Download citation
Download citation
link to html
The title compound, alternatively called 24-nor-5[beta]-chol-22-ene-3[beta],7[alpha],12[alpha]-triyl triformate, C26H38O6, has a cis junction between two of the six-membered rings. All three of the six-membered rings have chair conformations that are slightly flattened and the five-membered ring has a 13[beta],14[alpha]-half-chair conformation. The 3[beta], 7[alpha] and 12[alpha] ring substituents are axial and the 17[beta] group is equatorial. The 3[beta]-formyl­oxy group is involved in one weak intermol­ecular C-H...O bond, which links the mol­ecules into dimers in a head-to-head fashion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103024521/sk1674sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103024521/sk1674Isup2.hkl
Contains datablock I

CCDC reference: 231086

Comment top

The bile acids, such as cholic acid, have proved particularly useful as `engineering components' for supramolecular chemistry (Davis, 1993). The size, chirality and rigid polycyclic framework of a steroid-based synthetic receptor confers to it a high degree of preorganization. An examination of the structures of the synthetic receptors and their synthetic intermediates, on a crystallographic basis, could help to improve our understanding of molecular-recognition principles. In an attempt to construct a steroid-based synthetic receptor, the title compound, 3β,7α,12α-triformyloxy-24-nor-5β-chol-22-ene, (I), has been synthesized as an intermediate according to ?the method reported by Davis & Walsh (1996)?, although different reactions have been used as described in the experimental section. This cholic acid derivative, without the C(24)OOH group in the 17β side chain, contains three formyloxy groups with a 3β,7α,12α configuration. Cholic and deoxycholic acids provide tunnel-like spaces, reported as a channel-like inclusion ability (Miki et al., 1990; Jones & Nassimbeni, 1990), in which guest molecules can be accommodated. Examination of the crystal structure of (I) shows no guest molecules and a small solvent-accessible volume (i.e. 4 x 15 Å3).

An ORTEPII (Johnson, 1976) plot of (I), with the corresponding atomic numbering scheme and ring labels, is shown in Fig.1. Bond lengths and angles are within the expected ranges (Allen et al., 1987), the mean O—Csp3, O—Csp2 and OCsp2 distances being 1.467 (3), 1.331 (3) and 1.189 (2) Å in the three formyloxy groups, and the mean Csp3—Csp2 and Csp2Csp2 distances being 1.503 (3) and 1.304 (4) Å in the 17β-group. The distance between the terminal atoms, O31—C23, is 13.275 (4) Å and the C19—C10—C13—C18 pseudo-torsion angle is 3.0 (2)°. The A/B ring junction is 5β,10β cis [C1—C10—C5—C4 = 51.3 (3)° and C9—C10—C5—C6 = 55.1 (2)°]. The bowing angle between ring A and the least-squares plane that includes the atoms of B, C and D rings is 63.16 (5)°. Rings A, B and C have slightly flattened chair conformations, with average torsion angles of 52.6 (7), 52.0 (14) and 55.0 (16)°, respectively, as shown by the values [177.0 (3), 8.0 (2) and 6.6 (2)° for A, B and C] of the θ puckering parameter (Cremer & Pople, 1975; Boeyens, 1978). The five-membered ring D assumes a 13β,14α half-chair conformation [puckering parameters, calculated using the atom sequence C13···C17: q2 = 0.461 (2) Å and ϕ2 = 195.4 (3)°; pseudo-rotation (Altona et al., 1968) and asymmetry parameters: Δ = −3.8 (2), ϕm = 46.8 (1), ΔCs(13) = 16.0 (2), ΔCs(14) = 19.4 (2) and ΔC2(13,14) = 2.7 (2)°]. This unusal ring conformation is different from that observed in cholic acid (Jones & Nassimbeni, 1990). The three 3β,7α,12α-ring substituents are axial (Luger & Bulow, 1983), with angles of 6.3 (2), 9.9 (1) and 4.6 (1)°, respectively. The angle between the planes defined by the 3β-group and the A ring is 80.5 (2)°, and those between the planes of the 7α-,12α-groups and the mean plane of rings B, C and D are 85.6 (3) and 89.6 (2)°, respectively. The 17β-chain is equatorial. The orientation of the C5–C17 reference plane relative to C17/C20/C21 and C2/C22/C23 least-squares planes is 19.54 (19) and 77.30 (19)° respectively, with the angle between these two planes being 85.0 (2)°. Comparing with the structure of cholic acid (Miki et al., 1990; Jones & Nassimbeni, 1990), the absence of the COOH group in the side chain attached to C17 may be responsible for the unusual values of the C17—C20—C22—C23 and C21—C20—C22—C23 torsion angles [−109.7 (3) 126.7 (3)°], corresponding to -ac and +ac descriptors, respectively, instead of -ap and +sc.

The crystal structure contains no classical hydrogen bonds and thus cohesion of the structure is mainly achieved by van der Waals interactions and C–H···O weak interactions. Four intramolecular C–H···O short contacts are present; one [C4–H4A···O7 at 3.029 (3) Å with bent angle 126°] is probably a destabilizing interaction; the other three may be qualified as weak hydrogen bonds with distances and angles in the ranges 2.750 (4)–2.929 (3) Å and 102–108°, respectively. An intermolecular C31–H31···O31(i) interaction [3.396 (4) Å and 166°; symmetry code: (i) −1/2 + x, 1/2 − y, 1 − z] is also present, linking the molecules head-to-head in dimers.

Experimental top

The title compound was prepared according to previously described procedures, starting from formylation of cholic acid (Tserng & Klein, 1977) with formic and perchoric acids, followed by oxidative decarboxylation (Concépcion et al., 1986) with iodosobenzene diacetate, selective 3α-deformylation with sodium acetate in methanol, and finally a C-3 Mitsunobu inversion (Bose et al., 1973) with formate, diethyl azodicarboxylate and triphenylphosphine. Crystals siutable for X-ray analysis were obtained from an ethyl acetate solution by slow evaporation. 3β,7α,12α-triformyloxy-24-nor-5β-chol-22-ene: 1H NMR (300 MHz, CDCl3): δ 8.17 (1H, s), 8.09 (1H, s), 8.05 (1H, s), 5.67–5.55 (1H, m), 5.27 (1H, br t), 5.16 (1H, br s), 5.07 (1H, d, J=2.4 Hz), 4.91 (1H, dd, J=17.1; 1.8 Hz), 4.83 (1H, dd, J=10.2; 1.8 Hz), 0.98 (3H, s), 0.95 (3H, d, J=6.6 Hz), 0,78 (3H, s); 13C NMR (75.25 MHz, CDCl3): δ 160.7, 160.5, 144.2, 112.3, 75.2, 71.0, 70.1, 46.8, 45.0, 43.0, 40.5, 37.7, 36.3, 34.5, 32.7, 30.9, 30.1, 28.1, 27.3, 25.8, 24.7, 22.7, 19.5, 12.3.

Refinement top

All H atoms were refined as riding on their parent atoms, using SHELXL97 (Sheldrick, 1997) defaults. Friedel pairs were merged because the anomalous dispersion of the light atoms at the Cu Kα wavelength was negligeable, and thus the absolute configuration was not determined from the X-ray data. However, the configuration was known from the synthesis route.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software (Enraf-Nonius, 1989); data reduction: PLATON (Spek,2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson,1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1.  
24-nor-5β-chol-22-ene-3β,7α,12α-triyl triformate top
Crystal data top
C26H38O6F(000) = 968
Mr = 446.56Dx = 1.221 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.365 (3) Åθ = 22.7–28.7°
b = 15.5549 (12) ŵ = 0.69 mm1
c = 21.199 (4) ÅT = 293 K
V = 2428.6 (10) Å3Prism, colourless
Z = 40.37 × 0.24 × 0.24 mm
Data collection top
Enraf–Nonius MACH-3
diffractometer
2293 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 71.9°, θmin = 4.2°
profile data from ω–2θ scansh = 09
Absorption correction: ψ scan
North et al., 1968
k = 019
Tmin = 0.744, Tmax = 0.847l = 2626
4523 measured reflections3 standard reflections every 200 reflections
2731 independent reflections intensity decay: 9.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.1429P]
where P = (Fo2 + 2Fc2)/3
2731 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C26H38O6V = 2428.6 (10) Å3
Mr = 446.56Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.365 (3) ŵ = 0.69 mm1
b = 15.5549 (12) ÅT = 293 K
c = 21.199 (4) Å0.37 × 0.24 × 0.24 mm
Data collection top
Enraf–Nonius MACH-3
diffractometer
2293 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al., 1968
Rint = 0.031
Tmin = 0.744, Tmax = 0.8473 standard reflections every 200 reflections
4523 measured reflections intensity decay: 9.9%
2731 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
2731 reflectionsΔρmin = 0.13 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0370 (3)0.24038 (11)0.37737 (8)0.0618 (4)
O70.4243 (2)0.50124 (10)0.26668 (7)0.0508 (4)
O120.5049 (2)0.31762 (9)0.09711 (7)0.0514 (4)
O310.1860 (4)0.27531 (13)0.46646 (9)0.0798 (6)
O710.4452 (5)0.63027 (15)0.31288 (13)0.1208 (11)
O1210.4815 (4)0.20550 (12)0.03007 (11)0.0856 (7)
C10.0132 (4)0.25933 (16)0.23814 (12)0.0602 (6)
H1A0.10000.24950.26040.090*
H1B0.00450.23070.19760.090*
C20.1675 (4)0.21842 (14)0.27578 (12)0.0598 (6)
H2A0.14040.15810.28260.090*
H2B0.27880.22190.25140.090*
C30.1960 (3)0.26166 (14)0.33864 (11)0.0514 (5)
H30.30550.23840.35860.062*
C40.2162 (3)0.35778 (13)0.33076 (10)0.0463 (5)
H4A0.33190.36940.31060.070*
H4B0.21880.38410.37220.070*
C50.0652 (3)0.40013 (13)0.29184 (10)0.0461 (5)
H50.04780.39280.31570.069*
C60.0974 (3)0.49711 (15)0.28592 (11)0.0550 (6)
H6A0.01500.52420.27280.082*
H6B0.12830.51970.32720.082*
C70.2455 (3)0.52208 (13)0.23995 (10)0.0479 (5)
H70.23920.58430.23280.058*
C80.2309 (3)0.47658 (12)0.17678 (9)0.0409 (4)
H80.12610.50090.15460.061*
C90.1986 (3)0.37844 (12)0.18302 (10)0.0400 (4)
H90.30710.35410.20290.060*
C100.0354 (3)0.35731 (15)0.22679 (10)0.0474 (5)
C110.1837 (3)0.33797 (15)0.11684 (10)0.0513 (5)
H11A0.17570.27600.12140.077*
H11B0.07180.35750.09740.077*
C120.3409 (3)0.35871 (13)0.07256 (9)0.0436 (5)
H120.31420.33590.03050.052*
C130.3791 (3)0.45545 (12)0.06769 (9)0.0392 (4)
C140.3970 (3)0.49118 (12)0.13539 (9)0.0391 (4)
H140.49680.45940.15520.059*
C150.4659 (4)0.58273 (13)0.12531 (10)0.0529 (6)
H15A0.52910.60370.16240.079*
H15B0.36670.62150.11550.079*
C160.5961 (4)0.57386 (14)0.06910 (10)0.0550 (6)
H16A0.72090.57950.08310.082*
H16B0.57190.61840.03820.082*
C170.5647 (3)0.48375 (13)0.03969 (9)0.0413 (4)
H170.65730.44540.05730.062*
C180.2224 (3)0.49746 (17)0.03086 (11)0.0549 (5)
H18A0.21120.47050.00970.082*
H18B0.24700.55760.02540.082*
H18C0.11120.49040.05390.082*
C190.1458 (3)0.3886 (2)0.19834 (13)0.0723 (8)
H19A0.24070.38230.22900.108*
H19B0.17430.35480.16170.108*
H19C0.13500.44790.18660.108*
C200.5918 (3)0.48459 (14)0.03252 (9)0.0456 (5)
H200.50730.52630.05100.068*
C210.5581 (4)0.39676 (15)0.06291 (10)0.0577 (6)
H21A0.59130.39900.10670.087*
H21B0.43180.38220.05930.087*
H21C0.62990.35400.04190.087*
C220.7822 (3)0.51279 (17)0.04687 (11)0.0570 (6)
H220.87430.47430.03680.068*
C230.8321 (4)0.5855 (2)0.07201 (13)0.0746 (8)
H23A0.74530.62630.08300.090*
H23B0.95450.59670.07890.090*
C310.0556 (5)0.24857 (17)0.43939 (13)0.0670 (7)
H310.04250.23180.46410.080*
C710.5043 (5)0.56067 (18)0.30160 (12)0.0744 (9)
H710.61660.54690.31890.089*
C1210.5552 (4)0.24346 (14)0.07129 (13)0.0643 (7)
H1210.66020.21850.08740.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0637 (11)0.0610 (10)0.0607 (10)0.0044 (9)0.0051 (8)0.0080 (8)
O70.0585 (9)0.0465 (8)0.0474 (7)0.0070 (7)0.0060 (7)0.0093 (6)
O120.0578 (9)0.0372 (7)0.0592 (9)0.0086 (7)0.0053 (8)0.0056 (6)
O310.0967 (16)0.0787 (13)0.0640 (11)0.0100 (13)0.0094 (12)0.0008 (10)
O710.174 (3)0.0777 (15)0.1104 (18)0.0260 (18)0.013 (2)0.0489 (14)
O1210.1141 (18)0.0525 (9)0.0903 (13)0.0053 (12)0.0278 (14)0.0266 (10)
C10.0632 (15)0.0586 (13)0.0587 (13)0.0206 (12)0.0003 (13)0.0055 (11)
C20.0741 (16)0.0389 (10)0.0664 (14)0.0030 (12)0.0082 (14)0.0032 (10)
C30.0539 (13)0.0439 (11)0.0564 (12)0.0026 (10)0.0017 (11)0.0027 (10)
C40.0490 (12)0.0402 (10)0.0498 (11)0.0010 (10)0.0033 (10)0.0021 (9)
C50.0413 (11)0.0465 (11)0.0503 (11)0.0072 (9)0.0063 (9)0.0004 (9)
C60.0629 (14)0.0458 (12)0.0562 (12)0.0169 (11)0.0104 (11)0.0032 (10)
C70.0604 (13)0.0336 (9)0.0498 (11)0.0070 (10)0.0033 (10)0.0053 (8)
C80.0416 (10)0.0366 (9)0.0445 (10)0.0065 (9)0.0045 (8)0.0032 (8)
C90.0372 (10)0.0386 (9)0.0442 (10)0.0010 (8)0.0033 (8)0.0044 (8)
C100.0365 (10)0.0548 (11)0.0507 (11)0.0027 (10)0.0042 (9)0.0001 (10)
C110.0510 (13)0.0519 (12)0.0511 (11)0.0114 (10)0.0038 (10)0.0127 (10)
C120.0463 (11)0.0436 (10)0.0409 (10)0.0034 (9)0.0066 (9)0.0087 (8)
C130.0391 (10)0.0395 (10)0.0388 (9)0.0031 (8)0.0067 (8)0.0029 (8)
C140.0430 (11)0.0339 (9)0.0406 (9)0.0012 (9)0.0053 (8)0.0040 (7)
C150.0692 (15)0.0386 (10)0.0509 (11)0.0075 (11)0.0039 (11)0.0053 (9)
C160.0698 (16)0.0460 (11)0.0491 (11)0.0132 (11)0.0005 (12)0.0041 (9)
C170.0421 (10)0.0415 (9)0.0402 (9)0.0002 (9)0.0061 (8)0.0009 (8)
C180.0469 (12)0.0651 (13)0.0525 (12)0.0089 (12)0.0107 (10)0.0029 (11)
C190.0369 (12)0.111 (2)0.0691 (16)0.0025 (14)0.0049 (12)0.0091 (16)
C200.0471 (11)0.0482 (11)0.0414 (10)0.0068 (10)0.0041 (9)0.0024 (9)
C210.0738 (16)0.0580 (13)0.0415 (10)0.0037 (13)0.0028 (11)0.0059 (10)
C220.0512 (13)0.0695 (15)0.0504 (12)0.0083 (12)0.0006 (10)0.0026 (11)
C230.0645 (17)0.0846 (19)0.0747 (17)0.0059 (16)0.0108 (15)0.0047 (15)
C310.0812 (19)0.0569 (14)0.0628 (15)0.0119 (15)0.0100 (15)0.0098 (12)
C710.098 (2)0.0724 (17)0.0522 (13)0.0291 (17)0.0047 (15)0.0159 (12)
C1210.0804 (18)0.0373 (11)0.0752 (16)0.0066 (12)0.0256 (15)0.0028 (11)
Geometric parameters (Å, º) top
O12—C1211.329 (3)C17—C161.551 (3)
O12—C121.462 (3)C17—H170.9800
O7—C711.323 (3)C2—C11.528 (4)
O7—C71.470 (3)C2—H2A0.9700
C12—C111.525 (3)C2—H2B0.9700
C12—C131.534 (3)C18—H18A0.9600
C12—H120.9800C18—H18B0.9600
O3—C311.328 (3)C18—H18C0.9600
O3—C31.468 (3)C15—C161.536 (3)
C9—C111.542 (3)C15—H15A0.9700
C9—C81.551 (3)C15—H15B0.9700
C9—C101.553 (3)C21—C201.531 (3)
C9—H90.9800C21—H21A0.9600
C14—C81.523 (3)C21—H21B0.9600
C14—C151.527 (3)C21—H21C0.9600
C14—C131.545 (3)C1—H1A0.9700
C14—H140.9800C1—H1B0.9700
C8—C71.519 (3)C20—C221.500 (3)
C8—H80.9800C20—H200.9800
C3—C21.507 (3)C121—O1211.186 (4)
C3—C41.512 (3)C121—H1210.9300
C3—H30.9800C22—C231.304 (4)
C6—C71.513 (3)C22—H220.9300
C6—C51.532 (3)C71—O711.191 (4)
C6—H6A0.9700C71—H710.9300
C6—H6B0.9700C19—H19A0.9600
C7—H70.9800C19—H19B0.9600
C13—C181.539 (3)C19—H19C0.9600
C13—C171.554 (3)C16—H16A0.9700
C5—C41.534 (3)C16—H16B0.9700
C5—C101.547 (3)C4—H4A0.9700
C5—H50.9800C4—H4B0.9700
C11—H11A0.9700C23—H23A0.9300
C11—H11B0.9700C23—H23B0.9300
C10—C191.543 (3)C31—O311.193 (4)
C10—C11.552 (3)C31—H310.9300
C17—C201.544 (3)
C121—O12—C12117.6 (2)C20—C17—H17107.1
C71—O7—C7117.4 (2)C16—C17—H17107.1
O12—C12—C11108.40 (17)C13—C17—H17107.1
O12—C12—C13107.53 (16)C3—C2—C1112.3 (2)
C11—C12—C13112.84 (18)C3—C2—H2A109.1
O12—C12—H12109.3C1—C2—H2A109.1
C11—C12—H12109.3C3—C2—H2B109.1
C13—C12—H12109.3C1—C2—H2B109.1
C31—O3—C3116.7 (2)H2A—C2—H2B107.9
C11—C9—C8109.58 (17)C13—C18—H18A109.5
C11—C9—C10113.73 (17)C13—C18—H18B109.5
C8—C9—C10112.22 (17)H18A—C18—H18B109.5
C11—C9—H9107.0C13—C18—H18C109.5
C8—C9—H9107.0H18A—C18—H18C109.5
C10—C9—H9107.0H18B—C18—H18C109.5
C8—C14—C15119.13 (17)C14—C15—C16103.43 (16)
C8—C14—C13114.41 (16)C14—C15—H15A111.1
C15—C14—C13103.54 (16)C16—C15—H15A111.1
C8—C14—H14106.3C14—C15—H15B111.1
C15—C14—H14106.3C16—C15—H15B111.1
C13—C14—H14106.3H15A—C15—H15B109.0
C7—C8—C14112.46 (17)C20—C21—H21A109.5
C7—C8—C9113.24 (16)C20—C21—H21B109.5
C14—C8—C9108.64 (16)H21A—C21—H21B109.5
C7—C8—H8107.4C20—C21—H21C109.5
C14—C8—H8107.4H21A—C21—H21C109.5
C9—C8—H8107.4H21B—C21—H21C109.5
O3—C3—C2106.4 (2)C2—C1—C10114.3 (2)
O3—C3—C4111.31 (19)C2—C1—H1A108.7
C2—C3—C4110.94 (19)C10—C1—H1A108.7
O3—C3—H3109.4C2—C1—H1B108.7
C2—C3—H3109.4C10—C1—H1B108.7
C4—C3—H3109.4H1A—C1—H1B107.6
C7—C6—C5114.67 (17)C22—C20—C21109.1 (2)
C7—C6—H6A108.6C22—C20—C17108.92 (18)
C5—C6—H6A108.6C21—C20—C17112.87 (18)
C7—C6—H6B108.6C22—C20—H20108.6
C5—C6—H6B108.6C21—C20—H20108.6
H6A—C6—H6B107.6C17—C20—H20108.6
O7—C7—C6109.93 (17)O121—C121—O12127.4 (3)
O7—C7—C8107.47 (16)O121—C121—H121116.3
C6—C7—C8113.42 (19)O12—C121—H121116.3
O7—C7—H7108.6C23—C22—C20126.9 (3)
C6—C7—H7108.6C23—C22—H22116.6
C8—C7—H7108.6C20—C22—H22116.6
C12—C13—C18108.24 (18)O71—C71—O7125.8 (4)
C12—C13—C14107.82 (16)O71—C71—H71117.1
C18—C13—C14112.49 (18)O7—C71—H71117.1
C12—C13—C17117.70 (17)C10—C19—H19A109.5
C18—C13—C17110.23 (16)C10—C19—H19B109.5
C14—C13—C17100.24 (15)H19A—C19—H19B109.5
C6—C5—C4110.76 (19)C10—C19—H19C109.5
C6—C5—C10111.89 (18)H19A—C19—H19C109.5
C4—C5—C10113.41 (18)H19B—C19—H19C109.5
C6—C5—H5106.8C15—C16—C17107.46 (17)
C4—C5—H5106.8C15—C16—H16A110.2
C10—C5—H5106.8C17—C16—H16A110.2
C12—C11—C9114.84 (17)C15—C16—H16B110.2
C12—C11—H11A108.6C17—C16—H16B110.2
C9—C11—H11A108.6H16A—C16—H16B108.5
C12—C11—H11B108.6C3—C4—C5114.38 (19)
C9—C11—H11B108.6C3—C4—H4A108.7
H11A—C11—H11B107.5C5—C4—H4A108.7
C19—C10—C5109.6 (2)C3—C4—H4B108.7
C19—C10—C1106.2 (2)C5—C4—H4B108.7
C5—C10—C1107.43 (19)H4A—C4—H4B107.6
C19—C10—C9111.65 (18)C22—C23—H23A120.0
C5—C10—C9109.38 (17)C22—C23—H23B120.0
C1—C10—C9112.46 (19)H23A—C23—H23B120.0
C20—C17—C16111.81 (17)O31—C31—O3126.3 (3)
C20—C17—C13119.66 (17)O31—C31—H31116.8
C16—C17—C13103.50 (17)O3—C31—H31116.8
C1—C10—C5—C451.3 (3)C13—C17—C20—C2157.8 (3)
C9—C10—C5—C655.1 (2)C17—C20—C22—C23109.7 (3)
C19—C10—C13—C183.0 (2)C13—C17—C20—C22179.10 (18)
C3—O3—C31—O313.7 (4)C13—C17—C20—C2157.8 (3)
C7—O7—C71—O710.9 (4)C16—C17—C20—C21178.9 (2)
C12—O12—C121—O1210.3 (4)C21—C20—C22—C23126.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O70.972.353.029 (3)126
C12—H12···O1210.982.372.750 (3)102
C14—H14···O120.982.532.929 (2)104
C17—H17···O120.982.432.890 (3)108
C31—H31···O31i0.932.493.396 (4)166
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC26H38O6
Mr446.56
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.365 (3), 15.5549 (12), 21.199 (4)
V3)2428.6 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.37 × 0.24 × 0.24
Data collection
DiffractometerEnraf–Nonius MACH-3
diffractometer
Absorption correctionψ scan
North et al., 1968
Tmin, Tmax0.744, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
4523, 2731, 2293
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.03
No. of reflections2731
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), PLATON (Spek,2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson,1976).

Selected geometric parameters (Å, º) top
C20—C221.500 (3)C22—C231.304 (4)
C1—C10—C5—C451.3 (3)C9—C10—C5—C655.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O70.972.353.029 (3)126
C12—H12···O1210.982.372.750 (3)102
C14—H14···O120.982.532.929 (2)104
C17—H17···O120.982.432.890 (3)108
C31—H31···O31i0.932.493.396 (4)166
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds