Download citation
Download citation
link to html
In the title compound, C18H15OP·C11H8O2, co-crystallization of tri­phenyl­phosphine oxide with 1-naphthoic acid yields a supramolecular structure held together by one O-H...O and three C-H...O hydrogen bonds. The O-H...O hydrogen bond [O...O = 2.592 (2) Å] has little effect on the O=P bond distance.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010401279X/sk1732sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010401279X/sk1732Isup2.hkl
Contains datablock I

CCDC reference: 245930

Comment top

The role of hydrogen bonds in crystal engineering and creation of supramolecular structures has attracted considerable research interest in recent years (Shan et al., 2002; Lehn, 1995). Because of its strong directional interaction, the hydrogen bond can orient molecules into predictable aggregate patterns and often dictate the preferred molecular packing arrangement in organic crystals (Desiraju & Steiner, 1999; Etter et al., 1986, 1988, 1990; Rebek et al., 1987, 1988). On the other hand, the triphenylphosphine oxide (TPPO) molecule has a great conformational flexibility and hydrogen-bond formation ability. The O atom of TPPO can act as a single, double or triple hydrogen-bond acceptor, and the orientation of the phenyl groups is not restricted to certain torsion-angle values (Llamas-Saiz et al., 1991; Ferguson & Glidewell, 1988). These properties make TPPO a versatile hydrogen-bond acceptor and a very useful crystallization aid (Etter et al., 1988). As part of our studies on the role of hydrogen bonding in the interaction of TPPO with organic acids, the crystal structure determination of the title compound, (I), was undertaken and the results are presented here.

A view of (I) with the atomic numbering scheme is given in Fig. 1 and selected geometric parameters are given in Table 1.

The title compound is isostructural with triphenylphosphine oxide 3-chlorobenzoic acid, (II) (Al-Farhan, 2003). The main hydrogen bond in the crystal structure is the O2—H1···O1 interaction (Table 2); the C19—O2···O1 and P1—O1···O2 angles are 118.2 (2) and 142.97 (10)°. If weak C—H···O interactions are also taken into consideration then the 1-naphthoic acid, through its carboxyl group, is bonded to three TPPO molecules via four hydrogen bonds [O1···H1 = 1.60 Å, O3···H6 = 2.70 Å, O2···H11(-x + 1, −y + 2, −z + 1) = 2.49 Å and O3···H17(x + 1, y, z) = 2.31 Å], which assemble the supramolecule. The above first two O···H interactions are involved in a hydrogen-bonded cyclic arrangement [graph set R22(9); Bernstein et al., 1995] and atom O3 acts as a bifurcated hydrogen-bond acceptor. The main hydrogen bond has little effect on the OP bond length; the O1P1 distance [1.492 (2) Å] is only 0.009 Å longer than the corresponding distance in free TPPO (Al-Farhan, 1992). The CO [1.210 (3) Å] and C—OH [1.316 (3) Å] bond lengths in the carboxyl group are statistically equal to the corresponding bonds [1.214 (3) and 1.312 (3) Å, respectively] in the crystal structure of 1-naphthoic acid (Fitzgerald & Gerkin, 1993).

The O—P—C—C torsion angles of the TPPO moieties are 16.3 (2), 14.2 (2) and 71.7 (2)° in (I), and 21.2 (2), 33.3 (2) and 74.8 (2)° in (II); these values are distinctly different from the minimum-energy conformation threefold symmetry and torsion angles of 40°) deduced from analysis of the observed conformations of a wide range of TPPO derivatives (Bye et al., 1982).

The naphthalene core is planar within ±0.014 (2) Å. The dihedral angle between the plane of the carboxyl group and the plane of the phenyl ring is 8.1 (3) and 3.0 (4)° in (I) and (II), respectively.

Examination of the structure with PLATON (Spek, 2003) showed that there were no solvent-accessible voids in the crystal structure of (I).

Experimental top

The title compound was prepared by mixing equimolar amounts of TPPO and 1-naphthoic acid in CCl4. Slow evaporation of the solvent afforded colourless crystals suitable for X-ray analysis.

Refinement top

H atoms bonded to C atoms were placed geometrically (C—H = 0.96 Å) and allowed to ride during structure refinement, with isotropic displacement parameters fixed at 1.2Ueq of the parent atoms. The H atom of the carboxyl group was located in a difference Fourier map and was allowed to refine freely.

Computing details top

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The hydrogen bond is indicated by a dashed line.
Triphenylphosphine oxide–1-naphthoic acid (1/1) top
Crystal data top
C18H15OP·C11H8O2F(000) = 944
Mr = 450.44Dx = 1.270 Mg m3
Monoclinic, P21/nMelting point: 353 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.963 (1) ÅCell parameters from 25 reflections
b = 16.303 (1) Åθ = 17.2–17.9°
c = 16.673 (1) ŵ = 0.15 mm1
β = 104.784 (7)°T = 296 K
V = 2355.7 (3) Å3Plate, colourless
Z = 40.30 × 0.28 × 0.12 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.021
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.8°
Graphite monochromatorh = 310
θ–2θ scansk = 819
5488 measured reflectionsl = 1919
4083 independent reflections3 standard reflections every 200 reflections
2933 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.545P]
where P = (Fo2 + 2Fc2)/3
4083 reflections(Δ/σ)max = 0.001
302 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H15OP·C11H8O2V = 2355.7 (3) Å3
Mr = 450.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.963 (1) ŵ = 0.15 mm1
b = 16.303 (1) ÅT = 296 K
c = 16.673 (1) Å0.30 × 0.28 × 0.12 mm
β = 104.784 (7)°
Data collection top
Siemens P4
diffractometer
Rint = 0.021
5488 measured reflections3 standard reflections every 200 reflections
4083 independent reflections intensity decay: none
2933 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.21 e Å3
4083 reflectionsΔρmin = 0.22 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.33131 (7)0.89507 (3)0.64862 (3)0.05938 (17)
O10.3885 (2)0.86498 (9)0.57765 (10)0.0822 (5)
C10.3848 (2)0.82843 (12)0.73735 (13)0.0605 (5)
C20.3139 (3)0.83248 (14)0.80250 (15)0.0745 (6)
H20.23260.87140.80030.089*
C30.3593 (3)0.78113 (15)0.87018 (16)0.0872 (7)
H30.31020.78480.91490.105*
C40.4743 (3)0.72499 (16)0.87352 (18)0.0904 (8)
H40.50610.68940.92060.109*
C50.5443 (3)0.71973 (15)0.80935 (18)0.0891 (8)
H50.62440.68000.81180.107*
C60.5006 (3)0.77131 (13)0.74101 (15)0.0740 (6)
H60.55040.76740.69660.089*
C70.4076 (2)0.99553 (12)0.67865 (12)0.0562 (5)
C80.4058 (3)1.03138 (14)0.75291 (16)0.0862 (8)
H80.36071.00270.79120.103*
C90.4686 (4)1.10855 (16)0.77296 (19)0.1023 (9)
H90.46861.13260.82550.123*
C100.5298 (3)1.15025 (16)0.7190 (2)0.0982 (9)
H100.56971.20460.73230.118*
C110.5350 (4)1.11519 (18)0.6459 (2)0.1011 (9)
H110.58121.14420.60830.121*
C120.4740 (3)1.03797 (15)0.62551 (15)0.0783 (7)
H120.47811.01370.57370.094*
C130.1248 (2)0.90161 (14)0.62433 (12)0.0626 (5)
C140.0439 (3)0.97432 (16)0.60884 (14)0.0748 (6)
H140.09831.02560.61460.090*
C150.1159 (3)0.9735 (2)0.58502 (17)0.0959 (8)
H150.17211.02410.57370.115*
C160.1943 (3)0.9001 (3)0.57749 (16)0.1057 (10)
H160.30500.89950.56100.127*
C170.1149 (4)0.8284 (2)0.59346 (19)0.1112 (10)
H170.16990.77730.58880.133*
C180.0428 (3)0.82848 (17)0.61611 (17)0.0937 (8)
H180.09750.77740.62650.112*
O20.3853 (2)0.73940 (11)0.48186 (11)0.0885 (5)
H10.398 (4)0.786 (2)0.522 (2)0.153 (13)*
O30.6091 (2)0.69781 (12)0.56096 (14)0.1119 (7)
C190.5054 (3)0.68998 (14)0.49871 (16)0.0722 (6)
C200.4975 (3)0.62408 (13)0.43539 (14)0.0681 (6)
C210.3790 (3)0.62752 (16)0.36478 (15)0.0845 (7)
H210.30720.67230.35740.101*
C220.3603 (4)0.5673 (2)0.30327 (16)0.1011 (9)
H220.27740.57140.25390.121*
C230.4593 (4)0.50337 (19)0.31352 (17)0.0962 (9)
H230.44510.46200.27130.115*
C240.5825 (3)0.49611 (14)0.38462 (15)0.0757 (7)
C250.6837 (4)0.42814 (17)0.3952 (2)0.0941 (9)
H250.66750.38660.35300.113*
C260.8024 (4)0.42052 (19)0.4632 (2)0.1019 (9)
H260.87030.37410.46920.122*
C270.8258 (4)0.4807 (2)0.5249 (2)0.0990 (8)
H270.91040.47520.57330.119*
C280.7303 (3)0.54723 (16)0.51765 (17)0.0819 (7)
H280.74890.58760.56100.098*
C290.6048 (3)0.55750 (14)0.44734 (14)0.0678 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0665 (3)0.0520 (3)0.0647 (3)0.0007 (3)0.0259 (3)0.0049 (3)
O10.1055 (13)0.0719 (10)0.0834 (10)0.0000 (9)0.0499 (9)0.0135 (8)
C10.0607 (12)0.0467 (10)0.0744 (13)0.0012 (9)0.0178 (10)0.0031 (9)
C20.0821 (15)0.0625 (13)0.0854 (15)0.0108 (12)0.0332 (13)0.0118 (12)
C30.107 (2)0.0750 (16)0.0835 (16)0.0081 (15)0.0323 (15)0.0136 (13)
C40.108 (2)0.0671 (15)0.0865 (18)0.0047 (15)0.0069 (16)0.0094 (13)
C50.0827 (18)0.0640 (15)0.110 (2)0.0200 (13)0.0044 (16)0.0016 (15)
C60.0696 (14)0.0626 (13)0.0889 (16)0.0054 (12)0.0185 (12)0.0092 (12)
C70.0548 (11)0.0536 (11)0.0638 (12)0.0025 (9)0.0216 (9)0.0028 (9)
C80.120 (2)0.0642 (14)0.0904 (17)0.0264 (14)0.0572 (16)0.0126 (13)
C90.139 (3)0.0724 (16)0.108 (2)0.0297 (17)0.0553 (19)0.0240 (15)
C100.108 (2)0.0644 (15)0.126 (2)0.0254 (15)0.0371 (19)0.0011 (16)
C110.117 (2)0.0866 (19)0.107 (2)0.0305 (17)0.0419 (18)0.0209 (17)
C120.0894 (17)0.0788 (16)0.0710 (14)0.0112 (13)0.0285 (13)0.0080 (12)
C130.0643 (12)0.0684 (13)0.0542 (11)0.0065 (11)0.0134 (9)0.0010 (10)
C140.0682 (15)0.0799 (16)0.0767 (15)0.0024 (12)0.0191 (12)0.0110 (12)
C150.0691 (17)0.125 (2)0.0898 (18)0.0177 (17)0.0133 (14)0.0225 (17)
C160.0651 (16)0.171 (3)0.0726 (16)0.021 (2)0.0022 (13)0.010 (2)
C170.089 (2)0.123 (3)0.107 (2)0.044 (2)0.0015 (18)0.001 (2)
C180.0843 (19)0.0784 (16)0.108 (2)0.0220 (15)0.0057 (16)0.0053 (15)
O20.1228 (15)0.0644 (10)0.0789 (11)0.0064 (11)0.0268 (10)0.0061 (9)
O30.0828 (12)0.1111 (15)0.1352 (16)0.0169 (11)0.0156 (12)0.0631 (13)
C190.0793 (16)0.0651 (14)0.0801 (15)0.0293 (13)0.0348 (13)0.0139 (12)
C200.0880 (16)0.0591 (13)0.0681 (13)0.0210 (12)0.0397 (12)0.0070 (10)
C210.108 (2)0.0791 (16)0.0693 (15)0.0089 (15)0.0279 (14)0.0054 (12)
C220.130 (3)0.106 (2)0.0661 (16)0.019 (2)0.0214 (16)0.0152 (15)
C230.134 (3)0.0879 (19)0.0771 (17)0.0266 (19)0.0465 (18)0.0269 (15)
C240.0996 (18)0.0657 (14)0.0784 (16)0.0253 (13)0.0530 (15)0.0124 (12)
C250.119 (2)0.0724 (17)0.116 (2)0.0190 (17)0.076 (2)0.0144 (16)
C260.105 (2)0.088 (2)0.132 (3)0.0034 (18)0.065 (2)0.001 (2)
C270.0868 (19)0.102 (2)0.115 (2)0.0078 (17)0.0395 (17)0.0030 (19)
C280.0818 (17)0.0800 (17)0.0932 (18)0.0213 (14)0.0390 (15)0.0105 (14)
C290.0798 (15)0.0649 (13)0.0714 (14)0.0269 (12)0.0427 (12)0.0060 (11)
Geometric parameters (Å, º) top
P1—O11.4880 (15)C15—C161.377 (4)
P1—C11.799 (2)C15—H150.9600
P1—C71.796 (2)C16—C171.359 (5)
P1—C131.794 (2)C16—H160.9600
C1—C61.384 (3)C17—C181.366 (4)
C1—C21.393 (3)C17—H170.9600
C2—C31.380 (3)C18—H180.9600
C2—H20.9600C19—C201.495 (3)
C3—C41.369 (4)O2—C191.316 (3)
C3—H30.9600O2—H11.00 (4)
C4—C51.374 (4)O3—C191.210 (3)
C4—H40.9600C20—C211.371 (3)
C5—C61.390 (3)C20—C291.430 (3)
C5—H50.9600C21—C221.398 (4)
C6—H60.9600C21—H210.9600
C7—C81.373 (3)C22—C231.351 (4)
C7—C121.374 (3)C22—H220.9600
C8—C91.384 (3)C23—C241.404 (4)
C8—H80.9600C23—H230.9600
C9—C101.351 (4)C24—C251.414 (4)
C9—H90.9600C24—C291.424 (3)
C10—C111.357 (4)C25—C261.348 (4)
C10—H100.9600C25—H250.9600
C11—C121.380 (4)C26—C271.398 (4)
C11—H110.9600C26—H260.9600
C12—H120.9600C27—C281.368 (4)
C13—C141.379 (3)C27—H270.9600
C13—C181.389 (3)C28—C291.412 (3)
C14—C151.385 (3)C28—H280.9600
C14—H140.9600
O1—P1—C1112.42 (10)C15—C14—H14120.0
O1—P1—C7109.77 (9)C16—C15—C14120.1 (3)
O1—P1—C13112.66 (10)C16—C15—H15120.0
C1—P1—C7108.59 (9)C14—C15—H15120.0
C1—P1—C13105.34 (10)C17—C16—C15120.0 (3)
C7—P1—C13107.83 (10)C17—C16—H16120.0
C6—C1—C2118.9 (2)C15—C16—H16120.0
C2—C1—P1122.26 (16)C16—C17—C18120.4 (3)
C6—C1—P1118.82 (17)C16—C17—H17119.8
C3—C2—C1120.7 (2)C18—C17—H17119.8
C3—C2—H2119.6C17—C18—C13120.8 (3)
C1—C2—H2119.6C17—C18—H18119.6
C4—C3—C2120.0 (3)C13—C18—H18119.6
C4—C3—H3120.0C19—O2—H1112 (2)
C2—C3—H3120.0O3—C19—O2121.7 (2)
C3—C4—C5119.9 (2)O3—C19—C20124.7 (3)
C3—C4—H4120.0O2—C19—C20113.6 (2)
C5—C4—H4120.0C21—C20—C29119.8 (2)
C4—C5—C6120.7 (2)C21—C20—C19117.6 (2)
C4—C5—H5119.6C29—C20—C19122.6 (2)
C6—C5—H5119.6C20—C21—C22121.5 (3)
C1—C6—C5119.7 (2)C20—C21—H21119.2
C1—C6—H6120.2C22—C21—H21119.2
C5—C6—H6120.2C23—C22—C21119.8 (3)
C8—C7—C12118.3 (2)C23—C22—H22120.1
C8—C7—P1123.26 (16)C21—C22—H22120.1
C12—C7—P1118.45 (17)C22—C23—C24121.4 (3)
C7—C8—C9120.5 (2)C22—C23—H23119.3
C7—C8—H8119.7C24—C23—H23119.3
C9—C8—H8119.8C23—C24—C25120.8 (3)
C10—C9—C8120.4 (3)C23—C24—C29119.6 (3)
C10—C9—H9119.8C25—C24—C29119.6 (3)
C8—C9—H9119.8C26—C25—C24121.3 (3)
C9—C10—C11119.9 (3)C26—C25—H25119.3
C9—C10—H10120.0C24—C25—H25119.3
C11—C10—H10120.0C25—C26—C27119.5 (3)
C10—C11—C12120.2 (2)C25—C26—H26120.2
C10—C11—H11119.9C27—C26—H26120.2
C12—C11—H11119.9C28—C27—C26121.2 (3)
C7—C12—C11120.7 (2)C28—C27—H27119.4
C7—C12—H12119.7C26—C27—H27119.4
C11—C12—H12119.7C27—C28—C29121.0 (3)
C14—C13—C18118.6 (2)C27—C28—H28119.5
C14—C13—P1123.81 (17)C29—C28—H28119.5
C18—C13—P1117.46 (19)C28—C29—C24117.3 (2)
C13—C14—C15120.1 (2)C28—C29—C20124.8 (2)
C13—C14—H14120.0C24—C29—C20117.9 (2)
O1—P1—C1—C616.3 (2)C18—C13—C14—C150.5 (3)
C13—P1—C1—C6139.37 (17)P1—C13—C14—C15175.61 (18)
C7—P1—C1—C6105.33 (18)C13—C14—C15—C160.6 (4)
O1—P1—C1—C2163.81 (18)C14—C15—C16—C170.0 (4)
C13—P1—C1—C240.8 (2)C15—C16—C17—C180.7 (5)
C7—P1—C1—C274.5 (2)C16—C17—C18—C130.8 (5)
C6—C1—C2—C30.7 (4)C14—C13—C18—C170.2 (4)
P1—C1—C2—C3179.11 (19)P1—C13—C18—C17176.6 (2)
C1—C2—C3—C40.5 (4)O3—C19—C20—C21174.7 (2)
C2—C3—C4—C50.1 (4)O2—C19—C20—C216.8 (3)
C3—C4—C5—C60.5 (4)O3—C19—C20—C297.4 (3)
C2—C1—C6—C50.4 (3)O2—C19—C20—C29171.15 (18)
P1—C1—C6—C5179.50 (18)C29—C20—C21—C220.3 (4)
C4—C5—C6—C10.3 (4)C19—C20—C21—C22178.3 (2)
O1—P1—C7—C8164.4 (2)C20—C21—C22—C231.0 (4)
C13—P1—C7—C872.6 (2)C21—C22—C23—C240.6 (4)
C1—P1—C7—C841.1 (2)C22—C23—C24—C25178.9 (3)
O1—P1—C7—C1214.2 (2)C22—C23—C24—C290.4 (4)
C13—P1—C7—C12108.85 (19)C23—C24—C25—C26180.0 (3)
C1—P1—C7—C12137.48 (18)C29—C24—C25—C260.7 (4)
C12—C7—C8—C90.5 (4)C24—C25—C26—C270.3 (4)
P1—C7—C8—C9179.0 (2)C25—C26—C27—C280.1 (4)
C7—C8—C9—C101.2 (5)C26—C27—C28—C290.1 (4)
C8—C9—C10—C112.4 (5)C27—C28—C29—C240.2 (3)
C9—C10—C11—C121.8 (5)C27—C28—C29—C20178.6 (2)
C8—C7—C12—C111.0 (4)C23—C24—C29—C28179.9 (2)
P1—C7—C12—C11179.7 (2)C25—C24—C29—C280.6 (3)
C10—C11—C12—C70.1 (4)C23—C24—C29—C201.0 (3)
O1—P1—C13—C14104.48 (19)C25—C24—C29—C20178.32 (19)
C7—P1—C13—C1416.8 (2)C21—C20—C29—C28179.5 (2)
C1—P1—C13—C14132.63 (19)C19—C20—C29—C281.6 (3)
O1—P1—C13—C1871.7 (2)C21—C20—C29—C240.7 (3)
C7—P1—C13—C18167.05 (18)C19—C20—C29—C24177.23 (18)
C1—P1—C13—C1851.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O11.00 (3)1.60 (3)2.592 (2)170 (3)
C11—H11···O2i0.962.493.383 (4)156
C17—H17···O3ii0.962.313.203 (4)154
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H15OP·C11H8O2
Mr450.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.963 (1), 16.303 (1), 16.673 (1)
β (°) 104.784 (7)
V3)2355.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.28 × 0.12
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5488, 4083, 2933
Rint0.021
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.01
No. of reflections4083
No. of parameters302
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: XSCANS (Siemens, 1995), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1995), SHELXL97.

Selected geometric parameters (Å, º) top
P1—O11.4880 (15)C19—C201.495 (3)
P1—C11.799 (2)O2—C191.316 (3)
P1—C71.796 (2)O2—H11.00 (4)
P1—C131.794 (2)O3—C191.210 (3)
O1—P1—C1112.42 (10)C12—C7—P1118.45 (17)
O1—P1—C7109.77 (9)C14—C13—P1123.81 (17)
O1—P1—C13112.66 (10)C18—C13—P1117.46 (19)
C1—P1—C7108.59 (9)O3—C19—O2121.7 (2)
C1—P1—C13105.34 (10)O3—C19—C20124.7 (3)
C7—P1—C13107.83 (10)O2—C19—C20113.6 (2)
C2—C1—P1122.26 (16)C21—C20—C19117.6 (2)
C6—C1—P1118.82 (17)C29—C20—C19122.6 (2)
C8—C7—P1123.26 (16)
O1—P1—C1—C616.3 (2)O3—C19—C20—C21174.7 (2)
O1—P1—C7—C1214.2 (2)C25—C24—C29—C20178.32 (19)
O1—P1—C13—C1871.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O11.00 (3)1.60 (3)2.592 (2)170 (3)
C11—H11···O2i0.962.493.383 (4)156
C17—H17···O3ii0.962.313.203 (4)154
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds