Download citation
Download citation
link to html
5-(4-Chloro­phenyl)-2-methoxy­indeno­[1',2':2,3]­pyrido­[5,6-d]­pyrimidine-4,6(3H,5H)-dione crystallizes as a 1:1 di­methyl­form­amide solvate, C21H14ClN3O3·C3H7NO. The heterocyclic mol­ecules contain a planar fused-ring system and they are linked by paired N-H...O hydrogen bonds [H...O = 1.85 Å, N...O = 2.735 (4) Å and N-H...O = 179°] into centrosymmetric dimers, which are themselves linked into chains by a single C-H...[pi](arene) hydrogen bond. 10b-Hydroxy-2-methoxy-5-(4-methoxy­phenyl)-5a,10b-di­hydro­indeno­[1',2':2,3]pyrido­[5,6-d]­pyrimidine-4,6(3H,5H)-dione also crystallizes as a 1:1 di­methyl­form­amide solvate, C22H19N3O5·C3H7NO. The heterocyclic mol­ecules contain a sharply folded fused-ring system and they are linked by two independent N-H...O hydrogen bonds [H...O = 1.92 and 2.18 Å, N...O = 2.801 (2) and 3.051 (2) Å, and N-H...O = 175 and 173°] into chains of rings. In both compounds, the di­methyl­form­amide mol­ecules are pendent from the chains, linked via N-H...O and O-H...O hydrogen bonds, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104001489/sk1698sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104001489/sk1698Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104001489/sk1698IIsup3.hkl
Contains datablock II

CCDC references: 235339; 235340

Comment top

As part of our study of the synthesis of new fused heterocyclic systems of potential biological interest using multicomponent condensation reactions under environmentally friendly conditions, we here report on two indeno[1',2':2,3]pyrido[5,6-d]pyrimidinediones obtained from reactions between 6-aminopyrimidinone, aryl aldehydes and indandione activated by microwave radiation (Quiroga et al. 2001) Both of these compounds? form monosolvates, viz. (I) and (II), when crystallized from dimethylformamide solutions.

The fused ring system in (I) (Fig.1) is essentially planar. Although the heterocyclic molecules are chiral, because of the stereogenic centre at atom C5, (I) crystallizes as a racemic mixture in space group P21/c; the reference molecule was selected as having the (R)-configuration at atom C5. Compound (II) (Fig. 2) differs from (I) not only by having a different 4-substituent on the pendent aryl ring but also, more importantly, in having an additional H atom bonded to atom C5A and an OH group bonded to atom C10B. In contrast to the planar ring system in (I), the fused-ring system in (II) is folded sharply along the C5A—C10B bond. The dihedral angle between the planes through the two central rings is 74.9 (2)°. The heterocyclic component of (II) is chiral, with three contiguous stereogenic centres at atoms C5, C5A and C10B. Compound (II) also crystallizes as a racemic mixture, this time in space group P-1. The reference molecule in (II) was again selected to have (R)-configuration at C5, and in this molecule, the configuration at both atom C5A and atom C10B is (S). Hence the racemic mixture consists of molecules whose configurations are (5R,5aS,10bS) and (5S,5aR,10bR). The additional H and OH substituents in (II) are thus attached to the same face of the fused-ring system as the aryl substituent at atom C5.

Within the heterocyclic component in (I), there are alternating C—C bond lengths in the fused benzenoid ring (C6A/C7–C10/C10A) (Table 1); in addition, the N11—C11A and C5A—C6 distances are both significantly shorter than the analogous N1—C2 and C6—C6A bonds, respectively, while the C6—O6 distance is significantly longer in (I) than in (II). On the other hand, there is no evidence for any bond fixation in the fused benzenoid ring of (II), while all the bond distances in (II) that involve atoms C5A or C10B show the expected increases compared with the corresponding distances in (I). Taken together, the metrical data indicate both the polarization of the central conjugated amide unit in (I), which is not possible in (II), and some bond fixation in the fused benzenoid ring of (I). A number of canonical forms can be drawn to represent these two independent effects, of which (Ia) (see the first scheme above) is typical. For (II), the unpolarized form, with a delocalized benzenoid ring in the fused system, is the appropriate representation. The dimethylformamide components show no unusual features.

In the asymmetric unit of (I), the two molecular components are linked by a nearly linear N—H···O hydrogen bond (Table 2). In addition, a second, rather short, N—H···O hydrogen bond generates a centrosymmetric four-molecule aggregate centred at (1/2, 1/2, 1/2) (Fig. 3) and characterized by the graph-set descriptor D33(15)[R22(8)] (Bernstein et al., 1995). The D[R] pattern has been noted (Bernstein et al., 1995) as of common occurrence in centrosymmetric structures containing more than one molecule in the asymmetric unit, for example, where centrosymmetric rings have a second pendent component (Patterson et al., 1998). These centrosymmetric aggregates are linked into chains by a single short C—H···π(arene) hydrogen bond. Atom C8, part of the fused benzenoid ring in the molecule at (x, y, z), which itself lies in the aggregate centred at (1/2, 1/2, 1/2), acts as a hydrogen-bond donor to the corresponding benzenoid ring in the molecule at (−1 + x, y, z), which forms part of the aggregate centred at (−0.5, 1/2, 1/2). Propagation of the hydrogen bonds by translation and inversion then links centrosymmetric aggregates into a rather complex chain of rings running parallel to the [100] direction (Fig. 4). There are no direction-specific interactions between adjacent chains; in particular, aromatic ππ stacking interactions are absent from the structure of (I).

In compound (II), the two independent molecular components (Fig. 2) are linked by a short O—H···O hydrogen bond (Table 3), and two N—H···O hydrogen bonds link the heterocyclic molecules into a chain of rings. In the shorter of the N—H···O hydrogen bonds, amide atom N3 in the molecule at (x, y, z) acts as a hydrogen-bond donor to amide atom O4 in the molecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric four-molecule D33(19)[R22(8)] aggregate centred at (1/2, 1/2, 1/2) (Fig. 5) and analogous to the corresponding aggregate formed by (I) (Fig. 3). In addition, atom N11 in the molecule at (x, y, z) acts as a donor in a longer hydrogen bond, to hydroxy atom O10 in the molecule at (-x, −y, −z), so forming a second R22(8) ring, this time centred at (0, 0, 0). The combination of the two ring motifs generates a chain of rings running parallel to the [111] direction (Fig. 6). Both C—H···π(arene) hydrogen bonds and aromatic ππ stacking interactions are absent from the structure of (II).

The constitutions of (I) and (II) and, in particular, the relative stereochemistry of (II), are of importance in the context of a general synthetic method for fused pyridopyrimidinones by means of microwave heating in solvent-free systems (Quiroga et al., 2001). Reaction of an aminopyrimidine with an aromatic aldehyde and benzoylacetonitrile (containing an activated methylene group) yielded firstly the hydrated intermediate (III) (see Scheme 2) followed, upon longer heating, by the loss of water to give (IV). However, the spectral techniques used for the identification of (III) and (IV) did not allow assignment of the relative stereochemistry of the three contiguous stereogenic centres. The synthesis of (I) and (II) are directly related to those of (IV) and (III), respectively, so that the relative stereochemistry in the intermediate (III) can, with reasonable confidence, be assigned as similar to that in (II). In any event, it is clear that the loss of water from intermediates of type (II) to form the new C=C double bond in the type (I) products requires a cis elimination step.

Cg1 is centroid of ring C51—C56.

Experimental top

For the synthesis of the heterocyclic component of (I), a homogeneous mixture containing equimolar amounts of 6-amino-2-methoxy-3H-4-pyrimidone, 4-chlorobenzaldehyde and indandionewas placed in Pyrex glass open vessels and irradiated in a domestic microwave oven for 5 min (at 600 W). The product of the reaction was recrystallized from absolute ethanol. Yield 71%; m.p. 510 K; MS (EI) m/z: 393, 391 (M+). For the heterocyclic component of (II), a similar mixture, but containing 4-methoxybenzaldehyde in place of 4-chlorobenzaldehyde, was irradiated in a domestic microwave oven for 45 s (at 600 W). The reaction product was filtered off, washed with ethanol and recrystallized from absolute ethanol. Yield 76%; m.p. 455 K. Crystals of solvates (I) and (II) suitable for single-crystal X-ray diffraction were grown from a solution in dimethylformamide.

Refinement top

For (I), space group P21/c was assigned uniquely from the systematic absences. Crystals of (II) are triclinic, and space group P-1 was assigned and confirmed by the successful structure analysis. All H atoms were located from difference maps and subequently treated as riding atoms [C—H = 0.95 (aromatic), 0.98 (methyl) or 1.00 Å (aliphatic C/H), N—H = 0.88 Å and O—H = 0.99 Å), allowed to ride at the distances deduced from the difference maps. The long O—H distance in (II) may be influenced by the short O···O distance in the associated hydrogen bond (Table 3). Examination of the refined structure of (II) using PLATON (Spek, 2003) showed the presence of small voids centred at approximately (1/2, 0, 1/2) and at symmetry-related postions, each having a volume of ca 43 Å3. However, these voids contain negligible electron density.

Computing details top

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN. Program(s) used to solve structure: OSCAIL (MCardle, 2003) and SHELXS97 (Sheldrick, 1997) for (I); OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent molecular components in (I), showing the (R) enantiomorph of the heterocyclic component, together with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The independent molecular components in (II), showing the (5R, 5aS, 10bS) enantiomorph of the heterocyclic component, together with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a centrosymmetric four-molecule aggregate. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (I), showing the formation of a [100] chain of rings built from N—H···O and C—H···π(arene) hydrogen bonds. For clarity, the dimethylformamide molecules have been omitted, as have all H atoms not involved in the motifs shown.
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the formation of a centrosymmetric four-molecule aggregate. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (II), showing the formation of a chain of rings along [111]. For clarity, the dimethylformamide molecules have been omitted, as have all H atoms bonded to C atoms.
(I) 5-(4-Chlorophenyl)-2-methoxyindeno[1',2':2,3]pyrido[5,6-d]pyrimidine- 4,6(3H,5H)-dione–dimethylformamide (1/1) top
Crystal data top
C21H14ClN3O3·C3H7NOF(000) = 968
Mr = 464.90Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4182 reflections
a = 10.6850 (6) Åθ = 3.1–25.7°
b = 17.6182 (12) ŵ = 0.21 mm1
c = 12.3774 (8) ÅT = 120 K
β = 108.523 (4)°Block, orange
V = 2209.3 (2) Å30.08 × 0.04 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4182 independent reflections
Radiation source: rotating anode2135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.123
ϕ scans, and ω scans with κ offsetsθmax = 25.7°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 1313
Tmin = 0.977, Tmax = 0.996k = 2121
8314 measured reflectionsl = 1514
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
4182 reflectionsΔρmax = 0.27 e Å3
302 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0104 (12)
Crystal data top
C21H14ClN3O3·C3H7NOV = 2209.3 (2) Å3
Mr = 464.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6850 (6) ŵ = 0.21 mm1
b = 17.6182 (12) ÅT = 120 K
c = 12.3774 (8) Å0.08 × 0.04 × 0.02 mm
β = 108.523 (4)°
Data collection top
Nonius KappaCCD
diffractometer
4182 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
2135 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.996Rint = 0.123
8314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 0.96Δρmax = 0.27 e Å3
4182 reflectionsΔρmin = 0.29 e Å3
302 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2308 (3)0.59710 (19)0.6334 (2)0.0251 (8)
C20.3516 (4)0.5767 (2)0.6470 (3)0.0263 (10)
O20.4492 (3)0.58682 (17)0.7444 (2)0.0312 (7)
N30.3929 (3)0.54392 (19)0.5654 (2)0.0252 (8)
C40.3057 (4)0.5280 (2)0.4575 (3)0.0261 (10)
O40.3468 (3)0.49354 (16)0.3872 (2)0.0275 (7)
C4A0.1736 (4)0.5525 (2)0.4375 (3)0.0248 (10)
C5A0.0583 (4)0.5654 (2)0.3225 (3)0.0256 (10)
C50.0748 (4)0.5418 (2)0.3174 (3)0.0254 (10)
C6A0.2874 (4)0.5921 (2)0.2800 (3)0.0276 (10)
C60.1859 (4)0.5588 (2)0.2319 (3)0.0290 (10)
O60.2077 (3)0.53225 (17)0.1356 (2)0.0341 (8)
C70.4226 (4)0.6002 (3)0.2331 (3)0.0314 (11)
C80.4908 (4)0.6319 (3)0.3018 (3)0.0347 (11)
C90.4261 (4)0.6547 (2)0.4124 (3)0.0319 (11)
C100.2888 (4)0.6461 (2)0.4594 (3)0.0285 (10)
C10A0.2216 (4)0.6147 (2)0.3923 (3)0.0266 (10)
C10B0.0795 (4)0.5971 (2)0.4155 (3)0.0253 (10)
N110.0159 (3)0.60870 (19)0.5154 (2)0.0253 (8)
C11A0.1426 (4)0.5850 (2)0.5271 (3)0.0234 (9)
C210.4133 (4)0.6235 (3)0.8348 (3)0.0401 (12)
C310.0594 (5)0.6568 (3)0.7996 (3)0.0339 (11)
N320.1610 (4)0.6705 (2)0.8357 (3)0.0328 (9)
O310.0576 (3)0.66900 (17)0.7009 (2)0.0330 (8)
C330.1596 (5)0.6509 (3)0.9509 (3)0.0417 (13)
C340.2831 (4)0.6992 (3)0.7556 (3)0.0366 (12)
C510.1183 (4)0.5884 (2)0.2314 (3)0.0247 (10)
C520.1173 (4)0.6671 (2)0.2353 (3)0.0251 (10)
C530.1629 (4)0.7113 (2)0.1626 (3)0.0273 (10)
C540.2087 (4)0.6738 (2)0.0840 (3)0.0275 (10)
Cl540.27146 (12)0.72919 (7)0.00552 (9)0.0397 (4)
C550.2089 (4)0.5961 (2)0.0757 (3)0.0280 (10)
C560.1630 (4)0.5535 (3)0.1503 (3)0.0282 (10)
H21A0.37770.67410.80970.060*
H21B0.49160.62820.90230.060*
H21C0.34630.59300.85360.060*
H30.47690.53240.58080.030*
H50.07180.48690.29620.030*
H520.08460.69150.28930.030*
H530.16260.76520.16650.033*
H550.23980.57190.02040.034*
H560.16230.49970.14540.034*
H70.46760.58480.15700.038*
H80.58380.63790.27170.042*
H90.47490.67630.45690.038*
H100.24360.66160.53530.034*
H110.00220.63100.57230.030*
H310.01790.63610.85280.051*
H33A0.07550.62650.99200.063*
H33B0.23240.61600.94660.063*
H33C0.17000.69710.99130.063*
H34A0.26260.73300.70070.055*
H34B0.33250.72720.79720.055*
H34C0.33650.65650.71510.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.024 (2)0.027 (2)0.0223 (17)0.0003 (17)0.0057 (16)0.0023 (15)
C20.029 (3)0.026 (3)0.026 (2)0.004 (2)0.011 (2)0.0014 (18)
O20.0261 (18)0.040 (2)0.0261 (15)0.0017 (14)0.0064 (14)0.0053 (13)
N30.022 (2)0.029 (2)0.0271 (18)0.0037 (16)0.0119 (16)0.0007 (15)
C40.029 (3)0.023 (2)0.026 (2)0.003 (2)0.008 (2)0.0015 (19)
O40.0287 (18)0.0292 (18)0.0254 (14)0.0004 (14)0.0096 (13)0.0011 (13)
C4A0.029 (3)0.024 (2)0.024 (2)0.000 (2)0.0119 (19)0.0006 (18)
C5A0.028 (3)0.030 (3)0.019 (2)0.000 (2)0.0081 (19)0.0047 (18)
C50.028 (2)0.026 (2)0.022 (2)0.002 (2)0.0069 (18)0.0029 (18)
C6A0.031 (3)0.029 (3)0.026 (2)0.003 (2)0.013 (2)0.0020 (19)
C60.036 (3)0.027 (3)0.025 (2)0.009 (2)0.011 (2)0.001 (2)
O60.0360 (19)0.039 (2)0.0272 (16)0.0048 (15)0.0104 (14)0.0037 (14)
C70.031 (3)0.036 (3)0.024 (2)0.004 (2)0.004 (2)0.002 (2)
C80.025 (3)0.039 (3)0.037 (2)0.003 (2)0.007 (2)0.010 (2)
C90.027 (3)0.035 (3)0.036 (2)0.003 (2)0.013 (2)0.005 (2)
C100.029 (3)0.026 (3)0.031 (2)0.001 (2)0.010 (2)0.0028 (19)
C10A0.025 (2)0.026 (2)0.031 (2)0.002 (2)0.012 (2)0.0018 (19)
C10B0.030 (3)0.019 (2)0.026 (2)0.002 (2)0.007 (2)0.0020 (18)
N110.025 (2)0.028 (2)0.0222 (17)0.0051 (17)0.0067 (16)0.0004 (15)
C11A0.024 (2)0.021 (2)0.025 (2)0.0017 (19)0.0074 (19)0.0003 (18)
C210.037 (3)0.059 (3)0.026 (2)0.006 (3)0.013 (2)0.017 (2)
C310.034 (3)0.036 (3)0.029 (2)0.003 (2)0.007 (2)0.007 (2)
N320.038 (2)0.035 (2)0.0270 (18)0.0039 (19)0.0117 (18)0.0005 (17)
O310.0353 (19)0.0374 (19)0.0277 (15)0.0038 (15)0.0118 (14)0.0059 (14)
C330.054 (3)0.040 (3)0.036 (2)0.004 (3)0.021 (2)0.003 (2)
C340.034 (3)0.044 (3)0.032 (2)0.000 (2)0.011 (2)0.005 (2)
C510.027 (2)0.021 (2)0.026 (2)0.000 (2)0.0089 (19)0.0024 (18)
C520.025 (2)0.028 (3)0.025 (2)0.000 (2)0.0106 (18)0.0059 (19)
C530.026 (2)0.025 (3)0.029 (2)0.003 (2)0.0061 (19)0.0016 (19)
C540.028 (3)0.032 (3)0.021 (2)0.000 (2)0.0063 (19)0.0040 (19)
Cl540.0538 (8)0.0369 (7)0.0365 (6)0.0006 (6)0.0258 (6)0.0060 (5)
C550.028 (3)0.032 (3)0.023 (2)0.007 (2)0.0073 (19)0.0018 (19)
C560.034 (3)0.029 (3)0.021 (2)0.004 (2)0.0074 (19)0.0020 (19)
Geometric parameters (Å, º) top
N1—C21.299 (5)C56—H560.95
N1—C11A1.370 (5)C6A—C71.383 (6)
C2—O21.332 (4)C6A—C10A1.401 (5)
C2—N31.353 (5)C6A—C61.512 (6)
O2—C211.445 (4)C6—O61.232 (4)
C21—H21A0.98C7—C81.400 (6)
C21—H21B0.98C7—H70.95
C21—H21C0.98C8—C91.383 (5)
N3—C41.392 (5)C8—H80.95
N3—H30.88C9—C101.404 (6)
C4—O41.250 (4)C9—H90.95
C4—C4A1.420 (5)C10—C10A1.374 (5)
C4A—C11A1.378 (5)C10—H100.95
C4A—C51.537 (5)C10A—C10B1.486 (6)
C5A—C10B1.361 (5)C10B—N111.345 (5)
C5A—C61.469 (6)N11—C11A1.380 (5)
C5A—C51.502 (5)N11—H110.88
C5—C511.529 (5)C31—O311.247 (4)
C5—H51.00C31—N321.320 (5)
C51—C561.385 (5)C31—H310.95
C51—C521.388 (5)N32—C341.455 (5)
C52—C531.390 (5)N32—C331.463 (5)
C52—H520.95C33—H33A0.98
C53—C541.387 (5)C33—H33B0.98
C53—H530.95C33—H33C0.98
C54—C551.373 (6)C34—H34A0.98
C54—Cl541.761 (4)C34—H34B0.98
C55—C561.395 (5)C34—H34C0.98
C55—H550.95
C2—N1—C11A115.7 (3)C7—C6A—C6131.2 (4)
N1—C2—O2122.7 (3)C10A—C6A—C6107.7 (4)
N1—C2—N3124.5 (4)O6—C6—C5A127.8 (4)
O2—C2—N3112.7 (4)O6—C6—C6A126.2 (4)
C2—O2—C21115.9 (3)C5A—C6—C6A106.0 (3)
O2—C21—H21A109.5C6A—C7—C8117.5 (4)
O2—C21—H21B109.5C6A—C7—H7121.3
H21A—C21—H21B109.5C8—C7—H7121.3
O2—C21—H21C109.5C9—C8—C7121.6 (4)
H21A—C21—H21C109.5C9—C8—H8119.2
H21B—C21—H21C109.5C7—C8—H8119.2
C2—N3—C4121.6 (4)C8—C9—C10120.4 (4)
C2—N3—H3119.2C8—C9—H9119.8
C4—N3—H3119.2C10—C9—H9119.8
O4—C4—N3119.3 (4)C10A—C10—C9118.1 (4)
O4—C4—C4A125.1 (4)C10A—C10—H10121.0
N3—C4—C4A115.6 (3)C9—C10—H10121.0
C11A—C4A—C4117.7 (4)C10—C10A—C6A121.3 (4)
C11A—C4A—C5124.2 (4)C10—C10A—C10B131.7 (4)
C4—C4A—C5118.1 (3)C6A—C10A—C10B107.0 (3)
C10B—C5A—C6108.4 (4)N11—C10B—C5A124.0 (4)
C10B—C5A—C5124.2 (4)N11—C10B—C10A125.1 (3)
C6—C5A—C5127.4 (3)C5A—C10B—C10A110.9 (4)
C5A—C5—C51112.4 (3)C10B—N11—C11A118.8 (3)
C5A—C5—C4A107.1 (3)C10B—N11—H11120.6
C51—C5—C4A109.9 (3)C11A—N11—H11120.6
C5A—C5—H5109.1N1—C11A—C4A124.7 (4)
C51—C5—H5109.1N1—C11A—N11113.9 (3)
C4A—C5—H5109.1C4A—C11A—N11121.3 (4)
C56—C51—C52118.5 (4)O31—C31—N32124.8 (4)
C56—C51—C5121.1 (4)O31—C31—H31117.6
C52—C51—C5120.3 (3)N32—C31—H31117.6
C51—C52—C53121.9 (4)C31—N32—C34119.3 (3)
C51—C52—H52119.0C31—N32—C33122.1 (4)
C53—C52—H52119.0C34—N32—C33118.3 (4)
C54—C53—C52117.5 (4)N32—C33—H33A109.5
C54—C53—H53121.3N32—C33—H33B109.5
C52—C53—H53121.3H33A—C33—H33B109.5
C55—C54—C53122.5 (4)N32—C33—H33C109.5
C55—C54—Cl54119.7 (3)H33A—C33—H33C109.5
C53—C54—Cl54117.9 (3)H33B—C33—H33C109.5
C54—C55—C56118.6 (4)N32—C34—H34A109.5
C54—C55—H55120.7N32—C34—H34B109.5
C56—C55—H55120.7H34A—C34—H34B109.5
C51—C56—C55121.0 (4)N32—C34—H34C109.5
C51—C56—H56119.5H34A—C34—H34C109.5
C55—C56—H56119.5H34B—C34—H34C109.5
C7—C6A—C10A121.1 (4)
C11A—N1—C2—O2178.0 (4)C5—C5A—C6—C6A178.9 (4)
C11A—N1—C2—N31.3 (6)C7—C6A—C6—O61.0 (7)
N1—C2—O2—C211.0 (6)C10A—C6A—C6—O6179.1 (4)
N3—C2—O2—C21178.4 (4)C7—C6A—C6—C5A179.4 (4)
N1—C2—N3—C41.1 (6)C10A—C6A—C6—C5A1.2 (4)
O2—C2—N3—C4179.6 (3)C10A—C6A—C7—C80.2 (6)
C2—N3—C4—O4175.6 (4)C6—C6A—C7—C8178.2 (4)
C2—N3—C4—C4A3.6 (5)C6A—C7—C8—C90.2 (6)
O4—C4—C4A—C11A175.4 (4)C7—C8—C9—C100.3 (6)
N3—C4—C4A—C11A3.8 (5)C8—C9—C10—C10A0.0 (6)
O4—C4—C4A—C55.2 (6)C9—C10—C10A—C6A0.4 (6)
N3—C4—C4A—C5175.7 (3)C9—C10—C10A—C10B179.1 (4)
C10B—C5A—C5—C51115.0 (4)C7—C6A—C10A—C100.5 (6)
C6—C5A—C5—C5165.3 (5)C6—C6A—C10A—C10178.9 (4)
C10B—C5A—C5—C4A5.8 (5)C7—C6A—C10A—C10B179.1 (4)
C6—C5A—C5—C4A173.9 (4)C6—C6A—C10A—C10B0.7 (4)
C11A—C4A—C5—C5A5.7 (5)C6—C5A—C10B—N11177.5 (4)
C4—C4A—C5—C5A174.9 (4)C5—C5A—C10B—N112.3 (7)
C11A—C4A—C5—C51116.7 (4)C6—C5A—C10B—C10A0.9 (5)
C4—C4A—C5—C5162.7 (5)C5—C5A—C10B—C10A179.3 (4)
C5A—C5—C51—C56129.6 (4)C10—C10A—C10B—N111.3 (7)
C4A—C5—C51—C56111.1 (4)C6A—C10A—C10B—N11178.3 (4)
C5A—C5—C51—C5252.2 (5)C10—C10A—C10B—C5A179.7 (4)
C4A—C5—C51—C5267.0 (5)C6A—C10A—C10B—C5A0.1 (5)
C56—C51—C52—C531.7 (6)C5A—C10B—N11—C11A2.4 (6)
C5—C51—C52—C53176.5 (4)C10A—C10B—N11—C11A175.8 (4)
C51—C52—C53—C540.6 (6)C2—N1—C11A—C4A0.9 (6)
C52—C53—C54—C550.7 (6)C2—N1—C11A—N11178.9 (3)
C52—C53—C54—Cl54178.0 (3)C4—C4A—C11A—N11.7 (6)
C53—C54—C55—C560.9 (6)C5—C4A—C11A—N1177.7 (4)
Cl54—C54—C55—C56177.8 (3)C4—C4A—C11A—N11178.6 (4)
C52—C51—C56—C551.5 (6)C5—C4A—C11A—N112.1 (6)
C5—C51—C56—C55176.7 (4)C10B—N11—C11A—N1177.8 (3)
C54—C55—C56—C510.2 (6)C10B—N11—C11A—C4A2.5 (6)
C10B—C5A—C6—O6179.0 (4)O31—C31—N32—C342.6 (7)
C5—C5A—C6—O60.7 (7)O31—C31—N32—C33176.4 (4)
C10B—C5A—C6—C6A1.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.852.735 (4)179
N11—H11···O310.881.982.857 (4)172
C8—H8···Cg1ii0.952.633.561 (5)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
(II) (5RS,5aSR,10bSR)-10b-hydroxy-2-methoxy-5-(4-methoxyphenyl)-5a-10b- dihydroindeno[1',2':2,3]pyrido[5,6-d]pyrimidine-4,6(3H,5H)-dione– dimethylformamide (1/1) top
Crystal data top
C22H19N3O5·C3H7NOZ = 2
Mr = 478.50F(000) = 504
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4172 (2) ÅCell parameters from 5297 reflections
b = 10.8540 (3) Åθ = 2.9–27.6°
c = 11.6112 (3) ŵ = 0.10 mm1
α = 94.2692 (12)°T = 120 K
β = 116.0676 (12)°Block, yellow
γ = 94.4530 (13)°0.20 × 0.10 × 0.04 mm
V = 1167.08 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
5297 independent reflections
Radiation source: rotating anode3719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 2.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997
h = 1313
Tmin = 0.974, Tmax = 0.996k = 1413
5297 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.5313P]
where P = (Fo2 + 2Fc2)/3
5297 reflections(Δ/σ)max < 0.001
326 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C22H19N3O5·C3H7NOγ = 94.4530 (13)°
Mr = 478.50V = 1167.08 (5) Å3
Triclinic, P1Z = 2
a = 10.4172 (2) ÅMo Kα radiation
b = 10.8540 (3) ŵ = 0.10 mm1
c = 11.6112 (3) ÅT = 120 K
α = 94.2692 (12)°0.20 × 0.10 × 0.04 mm
β = 116.0676 (12)°
Data collection top
Nonius KappaCCD
diffractometer
5297 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997
3719 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.996Rint = 0.073
5297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
5297 reflectionsΔρmin = 0.37 e Å3
326 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35716 (17)0.18353 (15)0.22434 (15)0.0176 (4)
C20.4584 (2)0.27369 (18)0.29379 (19)0.0179 (4)
O20.58146 (14)0.28847 (13)0.28476 (13)0.0220 (3)
C40.3334 (2)0.35679 (18)0.40663 (18)0.0170 (4)
N30.45158 (17)0.36083 (15)0.37961 (16)0.0185 (4)
O40.33167 (14)0.43994 (12)0.48670 (13)0.0198 (3)
C4A0.2239 (2)0.25609 (18)0.33839 (18)0.0171 (4)
C50.0903 (2)0.23997 (18)0.35860 (19)0.0176 (4)
C5A0.0276 (2)0.10115 (18)0.32368 (19)0.0177 (4)
C60.1113 (2)0.02102 (19)0.42837 (19)0.0197 (4)
O60.16731 (16)0.05430 (14)0.54418 (14)0.0277 (4)
C6A0.1088 (2)0.10179 (19)0.3642 (2)0.0206 (4)
C70.1581 (2)0.2101 (2)0.4181 (2)0.0272 (5)
C80.1442 (2)0.3147 (2)0.3365 (2)0.0293 (5)
C90.0819 (2)0.3118 (2)0.2032 (2)0.0285 (5)
C100.0323 (2)0.20409 (19)0.1487 (2)0.0234 (5)
C10A0.0483 (2)0.09871 (18)0.23169 (19)0.0183 (4)
C10B0.0182 (2)0.03239 (18)0.19708 (18)0.0171 (4)
O100.11304 (14)0.03408 (12)0.08569 (13)0.0194 (3)
N110.13181 (17)0.08555 (15)0.16838 (15)0.0182 (4)
C11A0.2381 (2)0.17682 (17)0.24682 (18)0.0166 (4)
C210.6048 (2)0.18856 (19)0.2077 (2)0.0237 (5)
C310.3448 (2)0.14912 (19)0.18371 (19)0.0219 (4)
N320.46330 (19)0.17883 (16)0.19658 (17)0.0229 (4)
O310.33595 (15)0.07707 (14)0.10888 (14)0.0268 (4)
C330.5953 (2)0.1251 (2)0.1240 (2)0.0282 (5)
C340.4635 (3)0.2595 (2)0.2911 (2)0.0347 (6)
C510.0175 (2)0.32812 (18)0.29006 (19)0.0182 (4)
C520.0756 (2)0.39835 (18)0.3571 (2)0.0196 (4)
C530.1745 (2)0.47954 (19)0.2978 (2)0.0225 (5)
C540.2191 (2)0.49168 (19)0.1679 (2)0.0231 (5)
O540.31602 (18)0.57484 (15)0.11723 (15)0.0339 (4)
C550.1636 (2)0.42168 (19)0.0987 (2)0.0246 (5)
C560.0634 (2)0.34194 (19)0.1605 (2)0.0224 (5)
C5410.3598 (3)0.5935 (3)0.0146 (2)0.0434 (7)
H21A0.62200.11450.25320.036*
H21B0.68870.21510.19410.036*
H21C0.51950.16890.12400.036*
H30.52300.42130.41920.022*
H50.12190.26080.45320.021*
H520.04650.39020.44570.023*
H530.21180.52670.34580.029 (6)*
H54A0.27590.62650.02510.065*
H54B0.43090.65290.03940.065*
H54C0.40280.51400.06960.065*
H550.19410.42850.00960.037 (7)*
H560.02520.29550.11280.021 (6)*
H5A0.07250.09580.31520.021*
H70.20020.21160.50900.029 (6)*
H80.17730.38900.37120.032 (6)*
H90.07300.38470.14830.038 (7)*
H100.01100.20290.05780.028*
H10B0.19420.00940.09530.023*
H110.13170.05680.09550.022*
H310.26120.18550.23520.026*
H33A0.67410.19200.07510.042*
H33B0.58160.07270.06410.042*
H33C0.61890.07450.18380.042*
H34A0.48060.21220.35720.052*
H34B0.37010.29120.33180.052*
H34C0.53990.32950.24790.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0160 (8)0.0185 (8)0.0187 (9)0.0010 (7)0.0086 (7)0.0004 (7)
C20.0169 (10)0.0189 (10)0.0197 (10)0.0028 (8)0.0096 (8)0.0026 (8)
O20.0187 (7)0.0227 (8)0.0266 (8)0.0010 (6)0.0139 (6)0.0056 (6)
C210.0227 (11)0.0251 (11)0.0266 (11)0.0028 (9)0.0151 (9)0.0044 (9)
N30.0162 (8)0.0171 (8)0.0206 (9)0.0018 (7)0.0084 (7)0.0029 (7)
C40.0178 (10)0.0166 (10)0.0165 (10)0.0032 (8)0.0073 (8)0.0029 (8)
O40.0208 (7)0.0176 (7)0.0211 (7)0.0009 (6)0.0107 (6)0.0037 (6)
C4A0.0178 (10)0.0172 (10)0.0152 (10)0.0033 (8)0.0065 (8)0.0003 (8)
C50.0179 (10)0.0185 (10)0.0167 (10)0.0017 (8)0.0085 (8)0.0008 (8)
C510.0170 (10)0.0164 (10)0.0202 (10)0.0017 (8)0.0086 (8)0.0018 (8)
C520.0179 (10)0.0202 (10)0.0199 (10)0.0010 (8)0.0089 (9)0.0005 (8)
C530.0221 (11)0.0195 (10)0.0264 (11)0.0015 (9)0.0122 (9)0.0023 (9)
C540.0197 (10)0.0179 (10)0.0282 (12)0.0034 (8)0.0076 (9)0.0012 (9)
O540.0379 (9)0.0317 (9)0.0280 (9)0.0187 (8)0.0088 (7)0.0035 (7)
C5410.0519 (17)0.0410 (15)0.0286 (13)0.0221 (13)0.0072 (12)0.0076 (11)
C550.0276 (11)0.0234 (11)0.0226 (11)0.0040 (9)0.0108 (9)0.0031 (9)
C560.0252 (11)0.0223 (11)0.0215 (11)0.0040 (9)0.0123 (9)0.0003 (8)
C5A0.0158 (9)0.0184 (10)0.0200 (10)0.0005 (8)0.0101 (8)0.0011 (8)
C60.0164 (10)0.0233 (11)0.0201 (11)0.0011 (8)0.0094 (8)0.0019 (8)
O60.0317 (9)0.0296 (8)0.0174 (8)0.0013 (7)0.0081 (7)0.0007 (6)
C6A0.0185 (10)0.0218 (10)0.0217 (11)0.0010 (8)0.0093 (9)0.0029 (8)
C70.0282 (12)0.0244 (11)0.0277 (12)0.0021 (9)0.0107 (10)0.0089 (9)
C80.0305 (12)0.0220 (11)0.0380 (14)0.0067 (10)0.0164 (11)0.0099 (10)
C90.0342 (13)0.0191 (11)0.0371 (13)0.0018 (10)0.0214 (11)0.0013 (10)
C100.0281 (11)0.0208 (11)0.0226 (11)0.0004 (9)0.0134 (10)0.0004 (9)
C10A0.0165 (10)0.0190 (10)0.0208 (10)0.0004 (8)0.0101 (8)0.0010 (8)
C10B0.0165 (9)0.0185 (10)0.0148 (9)0.0003 (8)0.0062 (8)0.0001 (8)
O100.0145 (7)0.0237 (7)0.0166 (7)0.0000 (6)0.0044 (6)0.0014 (6)
N110.0187 (8)0.0201 (9)0.0154 (8)0.0020 (7)0.0085 (7)0.0024 (7)
C11A0.0160 (9)0.0159 (10)0.0171 (10)0.0020 (8)0.0067 (8)0.0021 (8)
C310.0219 (11)0.0221 (10)0.0179 (10)0.0030 (9)0.0064 (9)0.0030 (8)
N320.0240 (9)0.0222 (9)0.0212 (9)0.0026 (7)0.0090 (8)0.0027 (7)
O310.0223 (8)0.0326 (9)0.0247 (8)0.0012 (7)0.0100 (7)0.0048 (7)
C330.0222 (11)0.0300 (12)0.0311 (12)0.0037 (9)0.0107 (10)0.0035 (10)
C340.0415 (14)0.0348 (13)0.0314 (13)0.0036 (11)0.0187 (12)0.0108 (11)
Geometric parameters (Å, º) top
N1—C21.302 (2)C5A—C61.529 (3)
N1—C11A1.373 (2)C5A—C10B1.558 (3)
C2—O21.330 (2)C5A—H5A1.00
C2—N31.351 (2)C6—O61.218 (2)
O2—C211.457 (2)C6—C6A1.471 (3)
C21—H21A0.98C6A—C10A1.387 (3)
C21—H21B0.98C6A—C71.400 (3)
C21—H21C0.98C7—C81.379 (3)
N3—C41.396 (2)C7—H70.95
N3—H30.88C8—C91.394 (3)
C4—O41.254 (2)C8—H80.95
C4—C4A1.416 (3)C9—C101.397 (3)
C4A—C11A1.383 (3)C9—H90.95
C4A—C51.509 (3)C10—C10A1.389 (3)
C5—C511.518 (3)C10—H100.95
C5—C5A1.544 (3)C10A—C10B1.526 (3)
C5—H51.00C10B—O101.413 (2)
C51—C561.388 (3)C10B—N111.454 (2)
C51—C521.397 (3)O10—H10B0.9894
C52—C531.386 (3)N11—C11A1.358 (2)
C52—H520.95N11—H110.88
C53—C541.391 (3)C31—O311.239 (2)
C53—H530.95C31—N321.326 (3)
C54—O541.371 (3)C31—H310.95
C54—C551.393 (3)N32—C341.454 (3)
O54—C5411.427 (3)N32—C331.456 (3)
C541—H54A0.98C33—H33A0.98
C541—H54B0.98C33—H33B0.98
C541—H54C0.98C33—H33C0.98
C55—C561.389 (3)C34—H34A0.98
C55—H550.95C34—H34B0.98
C56—H560.95C34—H34C0.98
C2—N1—C11A115.32 (16)C5—C5A—H5A107.2
N1—C2—O2121.55 (17)C10B—C5A—H5A107.2
N1—C2—N3125.32 (17)O6—C6—C6A126.98 (19)
O2—C2—N3113.13 (16)O6—C6—C5A125.12 (19)
C2—O2—C21116.15 (15)C6A—C6—C5A107.89 (16)
O2—C21—H21A109.5C10A—C6A—C7121.0 (2)
O2—C21—H21B109.5C10A—C6A—C6109.43 (18)
H21A—C21—H21B109.5C7—C6A—C6129.53 (19)
O2—C21—H21C109.5C8—C7—C6A118.5 (2)
H21A—C21—H21C109.5C8—C7—H7120.7
H21B—C21—H21C109.5C6A—C7—H7120.7
C2—N3—C4121.25 (16)C7—C8—C9120.3 (2)
C2—N3—H3119.4C7—C8—H8119.8
C4—N3—H3119.4C9—C8—H8119.8
O4—C4—N3118.98 (17)C8—C9—C10121.4 (2)
O4—C4—C4A125.68 (17)C8—C9—H9119.3
N3—C4—C4A115.34 (17)C10—C9—H9119.3
C11A—C4A—C4118.42 (17)C10A—C10—C9117.9 (2)
C11A—C4A—C5120.48 (17)C10A—C10—H10121.1
C4—C4A—C5120.98 (17)C9—C10—H10121.1
C4A—C5—C51113.09 (16)C6A—C10A—C10120.76 (19)
C4A—C5—C5A108.68 (15)C6A—C10A—C10B111.46 (17)
C51—C5—C5A114.10 (16)C10—C10A—C10B127.56 (18)
C4A—C5—H5106.8O10—C10B—N11106.66 (15)
C51—C5—H5106.8O10—C10B—C10A113.04 (16)
C5A—C5—H5106.8N11—C10B—C10A107.93 (16)
C56—C51—C52117.36 (19)O10—C10B—C5A115.09 (16)
C56—C51—C5122.53 (18)N11—C10B—C5A110.99 (15)
C52—C51—C5120.11 (17)C10A—C10B—C5A102.99 (15)
C53—C52—C51121.82 (19)C10B—O10—H10B110.8
C53—C52—H52119.1C11A—N11—C10B124.24 (16)
C51—C52—H52119.1C11A—N11—H11117.9
C52—C53—C54119.77 (19)C10B—N11—H11117.9
C52—C53—H53120.1N11—C11A—N1113.73 (17)
C54—C53—H53120.1N11—C11A—C4A122.16 (17)
O54—C54—C53115.98 (18)N1—C11A—C4A124.10 (17)
O54—C54—C55124.59 (19)O31—C31—N32124.3 (2)
C53—C54—C55119.43 (19)O31—C31—H31117.9
C54—O54—C541117.58 (18)N32—C31—H31117.9
O54—C541—H54A109.5C31—N32—C34121.12 (19)
O54—C541—H54B109.5C31—N32—C33121.58 (17)
H54A—C541—H54B109.5C34—N32—C33117.16 (18)
O54—C541—H54C109.5N32—C33—H33A109.5
H54A—C541—H54C109.5N32—C33—H33B109.5
H54B—C541—H54C109.5H33A—C33—H33B109.5
C56—C55—C54119.7 (2)N32—C33—H33C109.5
C56—C55—H55120.1H33A—C33—H33C109.5
C54—C55—H55120.1H33B—C33—H33C109.5
C51—C56—C55121.87 (19)N32—C34—H34A109.5
C51—C56—H56119.1N32—C34—H34B109.5
C55—C56—H56119.1H34A—C34—H34B109.5
C6—C5A—C5112.94 (16)N32—C34—H34C109.5
C6—C5A—C10B104.38 (15)H34A—C34—H34C109.5
C5—C5A—C10B117.43 (16)H34B—C34—H34C109.5
C6—C5A—H5A107.2
C11A—N1—C2—O2177.80 (17)O6—C6—C6A—C10A173.56 (19)
C11A—N1—C2—N32.7 (3)C5A—C6—C6A—C10A7.6 (2)
N1—C2—O2—C218.6 (3)O6—C6—C6A—C75.6 (3)
N3—C2—O2—C21171.84 (17)C5A—C6—C6A—C7173.3 (2)
N1—C2—N3—C43.6 (3)C10A—C6A—C7—C80.6 (3)
O2—C2—N3—C4176.87 (16)C6—C6A—C7—C8179.6 (2)
C2—N3—C4—O4179.77 (18)C6A—C7—C8—C90.2 (3)
C2—N3—C4—C4A0.1 (3)C7—C8—C9—C100.1 (3)
O4—C4—C4A—C11A175.75 (18)C8—C9—C10—C10A0.7 (3)
N3—C4—C4A—C11A4.1 (3)C7—C6A—C10A—C101.4 (3)
O4—C4—C4A—C50.4 (3)C6—C6A—C10A—C10179.38 (18)
N3—C4—C4A—C5179.74 (16)C7—C6A—C10A—C10B173.66 (18)
C11A—C4A—C5—C5198.9 (2)C6—C6A—C10A—C10B5.6 (2)
C4—C4A—C5—C5177.1 (2)C9—C10—C10A—C6A1.4 (3)
C11A—C4A—C5—C5A28.8 (2)C9—C10—C10A—C10B172.78 (19)
C4—C4A—C5—C5A155.08 (18)C6A—C10A—C10B—O10140.67 (17)
C4A—C5—C51—C5650.3 (2)C10—C10A—C10B—O1044.7 (3)
C5A—C5—C51—C5674.6 (2)C6A—C10A—C10B—N11101.62 (18)
C4A—C5—C51—C52130.38 (18)C10—C10A—C10B—N1173.0 (2)
C5A—C5—C51—C52104.7 (2)C6A—C10A—C10B—C5A15.8 (2)
C56—C51—C52—C530.4 (3)C10—C10A—C10B—C5A169.51 (19)
C5—C51—C52—C53179.82 (17)C6—C5A—C10B—O10142.61 (16)
C51—C52—C53—C540.5 (3)C5—C5A—C10B—O1091.5 (2)
C52—C53—C54—O54179.39 (18)C6—C5A—C10B—N1196.15 (18)
C52—C53—C54—C550.1 (3)C5—C5A—C10B—N1129.8 (2)
C53—C54—O54—C541177.6 (2)C6—C5A—C10B—C10A19.12 (18)
C55—C54—O54—C5411.9 (3)C5—C5A—C10B—C10A145.04 (17)
O54—C54—C55—C56178.64 (19)O10—C10B—N11—C11A130.63 (18)
C53—C54—C55—C560.8 (3)C10A—C10B—N11—C11A107.6 (2)
C52—C51—C56—C550.3 (3)C5A—C10B—N11—C11A4.6 (3)
C5—C51—C56—C55179.09 (18)C10B—N11—C11A—N1159.28 (17)
C54—C55—C56—C510.9 (3)C10B—N11—C11A—C4A21.9 (3)
C4A—C5—C5A—C676.76 (19)C2—N1—C11A—N11176.95 (17)
C51—C5—C5A—C6156.03 (16)C2—N1—C11A—C4A1.8 (3)
C4A—C5—C5A—C10B44.8 (2)C4—C4A—C11A—N11173.43 (17)
C51—C5—C5A—C10B82.4 (2)C5—C4A—C11A—N112.8 (3)
C5—C5A—C6—O635.5 (3)C4—C4A—C11A—N15.2 (3)
C10B—C5A—C6—O6164.15 (18)C5—C4A—C11A—N1178.59 (17)
C5—C5A—C6—C6A145.62 (16)O31—C31—N32—C34177.0 (2)
C10B—C5A—C6—C6A16.94 (19)O31—C31—N32—C331.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O310.991.672.661 (2)177
N3—H3···O4i0.881.922.801 (2)175
N11—H11···O10ii0.882.183.051 (2)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC21H14ClN3O3·C3H7NOC22H19N3O5·C3H7NO
Mr464.90478.50
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)120120
a, b, c (Å)10.6850 (6), 17.6182 (12), 12.3774 (8)10.4172 (2), 10.8540 (3), 11.6112 (3)
α, β, γ (°)90, 108.523 (4), 9094.2692 (12), 116.0676 (12), 94.4530 (13)
V3)2209.3 (2)1167.08 (5)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.210.10
Crystal size (mm)0.08 × 0.04 × 0.020.20 × 0.10 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997
Tmin, Tmax0.977, 0.9960.974, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
8314, 4182, 2135 5297, 5297, 3719
Rint0.1230.073
(sin θ/λ)max1)0.6100.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.157, 0.96 0.055, 0.148, 1.04
No. of reflections41825297
No. of parameters302326
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.290.25, 0.37

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, OSCAIL (MCardle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.852.735 (4)179
N11—H11···O310.881.982.857 (4)172
C8—H8···Cg1ii0.952.633.561 (5)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
Selected bond lengths (Å) for compounds (I) and (II) top
(I)(II)
N1—C21.299 (5)1.302 (2)
C2—N31.353 (5)1.351 (2)
N3—C41.392 (5)1.396 (2)
C4—C4A1.420 (5)1.416 (3)
C4A—C11A1.378 (5)1.383 (3)
C11A—N11.379 (5)1.373 (2)
C4A—C51.537 (5)1.509 (3)
C5—C5A1.502 (5)1.544 (3)
C11A—N111.380 (5)1.358 (2)
N11—C10B1.345 (5)1.454 (2)
C5A—C10B1.361 (5)1.558 (3)
C5A—C61.469 (6)1.529 (3)
C6—C6A1.512 (6)1.471 (3)
C6A—C71.383 (6)1.400 (3)
C7—C81.400 (6)1.379 (3)
C8—C91.383 (5)1.394 (3)
C9—C101.404 (6)1.397 (3)
C10—C10A1.374 (5)1.389 (3)
C10A—C10B1.486 (6)1.526 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O310.991.672.661 (2)177
N3—H3···O4i0.881.922.801 (2)175
N11—H11···O10ii0.882.183.051 (2)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds