Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Molecules of 3- and 4-iodo­benz­aldehyde 2,4-di­nitro­phenyl­hydrazone, C13H9IN4O4, are both effectively planar. In the crystal structure of each compound, molecules are linked by a combination of N-H...O and C-H...O hydrogen bonds into complex chains of rings, containing four and three different ring motifs, respectively; neither compound contains any iodo-nitro interactions. In 3-iodo­benz­aldehyde 4-nitro­phenyl­hydrazone, C13H10IN3O2, where the iodinated aryl ring is disordered over two sets of sites, the hydrogen bonds generate a chain of rings, while two independent I...O interactions generate a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103025745/sk1680sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103025745/sk1680Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103025745/sk1680IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103025745/sk1680IIIsup4.hkl
Contains datablock III

CCDC references: 231054; 231055; 231056

Comment top

We report here the molecular and supramolecular structures of the title compounds, (I)–(III), and we compare their supramolecular behaviours with those of the related compounds (IV) and (V), which we reported recently (Glidewell et al., 2003). In no two of these compounds does the interplay of hard and soft hydrogen bonds with the iodo–nitro interactions generate the same pattern of supramolecular aggregation.

The molecules of (I)–(III) are all nearly planar, as shown by the key torsional angles (Tables 1,3 and 5); the sole exception concerns the minor orientation of the iodinated ring in (III). The bond distances and interbond angles present no unusual features and the principal structural interest lies in the intermolecular interactions and their consequences.

Although the isomeric compounds (I) and (II) both crystallize in space group C2/c, they have very different unit-cell dimensions (see Experimental). However, we discuss the supramolecular structures of these two compounds together, as they have a number of features in common.

There are neither iodo–nitro interactions nor aromatic π···π stacking interactions in the structures of (I) and (II), and N—H···π(arene) and C—H···π(arene) hydrogen bonds are also absent from both. Instead, the supramolecular structure of both compounds is determined by a three-centre N—H···(O)2 hydrogen bond, augmented by two-centre C—H···O hydrogen bonds (Tables 2 and 4). While the effect of the three-centre interaction is identical in (I) and (II), the effect of the C—H···O hydrogen bonds is different in the two compounds, and it is this difference that generates their different overall structures. In both compounds, however, the dominant C—H···O hydrogen bond involves the C—H bond that lies between the two nitro groups and which may therefore be expected to be the most acidic C—H bond in the molecule.

In both compounds (Figs. 1 and 2), hydrazone atom N2 acts as a donor in a three-centre hydrogen bond, in which the two acceptors are, firstly, atom O21 in the same molecule at (x, y, z), giving rise to an S(6) motif (Bernstein et al., 1995), and secondly, atom O21 in the molecule at (1 − x, 1 − y, 1 − z), producing a centrosymmetric dimer centred at (1/2, 1/2, 1/2), which contains an unusual sequence of three fused rings with graph-set descriptor S(6)R22(4)S(6) (Fig. 3). In both compounds, these dimeric aggregates are linked into chains by a single C—H···O hydrogen bond, but in (I), the chain is generated by translation, while in (II) it is generated by the action of a twofold rotation axis.

In (I), atom C13 in the molecule at (x, y, z), which is a component of the dimer centred at (1/2, 1/2, 1/2), acts as hydrogen-bond donor to nitro atom O41 in the molecule at (1 − x, −2 − y, 1 − z), which is a component of the dimer centred at (1/2, 1.5, 1/2), so forming an R22(10) motif (Fig. 3). Propagation of this single interaction by inversion and translation then generates a chain of rings running parallel to the [010] direction. This chain is further reinforced, albeit rather weakly, by a second C—H···O hydrogen bond, in which atom C5 at (x, y, z) acts as a donor to nitro atom O42 in the molecule at (x, −1 + y, z), which is a component of the dimer centred at (1/2, −0.5, 1/2), so completing the formation of a continuous chain of edge-fused rings containing four different types of ring, namely S(6), R22(4), R22(10) and R33(16) (Fig. 3). This nearly-planar structure can alternatively be regarded as a multiply perforated ribbon.

In (II), by contrast, atom C13 in the molecule at (x, y, z), itself a component of the R22(4) dimer centred at (1/2, 1/2, 1/2), acts as a hydrogen-bond donor to nitro atom O41 in the molecule at (1 − x, y, 0.5 − z), which is a component of the dimer centred at (1/2, 1/2, 0). In turn, atom C13 at (1 − x, y, 0.5 − z) acts as a donor to atom O4 at (x, y, z), so that the R22(10) motif in this compound is generated by the twofold rotation axis along (1/2, y, 1/4). Propagation of this single C—H···O hydrogen bond then generates, by rotation and inversion, a deeply folded chain of rings running parallel to the [001] direction and containing three distinct types of ring (Fig. 4). The iodophenyl ring plays no part in the supramolecular aggregation.

The supramolecular structures of (I) and (II) (Figs 3 and 4) may be contrasted with that of the isomeric 2-iodobenzaldehyde-2,4-dinitrophenylhydrazone, (IV) (Glidewell et al., 2003). In the crystal structure of (IV), the whole molecule is disordered over two sets of sites; for the major orientation, there are no direction-specific interactions between the molecules, while for the minor orientation, a single C—H···O hydrogen bond generates centrosymmetric R22(10) dimers. As in (I) and (II), it is the C—H bond between the two nitro groups that is involved.

In (III), the molecules (Fig. 5) are linked into a zigzag chain of rings by means of a cooperative combination of N—H···O and C—H···O hydrogen bonds (Table 6). Hydrazone atom N2 and aryl atom C16 in the molecule at (x, y, z) act as hydrogen-bond donors to nitro atoms O42 and O41, respectively, in the molecule at (1 + x, 1 − y, −0.5 + z), so producing a C(6) C(8)[R22(8)] chain of rings running parallel to the [20–1] direction and generated by the c-glide plane at y = 0.5 (Fig. 6). A second such chain, related to the first by the C-centring operation, is generated by the c-glide plane at y = 0, but there are neither X—H···π(arene) hydrogen bonds (X = C or N) nor aromatic π···π stacking interactions between or within the chains.

There are, however, two long two-centre iodo–nitro interactions between the molecules. Atom I4 in the molecule at (x, y, z) makes contacts with nitro atom O41 in the molecule at (1.5 + x, 0.5 − y, −0.5 + z) [I···O = 3.537 (4) Å and C—I···O = 142.9 (2)°], and with nitro atom O42 in the molecule at (1.5 + x, −0.5 + y, z) [I···O = 3.525 (4) Å and C—I···O = 140.4 (2)°]. If these two interactions are regarded as structurally significant then it is a straightforward matter to show that they generate a continuous three-dimensional structure, independent of the contribution of the hydrogen bonding. The two I···O interactions individually generate C(14) chains (Starbuck et al., 1999) running parallel to the [30–1] and [3–10] directions, respectively (Fig. 7). In addition, the action of the glide planes generates chains running parallel to the [310] direction. Finally, the combination of the two interactions together generates a chain running parallel to the [010] direction (Fig. C3). Atom I4 in the molecule at (1.5 + x, 0.5 − y, −0.5 + z) makes an I···O contact with atom O42 at (3 + x, 1 − y, −0.5 + z), while atom O41 in this molecule at (3 + x, 1 − y, −0.5 + z) makes an I···O contact with atom I4 in the molecule at (1.5 + x, 0.5 + y, z), which is in turn directly linked to the molecule at (x, 1 + y, z), so generating a C22(28) chain parallel to [010] (Fig. 7). The combination of the [10], [310], [31–0] and [30–1] iodo–nitro chains is sufficient to generate a three-dimensional framework.

In 2-iodobenzaldehyde-4-nitrophenylhydrazone, (V) (Glidewell et al., 2003), an isomer of (III), a combination of an N—H···O hydrogen bond and a single two-centre iodo–nitro interaction link the molecules into a chain of edge-fused R33(18) rings. It is unfortunate that we cannot discuss here the supramolecular structure of the further isomer 3-iodobenzaldehyde-4-nitrophenylhydrazone, but repeated attempts to prepare this compound in pure crystalline form have been unsuccessful.

Experimental top

For the preparation of each of (I)–(III), a finely powdered mixture of the appropriate iodobenzaldehyde and the appropriate phenylhydrazine (1:1 molar ratio) was gently heated on a hotplate until effervescence ceased. The mixtures were cooled and recrystallized from ethanol.

Refinement top

Crystals of (I)–(III) are all monoclinic, and for each compound, the systematic absences permitted C2/c and Cc as possible space groups. Space group C2/c was chosen for (I) and (II), and Cc was chosen for (III); these selections were all confirmed by the subsequent structural analyses. In (III), the C—H units of the iodinated ring were disordered over two sets of sites, having occupancies of 0.545 (12) (CnA; n = 2, 3, 5, 6) and 0.455 (12) (CnB); the disordered C atoms were all refined isotropically. A data set for (III) collected at 120 (2) K provided no tractable solution, but in the 291 (2) K data set, only ca 42% of the reflection are labelled observed. All H atoms were treated as riding atoms, with C—H distances of 0.95 Å and N—H distances of 0.88 Å for (I) and (II) at 120 (2) K, and C—H distances of 0.93 Å and N—H distances of 0.86 Å for (III) at 291 (2) K. For (III), the correct orientation of the structure relative to the directions of the polar axes was established by means of the Flack (1983) parameter.

Computing details top

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1986) for (I); SHELXS97 (Sheldrick, 1997) for (II), (III). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a continuous chain of edge-fused rings running along [010].
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (II), showing the formation of a chain of rings running along [001].
[Figure 5] Fig. 5. The molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For the sake of clarity, only the major orientation of the disordered aryl ring (C1–C6) is shown.
[Figure 6] Fig. 6. Part of the crystal structure of (III), showing the formation of a hydrogen-bonded chain of rings along [20–1]. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, 1 − y, −0.5 + z) and (−1 + x, 1 − y, 0.5 + z), respectively.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of (III), showing the formation of iodo–nitro chains along [010], [3–10] and [30–1].
(I) 3-Iodobenzaldehyde 2,4-dinitrophenylhydrazone top
Crystal data top
C13H9IN4O4F(000) = 1600
Mr = 412.14Dx = 1.950 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3220 reflections
a = 30.0604 (9) Åθ = 3.0–27.5°
b = 13.5628 (4) ŵ = 2.31 mm1
c = 7.0263 (2) ÅT = 120 K
β = 101.390 (2)°Plate, colourless
V = 2808.23 (14) Å30.45 × 0.25 × 0.02 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3220 independent reflections
Radiation source: fine-focus sealed X-ray tube2545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 3838
Tmin = 0.424, Tmax = 0.955k = 1715
17244 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0325P)2 + 3.2981P]
where P = (Fo2 + 2Fc2)/3
3220 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 1.32 e Å3
Crystal data top
C13H9IN4O4V = 2808.23 (14) Å3
Mr = 412.14Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.0604 (9) ŵ = 2.31 mm1
b = 13.5628 (4) ÅT = 120 K
c = 7.0263 (2) Å0.45 × 0.25 × 0.02 mm
β = 101.390 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3220 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
2545 reflections with I > 2σ(I)
Tmin = 0.424, Tmax = 0.955Rint = 0.052
17244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.02Δρmax = 0.77 e Å3
3220 reflectionsΔρmin = 1.32 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35503 (10)0.3679 (2)0.0683 (4)0.0193 (6)
C20.32014 (9)0.4107 (2)0.0681 (4)0.0176 (6)
C30.28676 (10)0.3515 (2)0.1728 (4)0.0203 (6)
C40.28660 (10)0.2499 (2)0.1444 (4)0.0245 (6)
C50.32147 (10)0.2077 (2)0.0105 (4)0.0243 (7)
C60.35547 (9)0.2660 (2)0.0953 (4)0.0202 (6)
I30.235428 (7)0.416977 (15)0.38017 (3)0.02955 (9)
C70.39109 (9)0.4280 (2)0.1802 (4)0.0193 (6)
N10.39107 (8)0.52185 (17)0.1563 (3)0.0185 (5)
N20.42639 (8)0.57186 (16)0.2699 (3)0.0180 (5)
C110.42588 (9)0.6719 (2)0.2686 (4)0.0173 (6)
C120.45939 (9)0.7305 (2)0.3869 (4)0.0183 (6)
C130.45722 (10)0.8335 (2)0.3849 (4)0.0206 (6)
C140.42178 (10)0.8776 (2)0.2626 (4)0.0223 (6)
C150.38841 (10)0.8231 (2)0.1417 (4)0.0225 (6)
C160.39035 (10)0.7231 (2)0.1454 (4)0.0204 (6)
N120.49819 (8)0.68813 (17)0.5144 (3)0.0192 (5)
O210.50056 (7)0.59664 (14)0.5290 (3)0.0295 (5)
O220.52784 (6)0.74225 (15)0.6024 (3)0.0250 (4)
N140.41871 (9)0.98532 (19)0.2623 (4)0.0308 (6)
O410.44907 (8)1.03224 (16)0.3626 (4)0.0410 (6)
O420.38513 (8)1.02313 (17)0.1593 (4)0.0431 (6)
H20.31950.48000.08840.021*
H40.26300.21020.21550.029*
H50.32210.13830.00880.029*
H60.37920.23640.18680.024*
H70.41470.39770.27120.023*
H2A0.44900.53950.34220.022*
H130.47970.87170.46640.025*
H150.36440.85570.05700.027*
H160.36730.68640.06320.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0178 (14)0.0209 (15)0.0194 (14)0.0009 (12)0.0045 (11)0.0007 (11)
C20.0177 (14)0.0164 (14)0.0182 (14)0.0001 (11)0.0026 (11)0.0004 (11)
C30.0171 (14)0.0256 (16)0.0171 (14)0.0014 (12)0.0009 (11)0.0017 (12)
C40.0253 (16)0.0211 (15)0.0256 (15)0.0057 (13)0.0018 (12)0.0062 (13)
C50.0251 (16)0.0188 (15)0.0296 (17)0.0018 (12)0.0067 (13)0.0003 (12)
C60.0191 (14)0.0193 (15)0.0218 (14)0.0008 (12)0.0031 (11)0.0009 (12)
I30.02467 (13)0.03447 (14)0.02449 (12)0.00515 (9)0.00737 (8)0.00252 (9)
C70.0137 (14)0.0249 (16)0.0184 (14)0.0005 (12)0.0013 (11)0.0016 (12)
N10.0150 (12)0.0221 (13)0.0173 (11)0.0015 (10)0.0000 (9)0.0038 (10)
N20.0135 (12)0.0187 (13)0.0191 (12)0.0001 (10)0.0036 (9)0.0004 (10)
C110.0178 (14)0.0176 (14)0.0165 (13)0.0002 (11)0.0030 (11)0.0015 (11)
C120.0156 (14)0.0208 (15)0.0177 (13)0.0008 (11)0.0009 (10)0.0006 (11)
C130.0195 (15)0.0209 (15)0.0203 (14)0.0008 (12)0.0016 (11)0.0005 (12)
C140.0215 (16)0.0185 (14)0.0253 (15)0.0015 (12)0.0005 (12)0.0002 (12)
C150.0170 (15)0.0241 (16)0.0244 (15)0.0058 (12)0.0007 (11)0.0019 (12)
C160.0177 (14)0.0221 (16)0.0197 (14)0.0017 (12)0.0004 (11)0.0009 (11)
N120.0167 (12)0.0205 (13)0.0187 (12)0.0002 (10)0.0005 (9)0.0013 (10)
O210.0294 (12)0.0145 (11)0.0376 (13)0.0030 (9)0.0105 (10)0.0016 (9)
O220.0175 (10)0.0239 (11)0.0294 (11)0.0037 (9)0.0060 (8)0.0025 (9)
N140.0298 (15)0.0200 (14)0.0397 (16)0.0056 (12)0.0002 (12)0.0027 (12)
O410.0392 (15)0.0197 (12)0.0572 (16)0.0043 (11)0.0072 (12)0.0040 (11)
O420.0432 (15)0.0247 (13)0.0537 (16)0.0128 (11)0.0091 (12)0.0037 (11)
Geometric parameters (Å, º) top
C1—C61.394 (4)N2—H2A0.88
C1—C21.400 (4)C11—C161.416 (4)
C1—C71.457 (4)C11—C121.417 (4)
C2—C31.378 (4)C12—C131.397 (4)
C2—H20.95C12—N121.442 (3)
C3—C41.393 (4)C13—C141.367 (4)
C3—I32.099 (3)C13—H130.95
C4—C51.386 (4)C14—C151.392 (4)
C4—H40.95C14—N141.464 (4)
C5—C61.387 (4)C15—C161.358 (4)
C5—H50.95C15—H150.95
C6—H60.95C16—H160.95
C7—N11.284 (4)N12—O221.224 (3)
C7—H70.95N12—O211.246 (3)
N1—N21.375 (3)N14—O411.217 (3)
N2—C111.357 (3)N14—O421.232 (3)
C6—C1—C2119.4 (3)N2—C11—C16120.0 (2)
C6—C1—C7119.7 (3)N2—C11—C12123.5 (2)
C2—C1—C7121.0 (3)C16—C11—C12116.5 (2)
C3—C2—C1119.5 (3)C13—C12—C11121.9 (2)
C3—C2—H2120.3C13—C12—N12115.8 (2)
C1—C2—H2120.3C11—C12—N12122.3 (2)
C2—C3—C4121.5 (3)C14—C13—C12118.2 (3)
C2—C3—I3118.8 (2)C14—C13—H13120.9
C4—C3—I3119.7 (2)C12—C13—H13120.9
C5—C4—C3118.8 (3)C13—C14—C15122.0 (3)
C5—C4—H4120.6C13—C14—N14118.6 (3)
C3—C4—H4120.6C15—C14—N14119.4 (2)
C4—C5—C6120.5 (3)C16—C15—C14119.7 (3)
C4—C5—H5119.8C16—C15—H15120.1
C6—C5—H5119.8C14—C15—H15120.1
C5—C6—C1120.4 (3)C15—C16—C11121.7 (3)
C5—C6—H6119.8C15—C16—H16119.2
C1—C6—H6119.8C11—C16—H16119.2
N1—C7—C1120.2 (3)O22—N12—O21122.1 (2)
N1—C7—H7119.9O22—N12—C12119.6 (2)
C1—C7—H7119.9O21—N12—C12118.3 (2)
C7—N1—N2115.7 (2)O41—N14—O42123.8 (3)
C11—N2—N1118.9 (2)O41—N14—C14118.8 (2)
C11—N2—H2A120.6O42—N14—C14117.4 (2)
N1—N2—H2A120.6
C6—C1—C2—C30.2 (4)C16—C11—C12—N12177.9 (2)
C7—C1—C2—C3179.4 (3)C11—C12—C13—C140.8 (4)
C1—C2—C3—C40.8 (4)N12—C12—C13—C14178.2 (2)
C1—C2—C3—I3178.9 (2)C12—C13—C14—C150.1 (4)
C2—C3—C4—C51.4 (4)C12—C13—C14—N14178.8 (3)
I3—C3—C4—C5178.3 (2)C13—C14—C15—C160.8 (5)
C3—C4—C5—C61.0 (4)N14—C14—C15—C16178.1 (3)
C4—C5—C6—C10.1 (4)C14—C15—C16—C110.6 (5)
C2—C1—C6—C50.6 (4)N2—C11—C16—C15179.3 (3)
C7—C1—C6—C5179.8 (3)C12—C11—C16—C150.4 (4)
C6—C1—C7—N1179.9 (3)C13—C12—N12—O224.5 (4)
C2—C1—C7—N10.7 (4)C11—C12—N12—O22174.6 (2)
C1—C7—N1—N2179.6 (2)C13—C12—N12—O21176.4 (3)
C7—N1—N2—C11172.6 (3)C11—C12—N12—O214.5 (4)
N1—N2—C11—C162.7 (4)C13—C14—N14—O414.1 (4)
N1—N2—C11—C12176.9 (2)C15—C14—N14—O41177.0 (3)
N2—C11—C12—C13178.5 (3)C13—C14—N14—O42175.9 (3)
C16—C11—C12—C131.1 (4)C15—C14—N14—O423.1 (4)
N2—C11—C12—N122.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O210.881.982.607 (3)127
N2—H2A···O21i0.882.453.289 (3)160
Symmetry code: (i) x+1, y+1, z+1.
(II) 4-Iodobenzaldehyde 2,4-dinitrophenylhydrazone top
Crystal data top
C13H9IN4O4F(000) = 1600
Mr = 412.14Dx = 2.002 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3074 reflections
a = 32.359 (2) Åθ = 3.2–27.6°
b = 4.6293 (3) ŵ = 2.37 mm1
c = 18.4169 (15) ÅT = 120 K
β = 97.631 (3)°Needle, orange
V = 2734.4 (3) Å30.45 × 0.04 × 0.02 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3074 independent reflections
Radiation source: fine-focus sealed X-ray tube1686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.118
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 3.2°
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 4140
Tmin = 0.416, Tmax = 0.954k = 56
12789 measured reflectionsl = 2319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0235P)2]
where P = (Fo2 + 2Fc2)/3
3074 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
C13H9IN4O4V = 2734.4 (3) Å3
Mr = 412.14Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.359 (2) ŵ = 2.37 mm1
b = 4.6293 (3) ÅT = 120 K
c = 18.4169 (15) Å0.45 × 0.04 × 0.02 mm
β = 97.631 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3074 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
1686 reflections with I > 2σ(I)
Tmin = 0.416, Tmax = 0.954Rint = 0.118
12789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 0.94Δρmax = 0.82 e Å3
3074 reflectionsΔρmin = 1.09 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64812 (15)0.1563 (13)0.5656 (3)0.0175 (12)
C20.68385 (16)0.1696 (13)0.5303 (3)0.0252 (13)
C30.71950 (16)0.0187 (12)0.5565 (3)0.0244 (14)
C40.71927 (15)0.1527 (13)0.6195 (3)0.0209 (12)
I40.775212 (12)0.34687 (10)0.66469 (2)0.03486 (15)
C50.68422 (16)0.1763 (13)0.6532 (3)0.0204 (12)
C60.64889 (16)0.0236 (11)0.6271 (3)0.0179 (13)
C70.61134 (15)0.3253 (13)0.5414 (3)0.0191 (12)
N10.61077 (13)0.4974 (10)0.4869 (3)0.0191 (11)
N20.57452 (12)0.6449 (10)0.4666 (2)0.0153 (9)
C110.57281 (15)0.8431 (13)0.4120 (3)0.0169 (12)
C120.53684 (15)0.9993 (11)0.3841 (3)0.0136 (12)
C130.53751 (15)1.2104 (11)0.3306 (3)0.0147 (12)
C140.57387 (17)1.2603 (11)0.3020 (3)0.0193 (14)
C150.61022 (15)1.1059 (12)0.3265 (3)0.0214 (14)
C160.60956 (16)0.9011 (12)0.3802 (3)0.0180 (13)
N120.49666 (13)0.9529 (10)0.4092 (3)0.0196 (11)
O210.49351 (11)0.7448 (7)0.4517 (2)0.0213 (10)
O220.46768 (10)1.1144 (8)0.38838 (19)0.0212 (9)
N140.57510 (15)1.4769 (10)0.2455 (3)0.0202 (11)
O410.54354 (11)1.6251 (9)0.2271 (2)0.0241 (9)
O420.60789 (12)1.5108 (9)0.2191 (2)0.0278 (10)
H20.68350.28450.48740.030*
H30.74370.03040.53260.029*
H50.68430.29820.69470.025*
H60.62470.04020.65090.022*
H70.58750.30860.56600.023*
H2A0.55250.61180.48880.018*
H130.51311.31850.31400.018*
H150.63521.14240.30600.026*
H160.63430.79580.39650.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.015 (3)0.021 (3)0.017 (3)0.001 (3)0.001 (2)0.002 (3)
C20.025 (3)0.032 (3)0.021 (3)0.000 (3)0.010 (3)0.006 (3)
C30.017 (3)0.030 (4)0.026 (4)0.003 (3)0.004 (3)0.003 (3)
C40.020 (3)0.018 (3)0.024 (3)0.004 (3)0.000 (2)0.004 (3)
I40.0238 (2)0.0470 (3)0.0338 (3)0.0126 (2)0.00383 (16)0.0104 (3)
C50.025 (3)0.020 (3)0.015 (3)0.000 (3)0.002 (2)0.002 (3)
C60.018 (3)0.020 (3)0.017 (3)0.004 (2)0.005 (2)0.001 (2)
C70.018 (3)0.017 (3)0.023 (3)0.005 (3)0.004 (2)0.001 (3)
N10.020 (2)0.016 (3)0.022 (3)0.004 (2)0.004 (2)0.001 (2)
N20.016 (2)0.016 (2)0.013 (3)0.000 (2)0.0012 (19)0.001 (2)
C110.021 (3)0.020 (3)0.010 (3)0.001 (3)0.003 (2)0.001 (3)
C120.014 (3)0.019 (3)0.009 (3)0.001 (2)0.004 (2)0.005 (2)
C130.015 (3)0.019 (3)0.009 (3)0.001 (2)0.001 (2)0.002 (2)
C140.025 (3)0.024 (4)0.008 (3)0.000 (2)0.002 (2)0.002 (2)
C150.012 (3)0.031 (4)0.021 (3)0.002 (3)0.005 (2)0.003 (3)
C160.018 (3)0.019 (4)0.018 (3)0.001 (2)0.005 (2)0.001 (2)
N120.015 (2)0.027 (3)0.016 (3)0.006 (2)0.002 (2)0.001 (2)
O210.021 (2)0.027 (3)0.016 (2)0.0006 (16)0.0026 (17)0.0091 (17)
O220.0184 (19)0.027 (2)0.017 (2)0.0037 (19)0.0007 (16)0.0011 (18)
N140.029 (3)0.016 (3)0.015 (3)0.000 (2)0.003 (2)0.002 (2)
O410.026 (2)0.025 (2)0.021 (2)0.002 (2)0.0013 (17)0.0024 (19)
O420.028 (2)0.032 (2)0.028 (3)0.0054 (19)0.018 (2)0.0045 (19)
Geometric parameters (Å, º) top
C1—C21.402 (7)N2—H2A0.88
C1—C61.402 (7)C11—C121.408 (7)
C1—C71.445 (7)C11—C161.419 (7)
C2—C31.380 (7)C12—C131.391 (7)
C2—H20.95C12—N121.452 (6)
C3—C41.405 (8)C13—C141.371 (7)
C3—H30.95C13—H130.95
C4—C51.368 (7)C14—C151.399 (7)
C4—I42.092 (5)C14—N141.449 (7)
C5—C61.375 (7)C15—C161.373 (7)
C5—H50.95C15—H150.95
C6—H60.95C16—H160.95
C7—N11.280 (7)N12—O221.221 (5)
C7—H70.95N12—O211.254 (5)
N1—N21.365 (6)N14—O421.234 (5)
N2—C111.357 (7)N14—O411.240 (5)
C2—C1—C6118.3 (5)N2—C11—C12124.6 (5)
C2—C1—C7121.9 (5)N2—C11—C16118.7 (5)
C6—C1—C7119.8 (5)C12—C11—C16116.7 (5)
C3—C2—C1121.1 (5)C13—C12—C11122.0 (5)
C3—C2—H2119.4C13—C12—N12115.4 (4)
C1—C2—H2119.4C11—C12—N12122.7 (5)
C2—C3—C4118.7 (5)C14—C13—C12119.1 (5)
C2—C3—H3120.7C14—C13—H13120.5
C4—C3—H3120.7C12—C13—H13120.5
C5—C4—C3121.0 (5)C13—C14—C15121.2 (5)
C5—C4—I4120.7 (4)C13—C14—N14120.0 (5)
C3—C4—I4118.2 (4)C15—C14—N14118.9 (5)
C4—C5—C6120.0 (5)C16—C15—C14119.5 (5)
C4—C5—H5120.0C16—C15—H15120.3
C6—C5—H5120.0C14—C15—H15120.3
C5—C6—C1120.8 (5)C15—C16—C11121.5 (5)
C5—C6—H6119.6C15—C16—H16119.3
C1—C6—H6119.6C11—C16—H16119.3
N1—C7—C1120.3 (5)O22—N12—O21123.0 (4)
N1—C7—H7119.8O22—N12—C12119.5 (5)
C1—C7—H7119.8O21—N12—C12117.6 (4)
C7—N1—N2116.6 (4)O42—N14—O41122.8 (5)
C11—N2—N1119.3 (4)O42—N14—C14118.5 (5)
C11—N2—H2A120.4O41—N14—C14118.6 (5)
N1—N2—H2A120.4
C6—C1—C2—C32.4 (9)C16—C11—C12—N12177.2 (5)
C7—C1—C2—C3176.4 (6)C11—C12—C13—C142.6 (8)
C1—C2—C3—C40.7 (9)N12—C12—C13—C14177.7 (5)
C2—C3—C4—C51.6 (9)C12—C13—C14—C150.9 (8)
C2—C3—C4—I4174.0 (4)C12—C13—C14—N14179.3 (5)
C3—C4—C5—C62.2 (9)C13—C14—C15—C160.2 (8)
I4—C4—C5—C6173.3 (4)N14—C14—C15—C16179.7 (5)
C4—C5—C6—C10.4 (8)C14—C15—C16—C110.4 (8)
C2—C1—C6—C51.9 (8)N2—C11—C16—C15177.8 (5)
C7—C1—C6—C5177.0 (5)C12—C11—C16—C151.9 (8)
C2—C1—C7—N11.2 (9)C13—C12—N12—O227.1 (7)
C6—C1—C7—N1177.7 (5)C11—C12—N12—O22172.7 (5)
C1—C7—N1—N2178.8 (5)C13—C12—N12—O21172.7 (4)
C7—N1—N2—C11176.2 (5)C11—C12—N12—O217.5 (7)
N1—N2—C11—C12177.1 (5)C13—C14—N14—O42177.7 (5)
N1—N2—C11—C163.2 (8)C15—C14—N14—O422.4 (7)
N2—C11—C12—C13176.7 (5)C13—C14—N14—O414.1 (7)
C16—C11—C12—C133.1 (8)C15—C14—N14—O41175.8 (5)
N2—C11—C12—N123.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O210.882.042.640 (5)125
N2—H2A···O21i0.882.563.353 (6)150
C13—H13···O41ii0.952.373.310 (6)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2.
(III) 4-Iodobenzaldehyde 4-nitrophenylhydrazone top
Crystal data top
C13H10IN3O2F(000) = 712
Mr = 367.14Dx = 1.742 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4058 reflections
a = 4.9348 (4) Åθ = 2.5–32.5°
b = 27.825 (2) ŵ = 2.29 mm1
c = 10.3893 (9) ÅT = 291 K
β = 101.076 (2)°Plate, orange
V = 1399.99 (19) Å30.42 × 0.20 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4058 independent reflections
Radiation source: fine-focus sealed X-ray tube1686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ scans, and ω scans with κ offsetsθmax = 32.5°, θmin = 2.5°
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.447, Tmax = 0.914k = 4235
7191 measured reflectionsl = 1510
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0438P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max < 0.001
4058 reflectionsΔρmax = 0.48 e Å3
169 parametersΔρmin = 0.44 e Å3
2 restraintsAbsolute structure: Flack (1983), 1511 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
C13H10IN3O2V = 1399.99 (19) Å3
Mr = 367.14Z = 4
Monoclinic, CcMo Kα radiation
a = 4.9348 (4) ŵ = 2.29 mm1
b = 27.825 (2) ÅT = 291 K
c = 10.3893 (9) Å0.42 × 0.20 × 0.04 mm
β = 101.076 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4058 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
1686 reflections with I > 2σ(I)
Tmin = 0.447, Tmax = 0.914Rint = 0.029
7191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.48 e Å3
S = 0.88Δρmin = 0.44 e Å3
4058 reflectionsAbsolute structure: Flack (1983), 1511 Friedel pairs
169 parametersAbsolute structure parameter: 0.01 (3)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4725 (11)0.29436 (18)0.4907 (6)0.0620 (14)
C40.6416 (13)0.19899 (17)0.5281 (6)0.0728 (17)
C2A0.348 (3)0.2628 (3)0.5718 (14)0.067 (3)*0.545 (12)
C3A0.438 (3)0.2163 (4)0.5869 (14)0.073 (3)*0.545 (12)
C5A0.770 (3)0.2314 (4)0.4489 (13)0.079 (4)*0.545 (12)
C6A0.684 (3)0.2770 (4)0.4340 (12)0.069 (3)*0.545 (12)
C2B0.478 (3)0.2718 (5)0.6084 (16)0.062 (4)*0.455 (12)
C3B0.561 (3)0.2239 (4)0.6350 (15)0.061 (4)*0.455 (12)
C5B0.625 (3)0.2195 (5)0.4120 (16)0.071 (4)*0.455 (12)
C6B0.550 (3)0.2678 (4)0.3924 (14)0.059 (4)*0.455 (12)
I40.77441 (15)0.128099 (11)0.56208 (11)0.1064 (2)
C70.3867 (12)0.3444 (2)0.4713 (6)0.0688 (15)
N10.2262 (11)0.36303 (13)0.5428 (7)0.0643 (16)
N20.1661 (9)0.41057 (16)0.5248 (5)0.0668 (13)
C110.0103 (10)0.43269 (17)0.6021 (6)0.0548 (12)
C120.1177 (11)0.40660 (18)0.6895 (6)0.0607 (13)
C130.2788 (11)0.43068 (17)0.7623 (5)0.0611 (14)
C140.3117 (10)0.47934 (17)0.7529 (5)0.0521 (12)
C150.1792 (10)0.50596 (17)0.6690 (6)0.0567 (13)
C160.0238 (11)0.48263 (19)0.5941 (6)0.0607 (13)
N140.4857 (9)0.50331 (17)0.8303 (5)0.0649 (13)
O410.6034 (9)0.47921 (16)0.9003 (4)0.0768 (11)
O420.5066 (9)0.54726 (14)0.8223 (5)0.0814 (11)
H2A0.20920.27380.61350.080*0.545 (12)
H3A0.35620.19570.63900.088*0.545 (12)
H5A0.91160.22060.40860.095*0.545 (12)
H6A0.76980.29760.38390.082*0.545 (12)
H2B0.42230.28930.67500.075*0.455 (12)
H3B0.56420.20960.71610.073*0.455 (12)
H5B0.66450.20150.34240.085*0.455 (12)
H6B0.55290.28210.31170.071*0.455 (12)
H70.44720.36280.40780.083*
H20.22610.42650.46510.080*
H120.09380.37350.69790.073*
H130.36710.41350.81910.073*
H150.19720.53920.66450.068*
H160.06120.50010.53660.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.071 (3)0.052 (3)0.066 (4)0.004 (3)0.022 (3)0.005 (2)
C40.087 (4)0.049 (3)0.082 (5)0.011 (3)0.015 (3)0.002 (3)
I40.1229 (3)0.0594 (2)0.1328 (4)0.0207 (3)0.0147 (3)0.0009 (3)
C70.080 (4)0.065 (3)0.065 (4)0.010 (3)0.024 (3)0.008 (3)
N10.064 (4)0.052 (2)0.078 (4)0.006 (2)0.017 (4)0.000 (3)
N20.071 (3)0.060 (2)0.075 (4)0.009 (2)0.030 (3)0.005 (2)
C110.051 (3)0.052 (3)0.059 (3)0.003 (2)0.006 (3)0.004 (2)
C120.068 (3)0.043 (2)0.072 (4)0.004 (2)0.017 (3)0.001 (2)
C130.064 (3)0.056 (3)0.067 (4)0.001 (2)0.022 (3)0.006 (3)
C140.045 (3)0.054 (3)0.056 (3)0.003 (2)0.007 (2)0.004 (2)
C150.056 (3)0.045 (2)0.068 (4)0.006 (2)0.009 (3)0.004 (2)
C160.063 (3)0.060 (3)0.062 (4)0.002 (2)0.019 (3)0.008 (3)
N140.058 (3)0.068 (3)0.063 (3)0.003 (2)0.001 (3)0.011 (3)
O410.076 (3)0.079 (3)0.082 (3)0.003 (2)0.033 (2)0.004 (2)
O420.096 (3)0.061 (2)0.092 (3)0.013 (2)0.028 (2)0.006 (2)
Geometric parameters (Å, º) top
C1—C2B1.370 (15)C5B—H5B0.93
C1—C6B1.375 (14)C6B—H6B0.93
C1—C6A1.382 (13)C7—N11.294 (9)
C1—C2A1.434 (13)C7—H70.93
C1—C71.457 (7)N1—N21.361 (6)
C4—C5B1.323 (15)N2—C111.361 (7)
C4—C3A1.362 (15)N2—H20.86
C4—C3B1.428 (15)C11—C161.400 (7)
C4—C5A1.447 (15)C11—C121.404 (8)
C4—I42.087 (5)C12—C131.373 (8)
C2A—C3A1.367 (14)C12—H120.93
C2A—H2A0.93C13—C141.365 (7)
C3A—H3A0.93C13—H130.93
C5A—C6A1.337 (14)C14—C151.398 (8)
C5A—H5A0.93C14—N141.447 (7)
C6A—H6A0.93C15—C161.358 (8)
C2B—C3B1.407 (16)C15—H150.93
C2B—H2B0.93C16—H160.93
C3B—H3B0.93N14—O411.216 (6)
C5B—C6B1.399 (17)N14—O421.229 (5)
C2B—C1—C6B117.2 (9)C4—C5B—C6B121.0 (13)
C2B—C1—C6A109.5 (8)C4—C5B—H5B119.5
C6B—C1—C2A108.6 (8)C6B—C5B—H5B119.5
C6A—C1—C2A118.7 (7)C1—C6B—C5B120.9 (12)
C2B—C1—C7121.0 (7)C1—C6B—H6B119.6
C6B—C1—C7121.8 (7)C5B—C6B—H6B119.6
C6A—C1—C7119.9 (7)N1—C7—C1119.8 (5)
C2A—C1—C7121.3 (6)N1—C7—H7120.1
C5B—C4—C3A109.6 (9)C1—C7—H7120.1
C5B—C4—C3B121.5 (8)C7—N1—N2116.9 (6)
C3A—C4—C5A118.5 (8)N1—N2—C11119.4 (5)
C3B—C4—C5A110.9 (8)N1—N2—H2120.3
C5B—C4—I4121.5 (7)C11—N2—H2120.3
C3A—C4—I4119.6 (7)N2—C11—C16119.3 (5)
C3B—C4—I4116.9 (6)N2—C11—C12121.5 (4)
C5A—C4—I4121.8 (6)C16—C11—C12119.2 (5)
C3A—C2A—C1118.8 (10)C13—C12—C11118.9 (5)
C3A—C2A—H2A120.6C13—C12—H12120.5
C1—C2A—H2A120.6C11—C12—H12120.5
C4—C3A—C2A122.3 (12)C14—C13—C12121.2 (5)
C4—C3A—H3A118.9C14—C13—H13119.4
C2A—C3A—H3A118.9C12—C13—H13119.4
C6A—C5A—C4119.5 (12)C13—C14—C15120.4 (5)
C6A—C5A—H5A120.3C13—C14—N14119.5 (5)
C4—C5A—H5A120.3C15—C14—N14120.0 (5)
C5A—C6A—C1122.2 (11)C16—C15—C14119.1 (5)
C5A—C6A—H6A118.9C16—C15—H15120.4
C1—C6A—H6A118.9C14—C15—H15120.4
C1—C2B—C3B124.3 (13)C15—C16—C11121.0 (5)
C1—C2B—H2B117.8C15—C16—H16119.5
C3B—C2B—H2B117.8C11—C16—H16119.5
C2B—C3B—C4115.0 (11)O41—N14—O42123.1 (5)
C2B—C3B—H3B122.5O41—N14—C14118.7 (5)
C4—C3B—H3B122.5O42—N14—C14118.2 (5)
C2B—C1—C2A—C3A81.0 (18)C5A—C4—C5B—C6B75.3 (18)
C6B—C1—C2A—C3A31.4 (14)I4—C4—C5B—C6B176.6 (10)
C6A—C1—C2A—C3A2.0 (16)C2B—C1—C6B—C5B1.3 (17)
C7—C1—C2A—C3A179.8 (9)C6A—C1—C6B—C5B84.9 (18)
C5B—C4—C3A—C2A34.9 (16)C2A—C1—C6B—C5B29.7 (15)
C3B—C4—C3A—C2A84.2 (18)C7—C1—C6B—C5B178.4 (10)
C5A—C4—C3A—C2A1.0 (17)C4—C5B—C6B—C15 (2)
I4—C4—C3A—C2A177.8 (9)C6B—C1—C7—N1155.2 (9)
C1—C2A—C3A—C40.4 (18)C6A—C1—C7—N1167.3 (8)
C5B—C4—C5A—C6A82.1 (18)C2A—C1—C7—N110.4 (11)
C3A—C4—C5A—C6A0.8 (17)C2B—C1—C7—N124.5 (11)
C3B—C4—C5A—C6A33.7 (15)C1—C7—N1—N2176.5 (5)
I4—C4—C5A—C6A177.6 (9)C7—N1—N2—C11176.5 (5)
C4—C5A—C6A—C10.9 (19)N1—N2—C11—C16172.5 (5)
C2B—C1—C6A—C5A33.4 (15)N1—N2—C11—C127.7 (8)
C6B—C1—C6A—C5A76.9 (17)N2—C11—C12—C13178.2 (5)
C2A—C1—C6A—C5A2.3 (16)C16—C11—C12—C131.6 (8)
C7—C1—C6A—C5A180.0 (10)C11—C12—C13—C141.3 (8)
C6B—C1—C2B—C3B1.1 (18)C12—C13—C14—C150.5 (8)
C6A—C1—C2B—C3B32.9 (16)C12—C13—C14—N14179.3 (5)
C2A—C1—C2B—C3B81.1 (19)C13—C14—C15—C161.9 (8)
C7—C1—C2B—C3B179.1 (10)N14—C14—C15—C16177.9 (4)
C1—C2B—C3B—C40.5 (19)C14—C15—C16—C111.5 (8)
C5B—C4—C3B—C2B2.8 (17)N2—C11—C16—C15179.6 (5)
C3A—C4—C3B—C2B77.7 (17)C12—C11—C16—C150.3 (8)
C5A—C4—C3B—C2B33.2 (13)C13—C14—N14—O411.4 (7)
I4—C4—C3B—C2B179.0 (9)C15—C14—N14—O41178.4 (5)
C3A—C4—C5B—C6B36.9 (17)C13—C14—N14—O42178.3 (5)
C3B—C4—C5B—C6B5 (2)C15—C14—N14—O421.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O42i0.862.293.117 (7)163
C16—H16···O41i0.932.443.330 (7)159
Symmetry code: (i) x+1, y+1, z1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC13H9IN4O4C13H9IN4O4C13H10IN3O2
Mr412.14412.14367.14
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/cMonoclinic, Cc
Temperature (K)120120291
a, b, c (Å)30.0604 (9), 13.5628 (4), 7.0263 (2)32.359 (2), 4.6293 (3), 18.4169 (15)4.9348 (4), 27.825 (2), 10.3893 (9)
β (°) 101.390 (2) 97.631 (3) 101.076 (2)
V3)2808.23 (14)2734.4 (3)1399.99 (19)
Z884
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.312.372.29
Crystal size (mm)0.45 × 0.25 × 0.020.45 × 0.04 × 0.020.42 × 0.20 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.424, 0.9550.416, 0.9540.447, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
17244, 3220, 2545 12789, 3074, 1686 7191, 4058, 1686
Rint0.0520.1180.029
(sin θ/λ)max1)0.6490.6510.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.02 0.046, 0.087, 0.94 0.044, 0.106, 0.88
No. of reflections322030744058
No. of parameters199199169
No. of restraints002
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 1.320.82, 1.090.48, 0.44
Absolute structure??Flack (1983), 1511 Friedel pairs
Absolute structure parameter??0.01 (3)

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 1986), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected torsion angles (º) for (I) top
C2—C1—C7—N10.7 (4)N1—N2—C11—C12176.9 (2)
C1—C7—N1—N2179.6 (2)C11—C12—N12—O214.5 (4)
C7—N1—N2—C11172.6 (3)C13—C14—N14—O414.1 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O210.881.982.607 (3)127
N2—H2A···O21i0.882.453.289 (3)160
Symmetry code: (i) x+1, y+1, z+1.
Selected torsion angles (º) for (II) top
C2—C1—C7—N11.2 (9)N1—N2—C11—C12177.1 (5)
C1—C7—N1—N2178.8 (5)C11—C12—N12—O217.5 (7)
C7—N1—N2—C11176.2 (5)C13—C14—N14—O414.1 (7)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O210.882.042.640 (5)125
N2—H2A···O21i0.882.563.353 (6)150
C13—H13···O41ii0.952.373.310 (6)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2.
Selected torsion angles (º) for (III) top
C2A—C1—C7—N110.4 (11)C7—N1—N2—C11176.5 (5)
C2B—C1—C7—N124.5 (11)N1—N2—C11—C127.7 (8)
C1—C7—N1—N2176.5 (5)C13—C14—N14—O411.4 (7)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O42i0.862.293.117 (7)163
C16—H16···O41i0.932.443.330 (7)159
Symmetry code: (i) x+1, y+1, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds