
H230.88750.32350.91350.025*
C240.64378 (19)0.31888 (13)0.79875 (11)0.0167 (3)
H240.55420.26020.83090.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02168 (17)0.01681 (17)0.01103 (15)0.01117 (13)0.00471 (12)0.00093 (11)
O10.0341 (5)0.0203 (5)0.0152 (4)0.0176 (4)0.0045 (4)0.0025 (4)
N10.0237 (6)0.0162 (5)0.0107 (5)0.0105 (4)0.0051 (4)0.0019 (4)
O20.0209 (5)0.0245 (5)0.0140 (4)0.0109 (4)0.0068 (4)0.0010 (4)
C20.0202 (6)0.0180 (6)0.0110 (5)0.0095 (5)0.0045 (5)0.0027 (4)
C30.0135 (6)0.0152 (6)0.0133 (6)0.0063 (5)0.0036 (4)0.0023 (4)
C40.0116 (5)0.0159 (6)0.0137 (5)0.0056 (4)0.0036 (4)0.0022 (4)
C50.0159 (6)0.0157 (6)0.0174 (6)0.0065 (5)0.0050 (5)0.0016 (5)
C60.0206 (6)0.0161 (6)0.0216 (6)0.0073 (5)0.0058 (5)0.0053 (5)
C70.0203 (6)0.0227 (7)0.0173 (6)0.0075 (5)0.0068 (5)0.0081 (5)
C80.0174 (6)0.0217 (6)0.0131 (6)0.0074 (5)0.0045 (5)0.0030 (5)
C90.0141 (6)0.0159 (6)0.0141 (6)0.0070 (5)0.0030 (4)0.0024 (5)
C100.0148 (6)0.0143 (6)0.0153 (6)0.0060 (5)0.0048 (4)0.0003 (4)
C110.0150 (6)0.0146 (6)0.0138 (6)0.0063 (5)0.0050 (4)0.0001 (4)
N120.0191 (5)0.0150 (5)0.0132 (5)0.0092 (4)0.0052 (4)0.0024 (4)
C130.0203 (6)0.0145 (6)0.0147 (6)0.0052 (5)0.0045 (5)0.0004 (5)
C140.0183 (6)0.0158 (6)0.0183 (6)0.0036 (5)0.0075 (5)0.0000 (5)
C150.0185 (6)0.0166 (6)0.0119 (5)0.0062 (5)0.0060 (5)0.0002 (4)
C160.0220 (7)0.0265 (7)0.0138 (6)0.0128 (6)0.0044 (5)0.0039 (5)
C170.0214 (6)0.0233 (6)0.0161 (6)0.0138 (5)0.0057 (5)0.0043 (5)
O180.0253 (5)0.0150 (4)0.0204 (5)0.0068 (4)0.0107 (4)0.0006 (4)
C180.0132 (6)0.0161 (6)0.0140 (6)0.0051 (5)0.0046 (4)0.0001 (5)
C190.0204 (6)0.0135 (6)0.0150 (6)0.0086 (5)0.0071 (5)0.0009 (4)
C200.0319 (7)0.0141 (6)0.0201 (6)0.0105 (5)0.0137 (5)0.0052 (5)
C210.0280 (7)0.0142 (6)0.0337 (8)0.0053 (5)0.0189 (6)0.0037 (5)
C220.0189 (6)0.0174 (6)0.0338 (8)0.0062 (5)0.0094 (6)0.0013 (5)
C230.0215 (7)0.0186 (6)0.0223 (6)0.0095 (5)0.0047 (5)0.0024 (5)
C240.0200 (6)0.0152 (6)0.0165 (6)0.0068 (5)0.0074 (5)0.0036 (5)
Geometric parameters (Å, º) top
S1—O21.4280 (9)C13—C141.5535 (17)
S1—O11.4282 (10)C13—H13A0.9900
S1—N11.6643 (11)C13—H13B0.9900
S1—C191.7609 (13)C14—C151.5390 (17)
N1—C21.4000 (15)C14—H14A0.9900
N1—C91.4145 (16)C14—H14B0.9900
C2—C31.3648 (17)C15—C181.5071 (17)
C2—H20.9500C15—C161.5408 (18)
C3—C41.4487 (17)C15—H151.0000
C3—C101.4493 (16)C16—C171.5554 (17)
C4—C51.3971 (17)C16—H16A0.9900
C4—C91.4052 (16)C16—H16B0.9900
C5—C61.3847 (18)C17—H17A0.9900
C5—H50.9500C17—H17B0.9900
C6—C71.4016 (18)O18—C181.2228 (15)
C6—H60.9500C19—C241.3912 (17)
C7—C81.3858 (19)C19—C201.3926 (18)
C7—H70.9500C20—C211.385 (2)
C8—C91.3925 (17)C20—H200.9500
C8—H80.9500C21—C221.388 (2)
C10—C111.3404 (17)C21—H210.9500
C10—H100.9500C22—C231.3889 (19)
C11—N121.4455 (15)C22—H220.9500
C11—C181.4888 (16)C23—C241.3894 (19)
N12—C131.4827 (16)C23—H230.9500
N12—C171.4844 (16)C24—H240.9500
O2—S1—O1121.08 (6)H13A—C13—H13B107.9
O2—S1—N1106.87 (6)C15—C14—C13108.66 (10)
O1—S1—N1105.68 (5)C15—C14—H14A110.0
O2—S1—C19108.40 (6)C13—C14—H14A110.0
O1—S1—C19108.92 (6)C15—C14—H14B110.0
N1—S1—C19104.68 (6)C13—C14—H14B110.0
C2—N1—C9108.86 (10)H14A—C14—H14B108.3
C2—N1—S1122.29 (9)C18—C15—C14107.34 (10)
C9—N1—S1125.87 (9)C18—C15—C16107.70 (10)
C3—C2—N1109.33 (11)C14—C15—C16108.18 (10)
C3—C2—H2125.3C18—C15—H15111.1
N1—C2—H2125.3C14—C15—H15111.1
C2—C3—C4107.23 (10)C16—C15—H15111.1
C2—C3—C10128.56 (12)C15—C16—C17108.53 (10)
C4—C3—C10124.20 (11)C15—C16—H16A110.0
C5—C4—C9119.33 (11)C17—C16—H16A110.0
C5—C4—C3132.58 (11)C15—C16—H16B110.0
C9—C4—C3108.08 (11)C17—C16—H16B110.0
C6—C5—C4118.65 (11)H16A—C16—H16B108.4
C6—C5—H5120.7N12—C17—C16111.85 (10)
C4—C5—H5120.7N12—C17—H17A109.2
C5—C6—C7120.94 (12)C16—C17—H17A109.2
C5—C6—H6119.5N12—C17—H17B109.2
C7—C6—H6119.5C16—C17—H17B109.2
C8—C7—C6121.64 (12)H17A—C17—H17B107.9
C8—C7—H7119.2O18—C18—C11124.79 (11)
C6—C7—H7119.2O18—C18—C15124.77 (11)
C7—C8—C9116.79 (12)C11—C18—C15110.44 (10)
C7—C8—H8121.6C24—C19—C20121.52 (12)
C9—C8—H8121.6C24—C19—S1119.21 (10)
C8—C9—C4122.62 (12)C20—C19—S1119.26 (10)
C8—C9—N1130.88 (11)C21—C20—C19118.65 (13)
C4—C9—N1106.44 (10)C21—C20—H20120.7
C11—C10—C3128.56 (12)C19—C20—H20120.7
C11—C10—H10115.7C20—C21—C22120.46 (13)
C3—C10—H10115.7C20—C21—H21119.8
C10—C11—N12124.48 (11)C22—C21—H21119.8
C10—C11—C18121.74 (11)C21—C22—C23120.46 (13)
N12—C11—C18113.76 (10)C21—C22—H22119.8
C11—N12—C13108.39 (9)C23—C22—H22119.8
C11—N12—C17108.28 (10)C22—C23—C24119.86 (13)
C13—N12—C17108.02 (10)C22—C23—H23120.1
N12—C13—C14111.80 (10)C24—C23—H23120.1
N12—C13—H13A109.3C23—C24—C19119.04 (12)
C14—C13—H13A109.3C23—C24—H24120.5
N12—C13—H13B109.3C19—C24—H24120.5
C14—C13—H13B109.3
O2—S1—N1—C2162.86 (10)C10—C11—N12—C17125.53 (13)
O1—S1—N1—C232.66 (12)C18—C11—N12—C1755.99 (13)
C19—S1—N1—C282.28 (11)C11—N12—C13—C1454.25 (13)
O2—S1—N1—C938.89 (12)C17—N12—C13—C1462.86 (13)
O1—S1—N1—C9169.08 (10)N12—C13—C14—C155.19 (14)
C19—S1—N1—C975.97 (11)C13—C14—C15—C1859.93 (13)
C9—N1—C2—C32.45 (14)C13—C14—C15—C1656.04 (13)
S1—N1—C2—C3163.95 (9)C18—C15—C16—C1754.57 (13)
N1—C2—C3—C41.73 (14)C14—C15—C16—C1761.16 (13)
N1—C2—C3—C10177.44 (12)C11—N12—C17—C1659.83 (13)
C2—C3—C4—C5179.22 (13)C13—N12—C17—C1657.35 (13)
C10—C3—C4—C50.0 (2)C15—C16—C17—N124.01 (15)
C2—C3—C4—C90.39 (14)C10—C11—C18—O186.4 (2)
C10—C3—C4—C9178.83 (11)N12—C11—C18—O18175.02 (11)
C9—C4—C5—C60.51 (18)C10—C11—C18—C15174.19 (11)
C3—C4—C5—C6179.25 (13)N12—C11—C18—C154.34 (14)
C4—C5—C6—C70.68 (19)C14—C15—C18—O18124.84 (13)
C5—C6—C7—C80.1 (2)C16—C15—C18—O18118.88 (13)
C6—C7—C8—C91.01 (19)C14—C15—C18—C1155.79 (13)
C7—C8—C9—C41.19 (19)C16—C15—C18—C1160.48 (13)
C7—C8—C9—N1178.02 (12)O2—S1—C19—C2422.10 (11)
C5—C4—C9—C80.44 (19)O1—S1—C19—C24155.67 (10)
C3—C4—C9—C8178.58 (11)N1—S1—C19—C2491.68 (10)
C5—C4—C9—N1177.94 (11)O2—S1—C19—C20159.20 (10)
C3—C4—C9—N11.07 (13)O1—S1—C19—C2025.64 (12)
C2—N1—C9—C8179.36 (13)N1—S1—C19—C2087.02 (11)
S1—N1—C9—C820.0 (2)C24—C19—C20—C210.33 (19)
C2—N1—C9—C42.14 (14)S1—C19—C20—C21179.00 (10)
S1—N1—C9—C4162.81 (9)C19—C20—C21—C220.18 (19)
C2—C3—C10—C112.2 (2)C20—C21—C22—C230.2 (2)
C4—C3—C10—C11176.88 (12)C21—C22—C23—C240.3 (2)
C3—C10—C11—N120.2 (2)C22—C23—C24—C190.77 (19)
C3—C10—C11—C18178.18 (11)C20—C19—C24—C230.81 (18)
C10—C11—N12—C13117.53 (13)S1—C19—C24—C23179.47 (10)
C18—C11—N12—C1360.96 (13)
(II) (Z)-2-(1-Benzenesulfonyl-1H-indol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol top
Crystal data top
C22H22N2O3SF(000) = 832
Mr = 394.48Dx = 1.394 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2500 reflections
a = 6.1300 (1) Åθ = 1.0–27.5°
b = 12.9500 (2) ŵ = 0.20 mm1
c = 23.6800 (4) ÅT = 90 K
V = 1879.80 (5) Å3Block, colourless
Z = 40.25 × 0.22 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
3780 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
Detector resolution: 18 pixels mm-1h = 77
ω scans at fixed χ = 55°k = 1616
23509 measured reflectionsl = 3030
4283 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.3905P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
4283 reflectionsΔρmax = 0.31 e Å3
253 parametersΔρmin = 0.33 e Å3
0 restraintsAbsolute structure: Flack (1983), 1807 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
C22H22N2O3SV = 1879.80 (5) Å3
Mr = 394.48Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1300 (1) ŵ = 0.20 mm1
b = 12.9500 (2) ÅT = 90 K
c = 23.6800 (4) Å0.25 × 0.22 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
3780 reflections with I > 2σ(I)
23509 measured reflectionsRint = 0.049
4283 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.31 e Å3
S = 1.05Δρmin = 0.33 e Å3
4283 reflectionsAbsolute structure: Flack (1983), 1807 Friedel pairs
253 parametersAbsolute structure parameter: 0.00 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.85300 (8)0.85822 (4)0.817965 (19)0.01805 (12)
N10.7594 (3)0.92165 (12)0.87381 (6)0.0173 (3)
O10.7756 (2)0.91422 (10)0.77005 (5)0.0228 (3)
O21.0809 (2)0.84389 (11)0.82686 (6)0.0239 (3)
C20.5624 (3)0.97763 (14)0.87284 (8)0.0179 (4)
H20.48981.00030.83960.021*
C30.4916 (3)0.99447 (14)0.92649 (8)0.0173 (4)
C40.6452 (3)0.94269 (13)0.96380 (8)0.0168 (4)
C50.6561 (3)0.93322 (14)1.02269 (8)0.0198 (4)
H50.54730.96301.04620.024*
C60.8299 (3)0.87925 (15)1.04570 (8)0.0230 (4)
H60.83910.87181.08550.028*
C70.9917 (3)0.83554 (15)1.01183 (8)0.0221 (4)
H71.10870.79911.02900.027*
C80.9845 (3)0.84442 (14)0.95353 (8)0.0191 (4)
H81.09490.81550.93030.023*
C90.8088 (3)0.89743 (14)0.93070 (8)0.0172 (4)
C100.3028 (3)1.05481 (14)0.94497 (8)0.0175 (4)
H100.24681.04020.98150.021*
C110.2018 (3)1.12825 (14)0.91552 (8)0.0174 (4)
N120.2717 (3)1.15709 (12)0.85960 (6)0.0182 (3)
C130.0846 (3)1.14737 (15)0.82065 (8)0.0216 (4)
H13A0.03481.07470.82010.026*
H13B0.13201.16590.78200.026*
C140.1084 (3)1.21808 (17)0.83831 (9)0.0252 (5)
H14A0.13681.27010.80860.030*
H14B0.24221.17630.84360.030*
C150.0469 (3)1.27200 (15)0.89386 (8)0.0190 (4)
H150.17041.31610.90740.023*
C160.1563 (3)1.33771 (15)0.88424 (9)0.0250 (4)
H16A0.20221.37040.92010.030*
H16B0.12471.39300.85650.030*
C170.3398 (3)1.26714 (14)0.86174 (8)0.0205 (4)
H17A0.38191.29000.82340.025*
H17B0.46941.27380.88640.025*
O180.0558 (3)1.22817 (12)0.99167 (6)0.0334 (4)
H18O0.07101.25551.00280.050*
C180.0043 (3)1.18768 (15)0.93727 (8)0.0209 (4)
H180.12311.13980.94050.025*
C190.7254 (3)0.73631 (14)0.81901 (8)0.0171 (4)
C200.5214 (3)0.72557 (16)0.79437 (8)0.0205 (4)
H200.44500.78410.78040.025*
C210.4310 (3)0.62731 (16)0.79051 (8)0.0232 (4)
H210.29260.61800.77320.028*
C220.5423 (4)0.54324 (16)0.81184 (9)0.0253 (5)
H220.48090.47620.80830.030*
C230.7414 (4)0.55531 (17)0.83818 (9)0.0269 (5)
H230.81370.49710.85390.032*
C240.8362 (3)0.65249 (15)0.84167 (8)0.0225 (4)
H240.97420.66140.85920.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0193 (2)0.0175 (2)0.0173 (2)0.00268 (19)0.00193 (18)0.00051 (19)
N10.0196 (8)0.0175 (8)0.0148 (7)0.0027 (7)0.0005 (7)0.0008 (6)
O10.0282 (8)0.0229 (7)0.0174 (7)0.0030 (6)0.0010 (6)0.0015 (6)
O20.0186 (7)0.0257 (7)0.0274 (7)0.0016 (6)0.0025 (6)0.0016 (6)
C20.0181 (9)0.0159 (9)0.0196 (9)0.0020 (8)0.0010 (8)0.0006 (7)
C30.0189 (10)0.0137 (9)0.0193 (9)0.0012 (8)0.0004 (8)0.0015 (7)
C40.0184 (9)0.0114 (8)0.0206 (9)0.0035 (8)0.0001 (8)0.0007 (7)
C50.0234 (10)0.0171 (9)0.0189 (9)0.0026 (9)0.0002 (8)0.0006 (7)
C60.0272 (11)0.0231 (10)0.0188 (9)0.0026 (9)0.0055 (9)0.0018 (8)
C70.0235 (10)0.0189 (10)0.0240 (10)0.0012 (8)0.0083 (8)0.0026 (8)
C80.0191 (9)0.0156 (9)0.0226 (9)0.0000 (8)0.0025 (8)0.0001 (8)
C90.0210 (10)0.0122 (8)0.0183 (9)0.0024 (8)0.0035 (8)0.0004 (7)
C100.0191 (10)0.0160 (9)0.0174 (9)0.0009 (8)0.0021 (8)0.0016 (7)
C110.0178 (9)0.0166 (9)0.0177 (9)0.0013 (8)0.0021 (7)0.0016 (7)
N120.0192 (8)0.0176 (8)0.0177 (8)0.0021 (7)0.0024 (6)0.0026 (7)
C130.0241 (10)0.0218 (10)0.0189 (9)0.0025 (8)0.0014 (8)0.0017 (9)
C140.0212 (11)0.0310 (11)0.0233 (10)0.0006 (9)0.0026 (8)0.0004 (9)
C150.0149 (9)0.0185 (10)0.0237 (10)0.0033 (8)0.0037 (8)0.0020 (8)
C160.0218 (10)0.0176 (9)0.0356 (11)0.0029 (9)0.0056 (9)0.0028 (8)
C170.0167 (9)0.0194 (9)0.0254 (10)0.0017 (9)0.0029 (8)0.0011 (8)
O180.0351 (9)0.0434 (10)0.0218 (8)0.0175 (8)0.0005 (7)0.0079 (7)
C180.0194 (10)0.0231 (10)0.0202 (10)0.0016 (9)0.0038 (8)0.0006 (8)
C190.0190 (9)0.0174 (9)0.0149 (8)0.0027 (7)0.0026 (8)0.0019 (8)
C200.0182 (9)0.0246 (10)0.0188 (10)0.0038 (8)0.0023 (8)0.0008 (8)
C210.0204 (10)0.0303 (11)0.0188 (10)0.0018 (9)0.0016 (8)0.0025 (8)
C220.0324 (12)0.0191 (9)0.0243 (11)0.0051 (9)0.0003 (9)0.0031 (8)
C230.0301 (12)0.0200 (10)0.0305 (11)0.0026 (9)0.0043 (9)0.0018 (9)
C240.0232 (10)0.0231 (10)0.0212 (9)0.0023 (10)0.0035 (8)0.0012 (8)
Geometric parameters (Å, º) top
S1—O21.4247 (15)C13—H13A0.9900
S1—O11.4276 (14)C13—H13B0.9900
S1—N11.6591 (16)C14—C151.536 (3)
S1—C191.7620 (19)C14—H14A0.9900
N1—C21.408 (2)C14—H14B0.9900
N1—C91.416 (2)C15—C161.526 (3)
C2—C31.360 (3)C15—C181.532 (3)
C2—H20.9500C15—H151.0000
C3—C41.455 (3)C16—C171.544 (3)
C3—C101.463 (3)C16—H16A0.9900
C4—C91.401 (3)C16—H16B0.9900
C4—C51.401 (3)C17—H17A0.9900
C5—C61.386 (3)C17—H17B0.9900
C5—H50.9500O18—C181.426 (2)
C6—C71.396 (3)O18—H18O0.8937
C6—H60.9500C18—H181.0000
C7—C81.386 (3)C19—C201.387 (3)
C7—H70.9500C19—C241.388 (3)
C8—C91.387 (3)C20—C211.391 (3)
C8—H80.9500C20—H200.9500
C10—C111.332 (3)C21—C221.380 (3)
C10—H100.9500C21—H210.9500
C11—N121.441 (2)C22—C231.380 (3)
C11—C181.524 (3)C22—H220.9500
N12—C131.477 (2)C23—C241.388 (3)
N12—C171.486 (2)C23—H230.9500
C13—C141.554 (3)C24—H240.9500
O2—S1—O1120.64 (9)C15—C14—H14A110.1
O2—S1—N1106.61 (9)C13—C14—H14A110.1
O1—S1—N1105.48 (8)C15—C14—H14B110.1
O2—S1—C19108.44 (9)C13—C14—H14B110.1
O1—S1—C19108.59 (9)H14A—C14—H14B108.4
N1—S1—C19106.19 (9)C16—C15—C18109.28 (17)
C2—N1—C9108.23 (15)C16—C15—C14109.02 (17)
C2—N1—S1122.58 (13)C18—C15—C14107.51 (16)
C9—N1—S1125.08 (13)C16—C15—H15110.3
C3—C2—N1109.93 (17)C18—C15—H15110.3
C3—C2—H2125.0C14—C15—H15110.3
N1—C2—H2125.0C15—C16—C17108.45 (15)
C2—C3—C4106.66 (17)C15—C16—H16A110.0
C2—C3—C10128.12 (17)C17—C16—H16A110.0
C4—C3—C10125.20 (17)C15—C16—H16B110.0
C9—C4—C5119.08 (18)C17—C16—H16B110.0
C9—C4—C3108.43 (16)H16A—C16—H16B108.4
C5—C4—C3132.48 (18)N12—C17—C16111.99 (16)
C6—C5—C4118.16 (19)N12—C17—H17A109.2
C6—C5—H5120.9C16—C17—H17A109.2
C4—C5—H5120.9N12—C17—H17B109.2
C5—C6—C7121.67 (18)C16—C17—H17B109.2
C5—C6—H6119.2H17A—C17—H17B107.9
C7—C6—H6119.2C18—O18—H18O102.6
C8—C7—C6121.07 (19)O18—C18—C11108.35 (16)
C8—C7—H7119.5O18—C18—C15112.92 (16)
C6—C7—H7119.5C11—C18—C15107.22 (15)
C7—C8—C9117.01 (19)O18—C18—H18109.4
C7—C8—H8121.5C11—C18—H18109.4
C9—C8—H8121.5C15—C18—H18109.4
C8—C9—C4123.00 (17)C20—C19—C24121.68 (18)
C8—C9—N1130.28 (18)C20—C19—S1118.96 (15)
C4—C9—N1106.65 (16)C24—C19—S1119.28 (15)
C11—C10—C3126.31 (18)C19—C20—C21118.59 (18)
C11—C10—H10116.8C19—C20—H20120.7
C3—C10—H10116.8C21—C20—H20120.7
C10—C11—N12121.89 (17)C22—C21—C20120.05 (19)
C10—C11—C18123.55 (17)C22—C21—H21120.0
N12—C11—C18114.56 (16)C20—C21—H21120.0
C11—N12—C13108.73 (15)C23—C22—C21120.88 (19)
C11—N12—C17107.51 (15)C23—C22—H22119.6
C13—N12—C17108.74 (15)C21—C22—H22119.6
N12—C13—C14111.90 (15)C22—C23—C24120.0 (2)
N12—C13—H13A109.2C22—C23—H23120.0
C14—C13—H13A109.2C24—C23—H23120.0
N12—C13—H13B109.2C23—C24—C19118.76 (19)
C14—C13—H13B109.2C23—C24—H24120.6
H13A—C13—H13B107.9C19—C24—H24120.6
C15—C14—C13108.15 (16)
O2—S1—N1—C2159.41 (14)C10—C11—N12—C17117.8 (2)
O1—S1—N1—C230.04 (17)C18—C11—N12—C1762.7 (2)
C19—S1—N1—C285.10 (16)C11—N12—C13—C1459.9 (2)
O2—S1—N1—C946.13 (18)C17—N12—C13—C1456.9 (2)
O1—S1—N1—C9175.51 (16)N12—C13—C14—C153.4 (2)
C19—S1—N1—C969.35 (18)C13—C14—C15—C1661.0 (2)
C9—N1—C2—C33.2 (2)C13—C14—C15—C1857.3 (2)
S1—N1—C2—C3161.37 (14)C18—C15—C16—C1760.3 (2)
N1—C2—C3—C42.7 (2)C14—C15—C16—C1757.0 (2)
N1—C2—C3—C10175.66 (17)C11—N12—C17—C1656.1 (2)
C2—C3—C4—C91.2 (2)C13—N12—C17—C1661.4 (2)
C10—C3—C4—C9177.18 (17)C15—C16—C17—N123.7 (2)
C2—C3—C4—C5179.9 (2)C10—C11—C18—O1852.0 (2)
C10—C3—C4—C51.7 (3)N12—C11—C18—O18128.56 (17)
C9—C4—C5—C60.1 (3)C10—C11—C18—C15174.13 (18)
C3—C4—C5—C6178.66 (19)N12—C11—C18—C156.4 (2)
C4—C5—C6—C70.4 (3)C16—C15—C18—O1864.1 (2)
C5—C6—C7—C80.1 (3)C14—C15—C18—O18177.69 (16)
C6—C7—C8—C90.7 (3)C16—C15—C18—C1155.1 (2)
C7—C8—C9—C41.2 (3)C14—C15—C18—C1163.04 (19)
C7—C8—C9—N1178.00 (18)O2—S1—C19—C20160.00 (15)
C5—C4—C9—C81.0 (3)O1—S1—C19—C2027.24 (17)
C3—C4—C9—C8178.10 (17)N1—S1—C19—C2085.76 (16)
C5—C4—C9—N1178.40 (17)O2—S1—C19—C2416.56 (18)
C3—C4—C9—N10.7 (2)O1—S1—C19—C24149.31 (15)
C2—N1—C9—C8179.47 (19)N1—S1—C19—C2497.68 (16)
S1—N1—C9—C823.0 (3)C24—C19—C20—C212.6 (3)
C2—N1—C9—C42.3 (2)S1—C19—C20—C21173.88 (15)
S1—N1—C9—C4159.80 (14)C19—C20—C21—C221.1 (3)
C2—C3—C10—C1121.0 (3)C20—C21—C22—C231.3 (3)
C4—C3—C10—C11157.08 (19)C21—C22—C23—C242.4 (3)
C3—C10—C11—N120.1 (3)C22—C23—C24—C190.9 (3)
C3—C10—C11—C18179.54 (18)C20—C19—C24—C231.6 (3)
C10—C11—N12—C13124.66 (19)S1—C19—C24—C23174.88 (16)
C18—C11—N12—C1354.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18O···O18i0.892.303.142 (3)157
Symmetry code: (i) x1/2, y+5/2, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H20N2O3SC22H22N2O3S
Mr392.46394.48
Crystal system, space groupTriclinic, P1Orthorhombic, P212121
Temperature (K)9090
a, b, c (Å)7.7070 (1), 10.7080 (2), 12.3080 (2)6.1300 (1), 12.9500 (2), 23.6800 (4)
α, β, γ (°)94.5900 (7), 104.1170 (7), 110.1160 (7)90, 90, 90
V3)909.86 (3)1879.80 (5)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.210.20
Crystal size (mm)0.35 × 0.25 × 0.150.25 × 0.22 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8085, 4145, 3720 23509, 4283, 3780
Rint0.0180.049
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.02 0.038, 0.094, 1.05
No. of reflections41454283
No. of parameters254253
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.490.31, 0.33
Absolute structure?Flack (1983), 1807 Friedel pairs
Absolute structure parameter?0.00 (7)

Computer programs: COLLECT (Nonius, 1999), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Sheldrick, 1995), SHELX97-2 (Sheldrick, 1997) and local procedures.

Selected geometric parameters (Å, º) for (I) top
S1—O21.4280 (9)C3—C101.4493 (16)
S1—O11.4282 (10)C10—C111.3404 (17)
S1—N11.6643 (11)C11—N121.4455 (15)
S1—C191.7609 (13)C11—C181.4888 (16)
N1—C21.4000 (15)N12—C171.4844 (16)
N1—C91.4145 (16)O18—C181.2228 (15)
O2—S1—O1121.08 (6)C11—C10—C3128.56 (12)
O1—S1—N1105.68 (5)C10—C11—C18121.74 (11)
O1—S1—C19108.92 (6)N12—C11—C18113.76 (10)
N1—S1—C19104.68 (6)O18—C18—C11124.79 (11)
C2—C3—C10128.56 (12)C11—C18—C15110.44 (10)
O1—S1—N1—C232.66 (12)C3—C10—C11—C18178.18 (11)
O2—S1—N1—C938.89 (12)C10—C11—C18—O186.4 (2)
C2—C3—C10—C112.2 (2)N12—C11—C18—O18175.02 (11)
C3—C10—C11—N120.2 (2)N1—S1—C19—C2087.02 (11)
Selected geometric parameters (Å, º) for (II) top
S1—O21.4247 (15)C3—C101.463 (3)
S1—O11.4276 (14)C10—C111.332 (3)
S1—N11.6591 (16)C11—N121.441 (2)
S1—C191.7620 (19)C11—C181.524 (3)
N1—C21.408 (2)N12—C171.486 (2)
N1—C91.416 (2)O18—C181.426 (2)
O2—S1—O1120.64 (9)C11—C10—C3126.31 (18)
O1—S1—N1105.48 (8)C10—C11—C18123.55 (17)
O1—S1—C19108.59 (9)N12—C11—C18114.56 (16)
N1—S1—C19106.19 (9)O18—C18—C11108.35 (16)
C2—C3—C10128.12 (17)C11—C18—C15107.22 (15)
O1—S1—N1—C230.04 (17)C3—C10—C11—C18179.54 (18)
O2—S1—N1—C946.13 (18)C10—C11—C18—O1852.0 (2)
C2—C3—C10—C1121.0 (3)N12—C11—C18—O18128.56 (17)
C3—C10—C11—N120.1 (3)N1—S1—C19—C2085.76 (16)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O18—H18O···O18i0.892.303.142 (3)157
Symmetry code: (i) x1/2, y+5/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds