Download citation
Download citation
link to html
In the steroidal nucleus of 16-[4-(3-chloro­propoxy)-3-methoxy­benzyl­idene]-17-oxoandrost-5-en-3[beta]-ol, C30H29ClO4, (I), the outer two six-membered rings are in chair conformations, while the five-membered ring and the central six-membered ring of the steroidal nucleus adopt half-chair and envelope conformations, respectively. In 16-[3-methoxy-4-(2-pyrrolidin-1-yl­ethoxy)­benzyl­idene]-3[beta]-pyrrolidinoandrost-5-en-17[beta]-ol monohydrate, C37H54N2O3·H2O, (II), one C atom of one of the outer six-membered rings of the steroid nucleus and the four C atoms of the ethoxy­pyrrolidine ring are disordered over two sites. The five-membered ring, and the central and one of the outer six-membered rings of the steroidal nucleus exhibit distorted half-chair, chair and envelope conformations, respectively. In (I), intermolecular O-H...O hydrogen bonds link the mol­ecules into chains via a co-operative O-H...O-H...O-H pattern. In (II), intermolecular O-H...O and O-H...N hydrogen bonds link the steroid and water mol­ecules alternately into extended chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103025605/sk1678sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103025605/sk1678Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103025605/sk1678IIsup3.hkl
Contains datablock II

CCDC references: 231082; 231083

Comment top

It is well known that minor changes in the basic composition of steroids significantly alter their chemical and biological activities (Duax & Norton, 1975). The present crystallographic analyses of 16-[4-(3-chloropropoxy)-3-methoxybenzylidene]-17-oxoandrost-5-en-3β-ol, (I), and 16-[3-methoxy-4-(2-pyrrolidin-1-ylethoxy)benzylidene]- 3β-pyrrolidinoandrost-5-en-17β-ol monohydrate, (II), have been carried out to study the influence of different functionalities on the steroid skeleton, in particular substituents at the C3, C16 and C17 positions. This study extends ongoing investigations into a series of similar synthetic androstene derivatives (Thamotharan et al., 2002, and references therein; Hema et al., 2003). \sch

Compounds (I) and (II) are androstene steroid derivatives in which rings A, B and C are essentially rigid, whereas ring D has a flexible conformation with respect to the side chain. Both compounds have the normal 8β,9α,10β,13β,14α configuration and the B/C and C/D ring junctions have the trans configuration (Figs. 1 and 2). The crystals of (I) are enantiomerically pure and the absolute configuration of the molecule has been confirmed independently by the X-ray diffraction experiment. In (II), the absence of any significant anomalous scatterers in the compound prevented the determination of the absolute configuration and the enantiomer used in the refinement was assigned to correspond with the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of (II).

In compound (I) (Fig. 1), rings A and C are in chair conformations, as shown by the Cremer & Pople (1975) puckering parameters [ring A: Q = 0.550 (3) Å, q2 = 0.078 (3) Å, q3 = 0.545 (3) Å, θ = 7.9 (3)° and ϕ2 = 107 (2)° for the atom sequence C1—C5/C10; ring C: Q = 0.577 (3) Å, q2 = 0.053 (3) Å, q3 = 0.575 (3) Å, θ = 5.2 (3)° and ϕ2 = 269 (3)° for the atom sequence C8/C9/C11—C14]. Thus, the presence of a hydroxy group at C3 has not disturbed the usual chair conformation of ring A of the steroid nucleus. The C3—O3 bond is oriented equatorially and (-)synclinal to the C3—C4 bond. In contrast, it lies (+)antiperiplanar to the C3—C4 bond in a related structure reported from our laboratory (Hema et al., 2003). In ring B, the C5C6 (Csp2—Csp2) distance of 1.324 (3) Å confirms the localization of a double bond at this position. This double bond imposes a 8β,9α-half-chair conformation on ring B, with puckering parameters of Q = 0.468 (3) Å, q2 = 0.365 (3) Å, q3 = 0.292 (3) Å, θ = 51.5 (3)° and ϕ2 = 211.4 (4)° for the atom sequence C5—C10. Similar observations on the conformation of ring B in related structures have been reported by Caira et al. (1995), Hema et al. (2002), Vasuki et al. (2002) and Thamotharan et al. (2002). Ring D has a 14α-envelope conformation, with a pseudo-rotation angle of 12.4 (2)° and a maximum torsion angle of 42.5 (1)° (Rao et al., 1981) for the atom sequence C13—C17. Atom C14 is 0.142 (2) Å from the plane containing the four remaining atoms.

In compound (II) (Fig. 2), atom C4 in ring A of the steroid nucleus is disordered over two sites, so that ring A adopts two alternate conformations with the major conformation existing in 78.8 (7)% of the molecules. As seen from the puckering parameters, the major disordered component has a chair conformation [Q = 0.558 (3) Å, q2 = 0.087 (3) Å, q3 = 0.551 (3) Å, θ = 9.0 (3)° and ϕ2 = 113 (2)° for the atom sequence C1—C4A/C5/C10], while the minor disordered component has a boat conformation distorted towards that of a screw-boat [Q = 0.569 (5) Å, q2 = 0.556 (6) Å, q3 = 0.120 (5) Å, θ = 77.8 (5)° and ϕ2 = 8.8 (3)° for the atom sequence C1—C4B/C5/C10]. Ring B exhibits a slightly flattened half-chair conformation [Q = 0.454 (3) Å, q2 = 0.281 (3) Å, q3 = 0.356 (3) Å, θ = 38.3 (4)° and ϕ2 = 208.7 (6)° for the atom sequence C5—C10], while ring C adopts a chair conformation [Q = 0.581 (3) Å, q2 = 0.084 (3) Å, q3 = 0.574 (3) Å, θ = 8.7 (3)° and ϕ2 = 268.4 (18)° for the atom sequence C8/C9/C11—C14]. Ring D of the steroid exhibits an envelope conformation, as is evident from the pseudo-rotation angle of 345.0 (2)° and maximum torsion angle of 45.4 (1)° for the atom sequence C13—C17.

In (II), the four ring C atoms of the ethoxypyrrolidine ring are disordered over two almost equally occupied conformations. Both disordered components exhibit envelope conformations, as can be seen from the pseudo-rotation angles of 344.8 (8) and 346.8 (8)° and maximum torsion angles of 44.2 (6) and 44.3 (5)° for the atom sequences N30/C31A/C32A/C33A/C34A and N30/C31B/C32B/C33B/C34B, respectively. The pyrrolidine-ring substituent at C3 has an envelope conformation, with a pseudo-rotation angle of 348.0 (3)° and a maximum torsion angle of 42.7 (2)° for the atom sequence N37/C38—C41.

The C17—C16—C20—C21 torsion angles of −173.5 (2)° in (I) and 179.2 (2)° in (II) indicate that the benzylidene moiety has an E configuration with respect to the carbonyl or hydroxy substituted atom, C17. The chloropropoxy group in (I) projects in a planar zigzag fashion slightly away from the plane of the methoxybenzylidene ring [C25—C24—O28—C29 6.9 (4)°].

The pseudo-torsion angle C19—C10···C13—C18, which gives a quantitative measure of the molecular twist, is 13.84 (18) in (I) and 11.34 (19)° in (II). These values are comparable with those of related structures with bulky substitutions at C3 and C16 (Hema et al., 2002; Thamotharan et al., 2002). The C16—C20—C21—C22 torsion angles of 160.8 (3) in (I) and 5.7 (4)° in (II) indicate that the benzylidene moiety has been flipped by almost 180° about the C20—C21 bond in (II) with respect to its orientation in (I), thus bringing the methoxy group to the other side of the molecule. The A/B/C/D ring systems of both (I) and (II) could be superimposed on each other with a small r.m.s. deviation of the atoms of 0.084 Å.

In (I), the hydroxy substituent on atom C3 forms an intermolecular hydrogen bond with the hydroxy atom O3 of a symmetry-related molecule (Table 1). This interaction leads cooperatively to an O—H···O—H···O—H pattern, producing a chain which runs parallel to the [001] direction and has a graph-set motif of C(2) (Bernstein et al., 1995). As can be seen from Table 2, the hydroxy substituent on atom C17 in (II) forms an intermolecular O—H···O hydrogen bond with the O atom of the water molecule. In turn, the water molecule forms two intermolecular O—H···O and one intermolecular O—H···N hydrogen bonds with the methoxy, ethoxy and ethoxypyrrolidine O and N atoms, respectively, of a single adjacent steroid molecule. These three acceptor atoms form a pocket into which the water molecule is bound. The combination of all these interactions links the steroid and water molecules alternately into extended chains which run in the [101] direction. Binary graph-set motifs (Bernstein et al., 1995) of C22(11), C22(12) and C22(15) are present for the chain routes through acceptor atoms O37, O25 and N30, respectively. Ring motifs of R12(5), R22(7) and R22(10) are also formed by the various combinations of donor-acceptor interactions between the water molecule and the single acceptor steroid molecule.

Experimental top

To a stirred suspension of 16-[3-methoxy-4-(2-pyrrolidin-1-ylethoxy)benzylidene]-3-pyrrolidino- 3,5-androstadien-17-one (0.5 g, 0.871 mmol) in methanol (75 ml), sodium borohydride (1.0 g) was added in small amounts over a period of 2 h at room temperature. Stirring was continued for a further 4 h. Excess solvent was removed under vacuum and the reaction mixture was poured into ice-cold water (100 ml). The precipitate obtained was filtered, washed with water, dried and crystallized from methanol-acetone (Ratio?) to afford (I) (institution code: DPJ-RG-1122; yield: 0.38 g, 75.54%; m.p. 469–472 K). To a solution of dehydroepiandrosterone (0.75 g, 2.60 mmol) in methanol (10 ml), sodium hydroxide pellets (1.5 g) were added and dissolved. 4-(3-chloro)-propoxy-3-methoxybenzaldehyde (1 g, 4.373 mmol) was added dropwise and stirred for 2 h. The completion of the reaction was monitored using thin-layer chromatography. Ice-cold water was added to the reaction mixture and the precipitate obtained was filtered, washed, dried and crystallized from acetone to afford (II) (institution code: DPJ-RG-1150; yield: 1.5 g, 86.7%; m.p. 483–485 K).

Refinement top

For compound (II), atom C4 on ring A of the steroid nucleus is disordered over two sites. The four ring C atoms of the ethoxypyrrolidine moiety are also disordered over two conformations and two sets of positions were defined for pyrrolidine ring atoms C31—C34. Constrained refinement of the site-occupation factors for the two disordered regions led to values of 0.788 (7) and 0.510 (13), respectively, for the major conformations. The chemically equivalent bonds involving the disordered C atoms were restrained to have similar lengths and the 1,3 distances within each conformation of the pyrrolidine ring were also restrained to be similar. Neighbouring disordered atoms within and between each conformation of the disordered region were also restrained to have similar atomic displacement parameters. The position of the hydroxy H atom in (I) was determined from a difference Fourier map and refined freely along with its isotropic displacement parameters. The positions of the water H atoms in (II) were also determined from a difference Fourier map and were refined along with their isotropic displacement parameters, while restraining the O—H bond length to 0.82 Å. The methyl H atoms in both compounds were constrained to an ideal geometry (C—H = 0.98 Å), with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. All remaining H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) and were constrained ride on their parent atoms. The presence of Cl in compound (I) permitted the determination of the absolute configuration of the molecule by refining the Flack parameter [−0.21 (7); Flack, 1983; Flack & Bernardinelli, 2000]. How many Friedel pairs? Due to the absence of any significant anomalous scatterers in (II), attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 3177 sets of Friedel equivalents led to an inconclusive value of 0.0 (8). Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond with the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of (II). Reflections 1 1 2, 0 1 2 and 1 1 1 in (I), and 0 2 1, 0 1 1 and 0 4 0 in (II), were partially obscured by the beam stop and were omitted.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. For clarity, all H atoms of the disordered rings have been omitted. The other H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small circles of arbitrary radii.
(I) 16-[4-(3-chloropropoxy)-3-methoxybenzylidene]-17-oxoandrost-5-en-3β-ol top
Crystal data top
C30H39ClO4Dx = 1.266 Mg m3
Mr = 499.09Melting point: 469 K
Trigonal, R3Mo Kα radiation, λ = 0.71073 Å
Hall symbol: R 3Cell parameters from 19304 reflections
a = 34.3749 (8) Åθ = 2.0–27.5°
c = 5.7585 (1) ŵ = 0.18 mm1
V = 5892.8 (2) Å3T = 160 K
Z = 9Prism, colourless
F(000) = 24120.30 × 0.12 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
5990 independent reflections
Radiation source: Nonius FR591 sealed tube generator5077 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.062
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.1°
ϕ and ω scans with κ offsetsh = 4441
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 4444
Tmin = 0.909, Tmax = 0.984l = 77
29761 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0672P)2 + 7.0766P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.60 e Å3
5987 reflectionsΔρmin = 0.34 e Å3
324 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00078 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack & Bernardinelli (2000)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.21 (7)
Crystal data top
C30H39ClO4Z = 9
Mr = 499.09Mo Kα radiation
Trigonal, R3µ = 0.18 mm1
a = 34.3749 (8) ÅT = 160 K
c = 5.7585 (1) Å0.30 × 0.12 × 0.10 mm
V = 5892.8 (2) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
5990 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
5077 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.984Rint = 0.062
29761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127Δρmax = 0.60 e Å3
S = 1.02Δρmin = 0.34 e Å3
5987 reflectionsAbsolute structure: Flack & Bernardinelli (2000)
324 parametersAbsolute structure parameter: 0.21 (7)
1 restraint
Special details top

Experimental. Solvent used: methnol-acetone mixture Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.464 (1) Frames collected: 222 Seconds exposure per frame: 120 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 30.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06166 (3)0.00522 (3)0.34802 (14)0.0493 (2)
O30.34998 (6)0.03704 (6)0.4690 (3)0.0290 (4)
H3A0.3353 (9)0.0203 (9)0.377 (5)0.013 (7)*
O170.22766 (6)0.26738 (7)0.8851 (3)0.0358 (4)
O230.01387 (6)0.15520 (7)0.5467 (3)0.0382 (5)
O280.02007 (6)0.10901 (7)0.1773 (4)0.0400 (5)
C10.34027 (8)0.13116 (8)0.7416 (4)0.0241 (5)
H1A0.36240.15750.83190.029*
H1B0.31420.11310.84420.029*
C20.36165 (8)0.10263 (9)0.6755 (4)0.0260 (5)
H2A0.38980.12130.58780.031*
H2B0.36930.09180.81820.031*
C30.32981 (8)0.06328 (8)0.5301 (4)0.0248 (5)
H30.30180.04420.62140.030*
C40.31764 (9)0.07993 (8)0.3105 (4)0.0254 (5)
H4A0.34500.09770.21590.030*
H4B0.29610.05390.21670.030*
C50.29703 (8)0.10863 (8)0.3712 (4)0.0222 (5)
C60.25712 (8)0.09782 (8)0.2857 (4)0.0255 (5)
H60.24250.07180.19060.031*
C70.23348 (8)0.12370 (8)0.3282 (4)0.0265 (5)
H7A0.20760.10610.43250.032*
H7B0.22170.12780.17900.032*
C80.26414 (8)0.16971 (8)0.4371 (4)0.0200 (5)
H80.28370.19090.31330.024*
C90.29420 (8)0.16681 (8)0.6278 (4)0.0204 (4)
H90.27350.14460.74470.025*
C100.32422 (8)0.14817 (7)0.5334 (4)0.0199 (4)
C110.32102 (8)0.21191 (8)0.7566 (4)0.0240 (5)
H11A0.34380.23420.64960.029*
H11B0.33710.20780.88850.029*
C120.29172 (8)0.23087 (8)0.8496 (4)0.0243 (5)
H12A0.27160.21090.97290.029*
H12B0.31120.26090.91810.029*
C130.26382 (8)0.23446 (8)0.6540 (4)0.0214 (5)
C140.23609 (8)0.18781 (7)0.5438 (4)0.0212 (5)
H140.21960.16710.67560.025*
C150.19985 (8)0.19076 (8)0.4008 (4)0.0230 (5)
H15A0.21190.20610.25050.028*
H15B0.17360.16060.37210.028*
C160.18793 (8)0.21839 (8)0.5595 (4)0.0233 (5)
C170.22647 (8)0.24382 (8)0.7243 (4)0.0245 (5)
C180.29329 (8)0.27166 (8)0.4783 (4)0.0255 (5)
H18A0.30750.30090.55620.038*
H18B0.27450.27170.35020.038*
H18C0.31660.26600.41710.038*
C190.36533 (8)0.18453 (8)0.4001 (4)0.0274 (5)
H19A0.38110.17080.32500.041*
H19B0.38570.20780.50880.041*
H19C0.35530.19810.28180.041*
C200.14950 (8)0.21898 (8)0.5840 (4)0.0259 (5)
H200.14970.23880.69970.031*
C210.10732 (8)0.19336 (8)0.4574 (4)0.0261 (5)
C220.06748 (9)0.18875 (9)0.5571 (4)0.0284 (5)
H220.06950.20480.69520.034*
C230.02602 (8)0.16171 (9)0.4593 (4)0.0293 (5)
C240.02237 (9)0.13695 (9)0.2560 (5)0.0306 (6)
C250.06123 (9)0.14357 (9)0.1482 (4)0.0310 (6)
H250.05930.12880.00560.037*
C260.10314 (9)0.17170 (9)0.2474 (4)0.0287 (5)
H260.12940.17620.16960.034*
C270.01146 (10)0.18450 (11)0.7261 (5)0.0405 (7)
H27A0.00130.17890.86600.061*
H27B0.04170.17920.76030.061*
H27C0.00770.21570.67630.061*
C290.02468 (9)0.08087 (11)0.0190 (5)0.0388 (6)
H29A0.01180.06150.01780.047*
H29B0.00870.09960.15560.047*
C300.07440 (10)0.05247 (13)0.0691 (6)0.0527 (9)
H30A0.08830.02880.05100.063*
H30B0.08830.07160.05770.063*
C310.08459 (12)0.03056 (13)0.3051 (7)0.0545 (9)
H31A0.07250.05430.42560.065*
H31B0.11760.01280.32550.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0498 (5)0.0436 (4)0.0585 (5)0.0262 (4)0.0040 (4)0.0074 (3)
O30.0324 (10)0.0271 (9)0.0341 (9)0.0199 (8)0.0076 (8)0.0053 (8)
O170.0365 (10)0.0395 (11)0.0372 (10)0.0233 (9)0.0040 (8)0.0156 (8)
O230.0255 (10)0.0541 (13)0.0387 (10)0.0227 (9)0.0008 (8)0.0096 (9)
O280.0263 (10)0.0507 (12)0.0422 (11)0.0186 (9)0.0065 (8)0.0158 (9)
C10.0279 (12)0.0280 (12)0.0195 (11)0.0163 (10)0.0044 (9)0.0016 (9)
C20.0284 (12)0.0307 (13)0.0247 (11)0.0190 (11)0.0033 (9)0.0008 (9)
C30.0246 (12)0.0244 (12)0.0289 (12)0.0149 (10)0.0023 (9)0.0013 (9)
C40.0308 (13)0.0262 (12)0.0232 (11)0.0173 (11)0.0045 (9)0.0037 (9)
C50.0282 (12)0.0208 (11)0.0184 (10)0.0128 (10)0.0019 (9)0.0005 (8)
C60.0298 (13)0.0226 (12)0.0261 (11)0.0146 (10)0.0065 (9)0.0048 (9)
C70.0252 (12)0.0240 (12)0.0308 (12)0.0127 (10)0.0089 (9)0.0075 (10)
C80.0198 (11)0.0198 (11)0.0206 (10)0.0101 (9)0.0030 (8)0.0008 (8)
C90.0225 (11)0.0219 (11)0.0191 (10)0.0128 (10)0.0023 (8)0.0002 (8)
C100.0214 (11)0.0192 (11)0.0185 (10)0.0097 (9)0.0009 (8)0.0004 (8)
C110.0246 (12)0.0251 (12)0.0246 (11)0.0140 (10)0.0077 (9)0.0052 (9)
C120.0286 (12)0.0241 (12)0.0212 (11)0.0139 (10)0.0043 (9)0.0034 (9)
C130.0237 (12)0.0192 (11)0.0215 (11)0.0109 (9)0.0001 (9)0.0012 (8)
C140.0216 (11)0.0189 (11)0.0215 (10)0.0089 (9)0.0016 (8)0.0010 (8)
C150.0211 (11)0.0254 (12)0.0244 (11)0.0129 (10)0.0029 (9)0.0010 (9)
C160.0247 (12)0.0206 (11)0.0240 (11)0.0110 (10)0.0003 (9)0.0011 (9)
C170.0267 (12)0.0225 (12)0.0251 (12)0.0130 (10)0.0007 (9)0.0007 (9)
C180.0252 (12)0.0213 (12)0.0281 (12)0.0102 (10)0.0007 (9)0.0001 (9)
C190.0246 (12)0.0274 (13)0.0288 (12)0.0120 (11)0.0019 (10)0.0015 (10)
C200.0276 (12)0.0245 (12)0.0285 (12)0.0151 (10)0.0007 (10)0.0016 (9)
C210.0270 (13)0.0267 (12)0.0293 (12)0.0169 (11)0.0001 (10)0.0036 (10)
C220.0287 (13)0.0323 (13)0.0297 (12)0.0195 (11)0.0008 (10)0.0006 (10)
C230.0246 (12)0.0375 (14)0.0318 (13)0.0200 (11)0.0014 (10)0.0003 (11)
C240.0260 (13)0.0328 (14)0.0334 (13)0.0150 (11)0.0046 (10)0.0014 (10)
C250.0272 (13)0.0388 (15)0.0287 (13)0.0178 (12)0.0023 (10)0.0034 (10)
C260.0263 (12)0.0356 (14)0.0284 (12)0.0186 (11)0.0017 (10)0.0016 (10)
C270.0358 (15)0.0527 (18)0.0419 (15)0.0288 (14)0.0038 (12)0.0058 (13)
C290.0302 (14)0.0447 (17)0.0413 (15)0.0185 (13)0.0046 (12)0.0122 (13)
C300.0304 (16)0.064 (2)0.061 (2)0.0218 (16)0.0073 (14)0.0238 (17)
C310.050 (2)0.061 (2)0.064 (2)0.0370 (18)0.0215 (16)0.0246 (18)
Geometric parameters (Å, º) top
Cl1—C311.779 (3)C12—H12B0.9900
O3—C31.430 (3)C13—C171.526 (3)
O3—H3A0.76 (3)C13—C141.534 (3)
O17—C171.218 (3)C13—C181.546 (3)
O23—C231.370 (3)C14—C151.538 (3)
O23—C271.416 (3)C14—H141.0000
O28—C241.362 (3)C15—C161.514 (3)
O28—C291.444 (3)C15—H15A0.9900
C1—C21.539 (3)C15—H15B0.9900
C1—C101.551 (3)C16—C201.339 (3)
C1—H1A0.9900C16—C171.504 (3)
C1—H1B0.9900C18—H18A0.9800
C2—C31.499 (3)C18—H18B0.9800
C2—H2A0.9900C18—H18C0.9800
C2—H2B0.9900C19—H19A0.9800
C3—C41.530 (3)C19—H19B0.9800
C3—H31.0000C19—H19C0.9800
C4—C51.515 (3)C20—C211.460 (3)
C4—H4A0.9900C20—H200.9500
C4—H4B0.9900C21—C261.389 (4)
C5—C61.324 (3)C21—C221.419 (3)
C5—C101.524 (3)C22—C231.374 (4)
C6—C71.495 (3)C22—H220.9500
C6—H60.9500C23—C241.415 (4)
C7—C81.529 (3)C24—C251.385 (4)
C7—H7A0.9900C25—C261.394 (4)
C7—H7B0.9900C25—H250.9500
C8—C141.515 (3)C26—H260.9500
C8—C91.545 (3)C27—H27A0.9800
C8—H81.0000C27—H27B0.9800
C9—C111.541 (3)C27—H27C0.9800
C9—C101.560 (3)C29—C301.513 (4)
C9—H91.0000C29—H29A0.9900
C10—C191.543 (3)C29—H29B0.9900
C11—C121.544 (3)C30—C311.507 (5)
C11—H11A0.9900C30—H30A0.9900
C11—H11B0.9900C30—H30B0.9900
C12—C131.523 (3)C31—H31A0.9900
C12—H12A0.9900C31—H31B0.9900
C3—O3—H3A108 (2)C8—C14—C13113.99 (18)
C23—O23—C27117.0 (2)C8—C14—C15120.86 (19)
C24—O28—C29116.9 (2)C13—C14—C15104.66 (19)
C2—C1—C10114.97 (18)C8—C14—H14105.4
C2—C1—H1A108.5C13—C14—H14105.4
C10—C1—H1A108.5C15—C14—H14105.4
C2—C1—H1B108.5C16—C15—C14101.56 (18)
C10—C1—H1B108.5C16—C15—H15A111.5
H1A—C1—H1B107.5C14—C15—H15A111.5
C3—C2—C1110.31 (19)C16—C15—H15B111.5
C3—C2—H2A109.6C14—C15—H15B111.5
C1—C2—H2A109.6H15A—C15—H15B109.3
C3—C2—H2B109.6C20—C16—C17120.9 (2)
C1—C2—H2B109.6C20—C16—C15130.6 (2)
H2A—C2—H2B108.1C17—C16—C15108.02 (19)
O3—C3—C2109.94 (19)O17—C17—C16126.4 (2)
O3—C3—C4110.0 (2)O17—C17—C13126.1 (2)
C2—C3—C4109.7 (2)C16—C17—C13107.44 (19)
O3—C3—H3109.1C13—C18—H18A109.5
C2—C3—H3109.1C13—C18—H18B109.5
C4—C3—H3109.1H18A—C18—H18B109.5
C5—C4—C3110.92 (19)C13—C18—H18C109.5
C5—C4—H4A109.5H18A—C18—H18C109.5
C3—C4—H4A109.5H18B—C18—H18C109.5
C5—C4—H4B109.5C10—C19—H19A109.5
C3—C4—H4B109.5C10—C19—H19B109.5
H4A—C4—H4B108.0H19A—C19—H19B109.5
C6—C5—C4119.2 (2)C10—C19—H19C109.5
C6—C5—C10124.4 (2)H19A—C19—H19C109.5
C4—C5—C10116.36 (19)H19B—C19—H19C109.5
C5—C6—C7124.6 (2)C16—C20—C21128.9 (2)
C5—C6—H6117.7C16—C20—H20115.5
C7—C6—H6117.7C21—C20—H20115.5
C6—C7—C8112.6 (2)C26—C21—C22117.2 (2)
C6—C7—H7A109.1C26—C21—C20124.3 (2)
C8—C7—H7A109.1C22—C21—C20118.5 (2)
C6—C7—H7B109.1C23—C22—C21121.8 (2)
C8—C7—H7B109.1C23—C22—H22119.1
H7A—C7—H7B107.8C21—C22—H22119.1
C14—C8—C7109.88 (19)O23—C23—C22125.1 (2)
C14—C8—C9108.77 (17)O23—C23—C24115.2 (2)
C7—C8—C9111.24 (19)C22—C23—C24119.7 (2)
C14—C8—H8109.0O28—C24—C25124.9 (2)
C7—C8—H8109.0O28—C24—C23116.2 (2)
C9—C8—H8109.0C25—C24—C23118.9 (2)
C11—C9—C8111.12 (18)C24—C25—C26120.5 (2)
C11—C9—C10113.27 (18)C24—C25—H25119.8
C8—C9—C10112.32 (17)C26—C25—H25119.8
C11—C9—H9106.5C21—C26—C25121.5 (2)
C8—C9—H9106.5C21—C26—H26119.2
C10—C9—H9106.5C25—C26—H26119.2
C5—C10—C19108.81 (18)O23—C27—H27A109.5
C5—C10—C1108.22 (18)O23—C27—H27B109.5
C19—C10—C1109.60 (19)H27A—C27—H27B109.5
C5—C10—C9110.07 (18)O23—C27—H27C109.5
C19—C10—C9111.52 (18)H27A—C27—H27C109.5
C1—C10—C9108.56 (17)H27B—C27—H27C109.5
C9—C11—C12113.79 (19)O28—C29—C30107.0 (2)
C9—C11—H11A108.8O28—C29—H29A110.3
C12—C11—H11A108.8C30—C29—H29A110.3
C9—C11—H11B108.8O28—C29—H29B110.3
C12—C11—H11B108.8C30—C29—H29B110.3
H11A—C11—H11B107.7H29A—C29—H29B108.6
C13—C12—C11110.34 (18)C31—C30—C29113.5 (3)
C13—C12—H12A109.6C31—C30—H30A108.9
C11—C12—H12A109.6C29—C30—H30A108.9
C13—C12—H12B109.6C31—C30—H30B108.9
C11—C12—H12B109.6C29—C30—H30B108.9
H12A—C12—H12B108.1H30A—C30—H30B107.7
C12—C13—C17116.82 (19)C30—C31—Cl1113.5 (2)
C12—C13—C14107.98 (18)C30—C31—H31A108.9
C17—C13—C14100.45 (18)Cl1—C31—H31A108.9
C12—C13—C18111.84 (19)C30—C31—H31B108.9
C17—C13—C18105.76 (19)Cl1—C31—H31B108.9
C14—C13—C18113.66 (18)H31A—C31—H31B107.7
C10—C1—C2—C356.0 (3)C18—C13—C14—C863.2 (3)
C1—C2—C3—O3179.85 (19)C12—C13—C14—C15164.34 (18)
C1—C2—C3—C458.8 (3)C17—C13—C14—C1541.5 (2)
O3—C3—C4—C5178.87 (19)C18—C13—C14—C1571.0 (2)
C2—C3—C4—C557.8 (3)C8—C14—C15—C16169.5 (2)
C3—C4—C5—C6124.9 (2)C13—C14—C15—C1639.2 (2)
C3—C4—C5—C1054.0 (3)C14—C15—C16—C20151.3 (3)
C4—C5—C6—C7178.8 (2)C14—C15—C16—C1721.2 (2)
C10—C5—C6—C72.3 (4)C20—C16—C17—O172.0 (4)
C5—C6—C7—C812.5 (3)C15—C16—C17—O17175.4 (2)
C6—C7—C8—C14162.4 (2)C20—C16—C17—C13177.6 (2)
C6—C7—C8—C941.9 (3)C15—C16—C17—C134.3 (3)
C14—C8—C9—C1152.2 (2)C12—C13—C17—O1735.3 (3)
C7—C8—C9—C11173.4 (2)C14—C13—C17—O17151.8 (2)
C14—C8—C9—C10179.71 (18)C18—C13—C17—O1789.8 (3)
C7—C8—C9—C1058.6 (2)C12—C13—C17—C16144.3 (2)
C6—C5—C10—C19109.5 (3)C14—C13—C17—C1627.9 (2)
C4—C5—C10—C1971.6 (2)C18—C13—C17—C1690.5 (2)
C6—C5—C10—C1131.5 (2)C17—C16—C20—C21173.5 (2)
C4—C5—C10—C147.4 (3)C15—C16—C20—C211.9 (4)
C6—C5—C10—C913.0 (3)C16—C20—C21—C2616.9 (4)
C4—C5—C10—C9165.90 (19)C16—C20—C21—C22160.8 (3)
C2—C1—C10—C548.0 (3)C26—C21—C22—C234.2 (4)
C2—C1—C10—C1970.6 (3)C20—C21—C22—C23173.8 (2)
C2—C1—C10—C9167.4 (2)C27—O23—C23—C2211.9 (4)
C11—C9—C10—C5169.45 (18)C27—O23—C23—C24169.9 (2)
C8—C9—C10—C542.5 (2)C21—C22—C23—O23179.2 (2)
C11—C9—C10—C1948.6 (2)C21—C22—C23—C241.2 (4)
C8—C9—C10—C1978.3 (2)C29—O28—C24—C256.9 (4)
C11—C9—C10—C172.3 (2)C29—O28—C24—C23175.3 (2)
C8—C9—C10—C1160.81 (18)O23—C23—C24—O281.8 (4)
C8—C9—C11—C1252.1 (3)C22—C23—C24—O28176.4 (2)
C10—C9—C11—C12179.63 (18)O23—C23—C24—C25176.2 (2)
C9—C11—C12—C1354.5 (3)C22—C23—C24—C255.6 (4)
C11—C12—C13—C17168.4 (2)O28—C24—C25—C26177.6 (2)
C11—C12—C13—C1456.2 (2)C23—C24—C25—C264.6 (4)
C11—C12—C13—C1869.6 (2)C22—C21—C26—C255.2 (4)
C7—C8—C14—C13178.88 (19)C20—C21—C26—C25172.6 (2)
C9—C8—C14—C1359.1 (2)C24—C25—C26—C210.9 (4)
C7—C8—C14—C1552.8 (3)C24—O28—C29—C30178.6 (3)
C9—C8—C14—C15174.8 (2)O28—C29—C30—C31164.3 (3)
C12—C13—C14—C861.5 (2)C29—C30—C31—Cl158.9 (4)
C17—C13—C14—C8175.67 (18)C19—C10—C13—C1813.84 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O3i0.76 (3)1.95 (3)2.710 (2)177 (3)
Symmetry code: (i) y+1/3, xy1/3, z1/3.
(II) 16-[3-methoxy-4-(2-pyrrolidin-1-ylethoxy)benzylidene]- 3β-pyrrolidinoandrost-5-en-17β-ol monohydrate top
Crystal data top
C37H54N2O3·H2OF(000) = 648
Mr = 592.86Dx = 1.185 Mg m3
Monoclinic, P21Melting point: 483 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.4219 (1) ÅCell parameters from 3313 reflections
b = 32.4115 (5) Åθ = 2.0–26.0°
c = 8.0981 (1) ŵ = 0.08 mm1
β = 99.6510 (7)°T = 160 K
V = 1661.71 (4) Å3Prism, colourless
Z = 20.28 × 0.18 × 0.15 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2865 reflections with I > 2σ(I)
Radiation source: Nonius FR591 sealed tube generatorRint = 0.052
Horizontally mounted graphite crystal monochromatorθmax = 26.0°, θmin = 2.6°
Detector resolution: 9 pixels mm-1h = 77
ϕ and ω scans with κ offsetsk = 3939
36139 measured reflectionsl = 99
3302 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.050P)2 + 0.1844P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3299 reflectionsΔρmax = 0.23 e Å3
451 parametersΔρmin = 0.22 e Å3
120 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (5)
Crystal data top
C37H54N2O3·H2OV = 1661.71 (4) Å3
Mr = 592.86Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.4219 (1) ŵ = 0.08 mm1
b = 32.4115 (5) ÅT = 160 K
c = 8.0981 (1) Å0.28 × 0.18 × 0.15 mm
β = 99.6510 (7)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2865 reflections with I > 2σ(I)
36139 measured reflectionsRint = 0.052
3302 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037120 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
3299 reflectionsΔρmin = 0.22 e Å3
451 parameters
Special details top

Experimental. Solvent used: acetone Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.464 (1) Frames collected: 1976 Seconds exposure per frame: 91 Degrees rotation per frame: 0.76 Crystal-Detector distance (mm): 50.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4812 (4)0.11425 (9)0.2016 (3)0.0411 (6)
H1A0.50980.10870.31600.049*
H1B0.56490.13880.15840.049*
C20.5581 (4)0.07741 (9)0.0906 (3)0.0436 (7)
H2A0.48610.05210.13910.052*
H2B0.71170.07380.08750.052*
C30.5150 (5)0.08320 (9)0.0859 (3)0.0473 (7)
H3A0.58950.10850.13590.057*0.788 (7)
H3B0.64200.10060.12650.057*0.212 (7)
C4A0.2713 (6)0.08913 (12)0.0720 (4)0.0441 (11)0.788 (7)
H4A0.19830.06380.02460.053*0.788 (7)
H4B0.23650.09340.18530.053*0.788 (7)
C4B0.3505 (13)0.1154 (3)0.1141 (9)0.037 (3)0.212 (7)
H4C0.27510.10530.20340.044*0.212 (7)
H4D0.42460.14120.15460.044*0.212 (7)
C50.1939 (4)0.12490 (8)0.0354 (3)0.0380 (6)
C60.0589 (5)0.15179 (9)0.0151 (3)0.0472 (7)
H60.01020.14630.11740.057*
C70.0195 (4)0.18975 (8)0.0791 (3)0.0350 (5)
H7A0.06850.21350.03330.042*
H7B0.16630.19520.06270.042*
C80.0142 (4)0.18601 (7)0.2657 (3)0.0312 (5)
H80.13090.16720.31710.037*
C90.1988 (4)0.16764 (7)0.2954 (3)0.0320 (5)
H90.31100.18650.23760.038*
C100.2450 (4)0.12454 (8)0.2131 (3)0.0340 (5)
C110.2203 (4)0.16805 (8)0.4822 (3)0.0362 (6)
H11A0.12430.14700.54180.043*
H11B0.36660.16010.49230.043*
C120.1696 (4)0.21018 (8)0.5693 (3)0.0341 (5)
H12A0.27870.23060.52280.041*
H12B0.17210.20740.69060.041*
C130.0473 (4)0.22550 (8)0.5432 (3)0.0310 (5)
C140.0437 (4)0.22780 (7)0.3529 (3)0.0303 (5)
H140.08380.24450.30660.036*
C150.2353 (4)0.25440 (7)0.3320 (3)0.0332 (5)
H15A0.36260.23720.33210.040*
H15B0.20770.27040.22650.040*
C160.2619 (4)0.28275 (7)0.4838 (3)0.0318 (5)
C170.0949 (4)0.27104 (8)0.5896 (3)0.0332 (5)
H170.03520.28770.55110.040*
O170.1562 (3)0.27666 (7)0.7643 (2)0.0426 (4)
H17A0.139 (5)0.3019 (12)0.786 (4)0.062 (11)*
C180.2270 (4)0.19869 (8)0.6355 (3)0.0373 (6)
H18A0.22850.20050.75650.056*
H18B0.36230.20850.60970.056*
H18C0.20500.16990.59930.056*
C190.1098 (5)0.09070 (8)0.3131 (4)0.0469 (7)
H19A0.12240.06500.24820.070*
H19B0.15940.08610.41970.070*
H19C0.03840.09940.33510.070*
C200.4024 (4)0.31267 (7)0.5286 (3)0.0336 (5)
H200.38880.32630.63020.040*
C210.5748 (4)0.32813 (7)0.4469 (3)0.0322 (5)
C220.6113 (4)0.31484 (7)0.2886 (3)0.0318 (5)
H220.52100.29470.22890.038*
C230.7762 (4)0.33061 (7)0.2191 (3)0.0318 (5)
C240.9123 (4)0.36041 (7)0.3045 (3)0.0333 (5)
C250.8775 (4)0.37374 (8)0.4601 (3)0.0374 (6)
H250.96790.39390.51970.045*
C260.7108 (4)0.35774 (8)0.5291 (3)0.0350 (6)
H260.68900.36730.63580.042*
O271.0729 (3)0.37382 (5)0.2248 (2)0.0371 (4)
C281.1991 (4)0.40731 (8)0.3026 (3)0.0400 (6)
H28A1.25990.39990.41930.048*
H28B1.11000.43210.30550.048*
C291.3735 (4)0.41640 (8)0.2055 (3)0.0392 (6)
H29A1.45260.44080.25600.047*
H29B1.47240.39270.21790.047*
O350.8209 (3)0.31898 (5)0.0657 (2)0.0393 (4)
C360.6711 (4)0.29305 (9)0.0370 (3)0.0436 (6)
H36A0.65960.26670.02010.065*
H36B0.71830.28810.14420.065*
H36C0.53290.30670.05710.065*
N370.5787 (3)0.04787 (7)0.1941 (3)0.0416 (5)
C380.8023 (5)0.03839 (10)0.2159 (4)0.0517 (7)
H38A0.88810.06360.24270.062*
H38B0.83890.02580.11310.062*
C390.8393 (5)0.00809 (10)0.3610 (4)0.0539 (7)
H39A0.98260.01150.42710.065*
H39B0.82230.02070.32020.065*
C400.6695 (5)0.01924 (9)0.4658 (4)0.0511 (7)
H40A0.58110.00500.48090.061*
H40B0.73440.02980.57730.061*
C410.5402 (6)0.05229 (12)0.3652 (4)0.0635 (9)
H41A0.38820.04860.36990.076*
H41B0.58420.08000.40950.076*
C31A1.1844 (18)0.4617 (3)0.0278 (11)0.064 (2)0.510 (13)
H31A1.24300.48610.03730.077*0.510 (13)
H31B1.03390.45850.01720.077*0.510 (13)
C32A1.211 (2)0.4655 (3)0.2121 (9)0.069 (3)0.510 (13)
H32A1.09360.45140.28630.083*0.510 (13)
H32B1.21470.49480.24590.083*0.510 (13)
C33A1.4219 (19)0.4441 (3)0.2191 (9)0.077 (2)0.510 (13)
H33A1.52400.46400.25310.093*0.510 (13)
H33B1.40220.42110.30070.093*0.510 (13)
C34A1.5028 (10)0.4277 (4)0.0419 (11)0.060 (2)0.510 (13)
H34A1.57250.40060.04550.072*0.510 (13)
H34B1.60270.44730.02330.072*0.510 (13)
N301.3057 (3)0.42420 (7)0.0287 (3)0.0452 (6)
C31B1.1416 (15)0.4567 (3)0.0084 (11)0.057 (2)0.490 (13)
H31C1.19050.48130.07630.068*0.490 (13)
H31D1.00950.44640.04180.068*0.490 (13)
C32B1.1081 (18)0.4667 (3)0.1796 (10)0.071 (2)0.490 (13)
H32C0.99490.44940.24270.086*0.490 (13)
H32D1.07150.49620.19990.086*0.490 (13)
C33B1.3228 (18)0.4567 (3)0.2288 (9)0.070 (3)0.490 (13)
H33C1.38740.48200.26690.084*0.490 (13)
H33D1.30590.43620.32080.084*0.490 (13)
C34B1.4621 (12)0.4391 (4)0.0720 (11)0.064 (2)0.490 (13)
H34C1.55140.41620.10120.077*0.490 (13)
H34D1.55380.46070.01160.077*0.490 (13)
O1W0.0923 (4)0.35589 (7)0.8658 (3)0.0610 (6)
H1W0.169 (6)0.3746 (11)0.924 (5)0.098 (14)*
H2W0.010 (6)0.3471 (12)0.935 (4)0.098 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (15)0.0476 (15)0.0378 (13)0.0062 (12)0.0164 (11)0.0051 (11)
C20.0434 (16)0.0482 (16)0.0427 (15)0.0089 (12)0.0178 (12)0.0041 (12)
C30.0608 (18)0.0465 (15)0.0382 (14)0.0161 (13)0.0184 (13)0.0068 (12)
C4A0.048 (2)0.049 (2)0.0389 (19)0.0111 (17)0.0183 (16)0.0069 (16)
C4B0.045 (6)0.025 (6)0.040 (6)0.017 (5)0.007 (5)0.003 (5)
C50.0445 (15)0.0362 (13)0.0368 (13)0.0026 (11)0.0170 (11)0.0028 (11)
C60.0634 (19)0.0514 (16)0.0304 (13)0.0179 (14)0.0178 (12)0.0058 (12)
C70.0394 (14)0.0361 (13)0.0321 (13)0.0026 (11)0.0133 (10)0.0015 (10)
C80.0315 (12)0.0338 (12)0.0299 (12)0.0023 (10)0.0092 (10)0.0036 (10)
C90.0337 (13)0.0324 (12)0.0309 (12)0.0007 (10)0.0084 (10)0.0017 (10)
C100.0366 (13)0.0338 (12)0.0336 (12)0.0013 (11)0.0114 (10)0.0016 (10)
C110.0380 (14)0.0390 (13)0.0341 (13)0.0036 (11)0.0131 (11)0.0020 (10)
C120.0355 (13)0.0387 (13)0.0300 (12)0.0006 (11)0.0110 (10)0.0011 (10)
C130.0294 (12)0.0371 (12)0.0275 (11)0.0008 (10)0.0076 (9)0.0021 (10)
C140.0296 (12)0.0329 (12)0.0292 (11)0.0002 (10)0.0074 (9)0.0033 (10)
C150.0370 (13)0.0361 (13)0.0279 (12)0.0001 (11)0.0093 (10)0.0008 (10)
C160.0303 (13)0.0356 (13)0.0299 (12)0.0018 (10)0.0062 (10)0.0012 (10)
C170.0329 (13)0.0409 (13)0.0264 (11)0.0006 (10)0.0066 (10)0.0003 (10)
O170.0489 (11)0.0517 (12)0.0281 (9)0.0046 (9)0.0089 (8)0.0051 (8)
C180.0365 (14)0.0435 (14)0.0329 (12)0.0040 (11)0.0086 (10)0.0057 (11)
C190.0522 (17)0.0344 (14)0.0540 (16)0.0006 (12)0.0087 (13)0.0042 (12)
C200.0341 (13)0.0379 (13)0.0295 (11)0.0013 (11)0.0080 (10)0.0010 (10)
C210.0310 (12)0.0340 (12)0.0314 (12)0.0033 (10)0.0044 (10)0.0012 (10)
C220.0315 (12)0.0334 (12)0.0297 (12)0.0024 (10)0.0030 (10)0.0021 (10)
C230.0355 (13)0.0328 (12)0.0276 (11)0.0001 (10)0.0063 (10)0.0030 (10)
C240.0307 (13)0.0339 (12)0.0353 (13)0.0029 (10)0.0055 (10)0.0014 (10)
C250.0378 (14)0.0395 (13)0.0348 (13)0.0031 (11)0.0060 (11)0.0072 (11)
C260.0367 (14)0.0393 (13)0.0291 (12)0.0002 (11)0.0055 (10)0.0045 (10)
O270.0345 (9)0.0420 (9)0.0360 (9)0.0100 (8)0.0093 (7)0.0052 (8)
C280.0382 (14)0.0390 (14)0.0426 (14)0.0115 (11)0.0061 (12)0.0086 (11)
C290.0360 (14)0.0412 (14)0.0405 (14)0.0075 (12)0.0070 (11)0.0024 (11)
O350.0404 (10)0.0465 (10)0.0326 (9)0.0116 (8)0.0106 (7)0.0100 (8)
C360.0477 (16)0.0504 (16)0.0318 (13)0.0090 (13)0.0038 (11)0.0097 (12)
N370.0387 (12)0.0486 (13)0.0394 (12)0.0070 (10)0.0124 (9)0.0063 (10)
C380.0414 (16)0.0587 (19)0.0557 (18)0.0085 (14)0.0100 (13)0.0086 (14)
C390.0499 (17)0.0570 (18)0.0519 (17)0.0078 (15)0.0000 (13)0.0051 (14)
C400.0585 (19)0.0520 (17)0.0419 (15)0.0007 (14)0.0056 (13)0.0061 (13)
C410.074 (2)0.077 (2)0.0438 (16)0.0248 (18)0.0224 (15)0.0134 (16)
C31A0.108 (5)0.032 (3)0.046 (4)0.001 (4)0.006 (4)0.016 (3)
C32A0.109 (6)0.047 (3)0.048 (4)0.008 (5)0.001 (5)0.007 (3)
C33A0.109 (5)0.071 (4)0.051 (3)0.004 (4)0.010 (4)0.018 (3)
C34A0.088 (4)0.056 (5)0.037 (4)0.028 (3)0.012 (3)0.014 (3)
N300.0581 (15)0.0384 (12)0.0387 (12)0.0108 (11)0.0067 (11)0.0000 (10)
C31B0.098 (5)0.031 (3)0.034 (4)0.009 (4)0.007 (3)0.015 (3)
C32B0.115 (6)0.049 (3)0.048 (4)0.014 (4)0.009 (4)0.015 (3)
C33B0.104 (6)0.063 (5)0.042 (3)0.018 (5)0.009 (5)0.010 (3)
C34B0.093 (5)0.067 (6)0.037 (4)0.040 (4)0.025 (4)0.008 (3)
O1W0.0891 (17)0.0559 (13)0.0429 (11)0.0309 (12)0.0258 (11)0.0160 (10)
Geometric parameters (Å, º) top
C1—C21.526 (4)C22—C231.378 (3)
C1—C101.541 (3)C22—H220.9500
C1—H1A0.9900C23—O351.374 (3)
C1—H1B0.9900C23—C241.404 (3)
C2—C31.512 (3)C24—O271.376 (3)
C2—H2A0.9900C24—C251.385 (3)
C2—H2B0.9900C25—C261.389 (3)
C3—N371.458 (3)C25—H250.9500
C3—C4B1.529 (6)C26—H260.9500
C3—C4A1.562 (4)O27—C281.436 (3)
C3—H3A1.0000C28—C291.501 (4)
C3—H3B1.0000C28—H28A0.9900
C4A—C51.484 (4)C28—H28B0.9900
C4A—H4A0.9900C29—N301.447 (3)
C4A—H4B0.9900C29—H29A0.9900
C4B—C51.471 (6)C29—H29B0.9900
C4B—H4C0.9900O35—C361.433 (3)
C4B—H4D0.9900C36—H36A0.9800
C5—C61.341 (4)C36—H36B0.9800
C5—C101.528 (3)C36—H36C0.9800
C6—C71.490 (4)N37—C381.450 (4)
C6—H60.9500N37—C411.455 (3)
C7—C81.522 (3)C38—C391.519 (4)
C7—H7A0.9900C38—H38A0.9900
C7—H7B0.9900C38—H38B0.9900
C8—C141.524 (3)C39—C401.533 (4)
C8—C91.548 (3)C39—H39A0.9900
C8—H81.0000C39—H39B0.9900
C9—C111.542 (3)C40—C411.508 (4)
C9—C101.555 (3)C40—H40A0.9900
C9—H91.0000C40—H40B0.9900
C10—C191.542 (4)C41—H41A0.9900
C11—C121.546 (3)C41—H41B0.9900
C11—H11A0.9900C31A—N301.474 (4)
C11—H11B0.9900C31A—C32A1.535 (5)
C12—C131.526 (3)C31A—H31A0.9900
C12—H12A0.9900C31A—H31B0.9900
C12—H12B0.9900C32A—C33A1.532 (5)
C13—C181.535 (3)C32A—H32A0.9900
C13—C141.539 (3)C32A—H32B0.9900
C13—C171.541 (3)C33A—C34A1.536 (5)
C14—C151.535 (3)C33A—H33A0.9900
C14—H141.0000C33A—H33B0.9900
C15—C161.521 (3)C34A—N301.478 (4)
C15—H15A0.9900C34A—H34A0.9900
C15—H15B0.9900C34A—H34B0.9900
C16—C201.333 (3)N30—C34B1.478 (4)
C16—C171.528 (3)N30—C31B1.479 (4)
C17—O171.415 (3)C31B—C32B1.536 (5)
C17—H171.0000C31B—H31C0.9900
O17—H17A0.85 (4)C31B—H31D0.9900
C18—H18A0.9800C32B—C33B1.533 (5)
C18—H18B0.9800C32B—H32C0.9900
C18—H18C0.9800C32B—H32D0.9900
C19—H19A0.9800C33B—C34B1.535 (5)
C19—H19B0.9800C33B—H33C0.9900
C19—H19C0.9800C33B—H33D0.9900
C20—C211.470 (3)C34B—H34C0.9900
C20—H200.9500C34B—H34D0.9900
C21—C261.390 (3)O1W—H1W0.87 (2)
C21—C221.408 (3)O1W—H2W0.88 (2)
C2—C1—C10115.0 (2)C21—C20—H20114.7
C2—C1—H1A108.5C26—C21—C22117.4 (2)
C10—C1—H1A108.5C26—C21—C20118.7 (2)
C2—C1—H1B108.5C22—C21—C20123.9 (2)
C10—C1—H1B108.5C23—C22—C21121.0 (2)
H1A—C1—H1B107.5C23—C22—H22119.5
C3—C2—C1111.6 (2)C21—C22—H22119.5
C3—C2—H2A109.3O35—C23—C22124.0 (2)
C1—C2—H2A109.3O35—C23—C24115.3 (2)
C3—C2—H2B109.3C22—C23—C24120.7 (2)
C1—C2—H2B109.3O27—C24—C25125.2 (2)
H2A—C2—H2B108.0O27—C24—C23116.1 (2)
N37—C3—C2113.2 (2)C25—C24—C23118.7 (2)
N37—C3—C4B125.2 (4)C24—C25—C26120.2 (2)
C2—C3—C4B117.8 (4)C24—C25—H25119.9
N37—C3—C4A108.5 (2)C26—C25—H25119.9
C2—C3—C4A106.7 (2)C25—C26—C21122.0 (2)
N37—C3—H3A109.5C25—C26—H26119.0
C2—C3—H3A109.5C21—C26—H26119.0
C4A—C3—H3A109.5C24—O27—C28116.45 (18)
N37—C3—H3B96.5O27—C28—C29109.5 (2)
C2—C3—H3B96.5O27—C28—H28A109.8
C4B—C3—H3B96.5C29—C28—H28A109.8
C5—C4A—C3111.8 (3)O27—C28—H28B109.8
C5—C4A—H4A109.3C29—C28—H28B109.8
C3—C4A—H4A109.3H28A—C28—H28B108.2
C5—C4A—H4B109.3N30—C29—C28115.1 (2)
C3—C4A—H4B109.3N30—C29—H29A108.5
H4A—C4A—H4B107.9C28—C29—H29A108.5
C5—C4B—C3114.5 (4)N30—C29—H29B108.5
C5—C4B—H4C108.6C28—C29—H29B108.5
C3—C4B—H4C108.6H29A—C29—H29B107.5
C5—C4B—H4D108.6C23—O35—C36117.64 (18)
C3—C4B—H4D108.6O35—C36—H36A109.5
H4C—C4B—H4D107.6O35—C36—H36B109.5
C6—C5—C4B105.8 (3)H36A—C36—H36B109.5
C6—C5—C4A120.0 (2)O35—C36—H36C109.5
C6—C5—C10123.0 (2)H36A—C36—H36C109.5
C4B—C5—C10123.2 (4)H36B—C36—H36C109.5
C4A—C5—C10116.2 (2)C38—N37—C41103.2 (2)
C5—C6—C7124.1 (2)C38—N37—C3114.3 (2)
C5—C6—H6117.9C41—N37—C3114.8 (2)
C7—C6—H6117.9N37—C38—C39104.7 (2)
C6—C7—C8112.4 (2)N37—C38—H38A110.8
C6—C7—H7A109.1C39—C38—H38A110.8
C8—C7—H7A109.1N37—C38—H38B110.8
C6—C7—H7B109.1C39—C38—H38B110.8
C8—C7—H7B109.1H38A—C38—H38B108.9
H7A—C7—H7B107.9C38—C39—C40104.0 (2)
C7—C8—C14111.55 (18)C38—C39—H39A111.0
C7—C8—C9110.64 (19)C40—C39—H39A111.0
C14—C8—C9108.31 (18)C38—C39—H39B111.0
C7—C8—H8108.8C40—C39—H39B111.0
C14—C8—H8108.8H39A—C39—H39B109.0
C9—C8—H8108.8C41—C40—C39104.3 (2)
C11—C9—C8112.09 (19)C41—C40—H40A110.9
C11—C9—C10112.76 (19)C39—C40—H40A110.9
C8—C9—C10112.89 (19)C41—C40—H40B110.9
C11—C9—H9106.1C39—C40—H40B110.9
C8—C9—H9106.1H40A—C40—H40B108.9
C10—C9—H9106.1N37—C41—C40106.1 (2)
C5—C10—C1108.0 (2)N37—C41—H41A110.5
C5—C10—C19108.0 (2)C40—C41—H41A110.5
C1—C10—C19109.9 (2)N37—C41—H41B110.5
C5—C10—C9109.97 (19)C40—C41—H41B110.5
C1—C10—C9109.6 (2)H41A—C41—H41B108.7
C19—C10—C9111.3 (2)N30—C31A—C32A103.3 (4)
C9—C11—C12114.10 (19)N30—C31A—H31A111.1
C9—C11—H11A108.7C32A—C31A—H31A111.1
C12—C11—H11A108.7N30—C31A—H31B111.1
C9—C11—H11B108.7C32A—C31A—H31B111.1
C12—C11—H11B108.7H31A—C31A—H31B109.1
H11A—C11—H11B107.6C33A—C32A—C31A104.0 (5)
C13—C12—C11110.58 (19)C33A—C32A—H32A111.0
C13—C12—H12A109.5C31A—C32A—H32A111.0
C11—C12—H12A109.5C33A—C32A—H32B111.0
C13—C12—H12B109.5C31A—C32A—H32B111.0
C11—C12—H12B109.5H32A—C32A—H32B109.0
H12A—C12—H12B108.1C32A—C33A—C34A106.5 (5)
C12—C13—C18112.2 (2)C32A—C33A—H33A110.4
C12—C13—C14107.07 (18)C34A—C33A—H33A110.4
C18—C13—C14113.51 (19)C32A—C33A—H33B110.4
C12—C13—C17115.2 (2)C34A—C33A—H33B110.4
C18—C13—C17108.71 (19)H33A—C33A—H33B108.6
C14—C13—C1799.61 (18)N30—C34A—C33A102.2 (4)
C8—C14—C15119.17 (19)N30—C34A—H34A111.3
C8—C14—C13113.62 (19)C33A—C34A—H34A111.3
C15—C14—C13105.09 (18)N30—C34A—H34B111.3
C8—C14—H14106.0C33A—C34A—H34B111.3
C15—C14—H14106.0H34A—C34A—H34B109.2
C13—C14—H14106.0C29—N30—C31A120.5 (4)
C16—C15—C14103.49 (19)C29—N30—C34B118.9 (4)
C16—C15—H15A111.1C29—N30—C34A105.1 (4)
C14—C15—H15A111.1C31A—N30—C34A105.0 (5)
C16—C15—H15B111.1C29—N30—C31B109.0 (4)
C14—C15—H15B111.1C34B—N30—C31B104.1 (5)
H15A—C15—H15B109.0N30—C31B—C32B103.9 (4)
C20—C16—C15129.7 (2)N30—C31B—H31C111.0
C20—C16—C17122.3 (2)C32B—C31B—H31C111.0
C15—C16—C17108.00 (19)N30—C31B—H31D111.0
O17—C17—C16115.2 (2)C32B—C31B—H31D111.0
O17—C17—C13112.19 (19)H31C—C31B—H31D109.0
C16—C17—C13103.31 (18)C33B—C32B—C31B103.3 (5)
O17—C17—H17108.6C33B—C32B—H32C111.1
C16—C17—H17108.6C31B—C32B—H32C111.1
C13—C17—H17108.6C33B—C32B—H32D111.1
C17—O17—H17A108 (2)C31B—C32B—H32D111.1
C13—C18—H18A109.5H32C—C32B—H32D109.1
C13—C18—H18B109.5C32B—C33B—C34B106.8 (5)
H18A—C18—H18B109.5C32B—C33B—H33C110.4
C13—C18—H18C109.5C34B—C33B—H33C110.4
H18A—C18—H18C109.5C32B—C33B—H33D110.4
H18B—C18—H18C109.5C34B—C33B—H33D110.4
C10—C19—H19A109.5H33C—C33B—H33D108.6
C10—C19—H19B109.5N30—C34B—C33B102.8 (4)
H19A—C19—H19B109.5N30—C34B—H34C111.2
C10—C19—H19C109.5C33B—C34B—H34C111.2
H19A—C19—H19C109.5N30—C34B—H34D111.2
H19B—C19—H19C109.5C33B—C34B—H34D111.2
C16—C20—C21130.7 (2)H34C—C34B—H34D109.1
C16—C20—H20114.7H1W—O1W—H2W103 (4)
C10—C1—C2—C356.9 (3)C20—C16—C17—C13153.8 (2)
C1—C2—C3—N37177.7 (2)C15—C16—C17—C1325.2 (2)
C1—C2—C3—C4B18.5 (6)C12—C13—C17—O1779.6 (3)
C1—C2—C3—C4A58.5 (3)C18—C13—C17—O1747.2 (3)
N37—C3—C4A—C5179.5 (3)C14—C13—C17—O17166.21 (19)
C2—C3—C4A—C558.3 (3)C12—C13—C17—C16155.72 (18)
C4B—C3—C4A—C555.6 (5)C18—C13—C17—C1677.4 (2)
N37—C3—C4B—C5132.8 (6)C14—C13—C17—C1641.6 (2)
C2—C3—C4B—C523.7 (10)C15—C16—C20—C210.4 (4)
C4A—C3—C4B—C558.1 (5)C17—C16—C20—C21179.2 (2)
C3—C4B—C5—C6177.1 (6)C16—C20—C21—C26174.5 (2)
C3—C4B—C5—C1033.4 (10)C16—C20—C21—C225.7 (4)
C3—C4A—C5—C6134.5 (3)C26—C21—C22—C230.2 (3)
C3—C4A—C5—C1055.8 (4)C20—C21—C22—C23180.0 (2)
C4B—C5—C6—C7135.4 (5)C21—C22—C23—O35179.9 (2)
C4A—C5—C6—C7176.8 (3)C21—C22—C23—C240.0 (4)
C10—C5—C6—C714.2 (5)O35—C23—C24—O270.5 (3)
C5—C6—C7—C825.4 (4)C22—C23—C24—O27179.4 (2)
C6—C7—C8—C14166.4 (2)O35—C23—C24—C25180.0 (2)
C6—C7—C8—C945.7 (3)C22—C23—C24—C250.1 (4)
C7—C8—C9—C11173.4 (2)O27—C24—C25—C26179.5 (2)
C14—C8—C9—C1150.8 (3)C23—C24—C25—C260.0 (4)
C7—C8—C9—C1058.0 (3)C24—C25—C26—C210.2 (4)
C14—C8—C9—C10179.46 (18)C22—C21—C26—C250.3 (3)
C6—C5—C10—C1142.7 (3)C20—C21—C26—C25179.9 (2)
C4B—C5—C10—C11.8 (6)C25—C24—O27—C286.8 (3)
C4A—C5—C10—C148.0 (3)C23—C24—O27—C28173.7 (2)
C6—C5—C10—C1998.6 (3)C24—O27—C28—C29176.8 (2)
C4B—C5—C10—C19117.0 (5)O27—C28—C29—N3054.2 (3)
C4A—C5—C10—C1970.8 (3)C22—C23—O35—C368.5 (3)
C6—C5—C10—C923.1 (4)C24—C23—O35—C36171.6 (2)
C4B—C5—C10—C9121.4 (5)C2—C3—N37—C3860.9 (3)
C4A—C5—C10—C9167.5 (3)C4B—C3—N37—C38141.7 (5)
C2—C1—C10—C547.7 (3)C4A—C3—N37—C38179.0 (3)
C2—C1—C10—C1969.9 (3)C2—C3—N37—C41179.9 (3)
C2—C1—C10—C9167.5 (2)C4B—C3—N37—C4122.7 (6)
C11—C9—C10—C5172.9 (2)C4A—C3—N37—C4162.0 (3)
C8—C9—C10—C544.6 (3)C41—N37—C38—C3941.8 (3)
C11—C9—C10—C168.5 (3)C3—N37—C38—C39167.2 (2)
C8—C9—C10—C1163.2 (2)N37—C38—C39—C4028.3 (3)
C11—C9—C10—C1953.2 (3)C38—C39—C40—C414.4 (3)
C8—C9—C10—C1975.1 (2)C38—N37—C41—C4039.3 (3)
C8—C9—C11—C1249.7 (3)C3—N37—C41—C40164.3 (3)
C10—C9—C11—C12178.4 (2)C39—C40—C41—N3720.9 (3)
C9—C11—C12—C1353.3 (3)N30—C31A—C32A—C33A27.1 (10)
C11—C12—C13—C1867.9 (2)C31A—C32A—C33A—C34A2.1 (10)
C11—C12—C13—C1457.3 (2)C32A—C33A—C34A—N3023.4 (9)
C11—C12—C13—C17167.04 (19)C28—C29—N30—C31A68.0 (7)
C7—C8—C14—C1553.3 (3)C28—C29—N30—C34B171.5 (6)
C9—C8—C14—C15175.30 (19)C28—C29—N30—C34A174.0 (5)
C7—C8—C14—C13178.00 (19)C28—C29—N30—C31B52.6 (6)
C9—C8—C14—C1360.0 (2)C32A—C31A—N30—C29161.6 (5)
C12—C13—C14—C863.7 (2)C32A—C31A—N30—C34A43.5 (8)
C18—C13—C14—C860.6 (3)C33A—C34A—N30—C29169.5 (5)
C17—C13—C14—C8175.99 (19)C33A—C34A—N30—C31A41.4 (7)
C12—C13—C14—C15164.31 (19)C29—N30—C31B—C32B171.6 (5)
C18—C13—C14—C1571.3 (3)C34B—N30—C31B—C32B43.8 (7)
C17—C13—C14—C1544.0 (2)N30—C31B—C32B—C33B28.2 (9)
C8—C14—C15—C16157.7 (2)C31B—C32B—C33B—C34B3.4 (10)
C13—C14—C15—C1629.0 (2)C29—N30—C34B—C33B162.2 (5)
C14—C15—C16—C20179.0 (2)C31B—N30—C34B—C33B40.7 (8)
C14—C15—C16—C172.1 (2)C32B—C33B—C34B—N3022.4 (10)
C20—C16—C17—O1731.1 (3)C19—C10—C13—C1811.34 (19)
C15—C16—C17—O17147.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17A···O1W0.85 (4)1.90 (4)2.748 (3)172 (3)
O1W—H1W···N30i0.87 (2)1.95 (2)2.813 (3)169 (4)
O1W—H2W···O35i0.88 (2)1.96 (2)2.835 (3)170 (4)
O1W—H2W···O27i0.88 (2)2.47 (4)2.987 (3)118 (3)
Symmetry code: (i) x1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC30H39ClO4C37H54N2O3·H2O
Mr499.09592.86
Crystal system, space groupTrigonal, R3Monoclinic, P21
Temperature (K)160160
a, b, c (Å)34.3749 (8), 34.3749 (8), 5.7585 (1)6.4219 (1), 32.4115 (5), 8.0981 (1)
α, β, γ (°)90, 90, 12090, 99.6510 (7), 90
V3)5892.8 (2)1661.71 (4)
Z92
Radiation typeMo KαMo Kα
µ (mm1)0.180.08
Crystal size (mm)0.30 × 0.12 × 0.100.28 × 0.18 × 0.15
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.909, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
29761, 5990, 5077 36139, 3302, 2865
Rint0.0620.052
(sin θ/λ)max1)0.6490.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.02 0.037, 0.092, 1.04
No. of reflections59873299
No. of parameters324451
No. of restraints1120
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.340.23, 0.22
Absolute structureFlack & Bernardinelli (2000)?
Absolute structure parameter0.21 (7)?

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1999), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O3i0.76 (3)1.95 (3)2.710 (2)177 (3)
Symmetry code: (i) y+1/3, xy1/3, z1/3.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O17—H17A···O1W0.85 (4)1.90 (4)2.748 (3)172 (3)
O1W—H1W···N30i0.87 (2)1.95 (2)2.813 (3)169 (4)
O1W—H2W···O35i0.88 (2)1.96 (2)2.835 (3)170 (4)
O1W—H2W···O27i0.88 (2)2.47 (4)2.987 (3)118 (3)
Symmetry code: (i) x1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds