Download citation
Download citation
link to html
In both the title aza-steroids, 2'-(p-fluoro­phenyl)-4-azapyra­zolo­[4',3':2,3]-5[alpha]-androstan-17[beta]-yl acetate, C27H34FN3O2, (I), and 2'-(p-fluoro­phenyl)-4-azapyrazolo­[4',3':2,3]-5[alpha]-an­dros­tan-17[beta]-ol, C25H32FN3O, (II), the tetra­hydro­pyridine ring adopts a half-chair conformation and is considerably strained as a consequence of the presence of the fused planar pyrazole ring. In both compounds, both cyclo­hexane rings have chair conformations, while the cyclo­pentane ring has an envelope conformation. All the rings of the steroid nucleus are trans fused. In (I), intermolecular N-H...O, C-H...F, C-H...O and C-H...N interactions are observed in the solid state, while intermolecular N-H...O and O-H...N hydrogen bonds are observed in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010302506X/sk1673sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010302506X/sk1673Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010302506X/sk1673IIsup3.hkl
Contains datablock II

CCDC references: 229120; 229121

Comment top

There has been considerable interest in the synthesis and biological study of several heterocyclic steroids as extremely potent anti-inflammatory agents (Gupta et al., 1996, and references therein). It is known that 2'-phenyl-11β,17α,21-trihydroxy-16α-methyl-4-pregneno[3,2-c]pyrazol-20-one- 21-acetate and its p-flurophenyl analogue are 60 and 100 times, respectively, more active than hydrocortisone (Hirschman et al., 1963; Hirschman et al., 1964). The importance of the [3,2-c]pyrazole function has been demonstrated by a number of investigators (Hirschman et al., 1963; Fried et al., 1963; Hannah et al., 1975). Both cortivazol and nivazol have the [3,2-c]pyrazole structural component and the 3-keto function is absent, while both have been described as potent anti-inflammatory steroids (Gupta et al., 1996, and references therein). In this paper, we report the crystal and molecular structures of the ring-A-modified steroids 2'-p-fluorophenyl-4-aza-5α-androstano[3,2-c]pyrazol-17β-yl acetate, (I) and 2'-p-fluorophenyl-4-aza-5α-androstano[3,2-c]pyrazol-17β-ol, (II). Although both (I) and (II) were found to be more active than hydrocortisone, the acetoxy derivative, (I), was found to be less active than the hydroxy derivative, (II) (Gupta et al., 1996). The crystallographic analyses have been carried out in order to study the influence of the fused pyrazole moiety on the steroid skeleton. This study extends our ongoing investigation into a series of similar ring-A– or ring-D-modified steroids.

The crystals of (I) and (II) are enantiomerically pure. However, the absence of any significant anomalous scatterers in (I) and (II) prevented the determination of the absolute configuration. The enantiomer used in the refinement of the structure of (I) was assumed to correspond to the configuration of the known chiral centers in a precursor molecule, which remained unchanged during the synthesis of (I). Since (I) was the starting material for the synthesis of (II), the enantiomer used in the refinement of the structure of (II) was assumed to correspond to unchanged chiral centres passed on from (I) during the synthesis.

Figs. 1 and 2 show the asymmetric units of (I) and (II), respectively, with the atomic numbering schemes. All rings of the steroid skeleton are trans connected. The corresponding bond lengths and angles in (I) and (II) are almost equivalent and are comparable to those found in similar ring-A-modified steroids (Lisgarten & Palmer, 1998; Lisgarten et al., 2003).

In (I), ring A of the steroid nucleus adopts a half-chair conformation, being considerably strained as a consequence of ?the presence of? the fused planar pyrazole ring E [puckering parameters (Cremer & Pople, 1975) are Q = 0.493 (2) Å, q2 = 0.391 (2) Å, q3 = 0.300 (2) Å, θ = 52.5 (2)° and ϕ2 = 260.2 (3)° for the atom sequence N4—C3—C2—C1—C10—C5. Steroidal rings B and C exhibit chair conformations, as seen from the puckering parameters [ring B: Q = 0.571 (2) Å, q2 = 0.033 (2) Å, q3 = 0.571 (2) Å, θ = 3.4 (2)° and ϕ2 = 276 (3)° for the atom sequence C5—C6—C7—C8—C9—C10; ring C: Q = 0.580 (2) Å, q2 = 0.052 (2) Å, q3 = 0.578 (2) Å, θ = 4.9 (2)° and ϕ2 = 270 (2)° for the atom sequence C8—C9—C11—C12—C13—C14]. Similar conformations have been reported in related structures (Lisgarten & Palmer, 1998; Lisgarten et al., 2003). Five-membered ring D of the steroid skeleton has a 13β envelope conformation. The pseudo-rotation angle is 350.0 (1)° and the maximum torsion angle is 47.6 (1)° for the atom sequence C13—C14—C15—C16—C17 (Rao et al., 1981). In (II), steroidal ring A also exhibits a half-chair conformation, being strained as a consequence of ?the presence of? the fused pyrazole ring E, as in (I) [puckering parameters Q = 0.466 (2) Å, q2 = 0.367 (2) Å, q3 = 0.287 (2) Å, θ = 52.0 (3)° and ϕ2 = 267.5 (3)° for the atom sequence N4—C3—C2—C1—C10—C5]. The puckering parameters of steroidal rings B and C [ring B: Q = 0.579 (2) Å, q2 = 0.050 (2) Å, q3 = 0.577 (2) Å, θ = 4.8 (2)° and ϕ2 = 327 (2)° for the atom sequence C5—C6—C7—C8—C9—C10; ring C: Q = 0.581 (2) Å, q2 = 0.031 (2) Å, q3 = 0.580 (2) Å, θ = 3.0 (2)° and ϕ2 = 310 (4)° for the atom sequence C8—C9—C11—C12—C13—C14] are indicative of chair conformations. Five-membered ring D of the steroid nucleus has a 13β envelope conformation, with a pseudo-rotation angle of 348.3 (1)° and a maximum torsion angle of 48.9 (1)° for the atom sequence C13—C14—C15—C16—C17. The presence of either an acetoxy or a hydroxy substituent on atom C17 does not affect the conformation of ring D in (I) and (II). In related structures (Lisgarten & Palmer, 1998; Lisgarten et al., 2003), steroidal ring D also has a half-chair conformation, even when atom C17 is disubstituted (17β-hydroxy and 17a\-methyl).

The C19—C10···C13—C18 pseudo-torsion angle, which provides a quantitative measure of the twist about the length of the molecule, is found to be 0.73 (14)° in (I) and 1.36 (16)° in (II). The dihedral angles between the plane of the fluorophenyl ring and the average molecular plane through the rings E, A, B, C and D are 28.29 (5)° in (I) and 29.05 (5)° in (II). The E/A/B/C/D ring systems of the two compounds can be superimposed on one another and exhibit a small r.m.s. deviation of the matching atoms (0.168 Å), which indicates that the change in substituent on atom C17 of ring D (from acetoxy to hydroxy) does not affect the overall conformation of the steroidal nucleii.

In (I), atom N4 forms an intermolecular N—H···O hydrogen bond with carbonyl atom O30 of an adjacent molecule. This interaction links the molecules into a chain that runs parallel to the z axis and has a graph-set motif of C(12) (Bernstein et al., 1995). Atom C15 acts as a donor for a weak intermolecular C—H···F interaction with atom F26 of an adjacent molecule. This interaction links the molecules into a chain that runs parallel to the y axis and has a graph-set motif of C(15). Atom C20 is involved in an intermolecular C—H···O interaction with carbonyl atom O30 of a different adjacent molecule. This interaction links the molecules into a continuous chain that runs parallel to the x axis and has a graph-set motif of C(13). Atom C25 acts as a donor for a weak intermolecular C—H···N interaction with atom N21 of the pyrazole moiety of a symmetry-related molecule. This weak interaction links the molecules into a chain that runs parallel to the x axis and has a graph-set motif of C(6) (Table 1). Atom C31 (via H31C) is involved in an intermolecular C—H···π interaction with pyrazole ring E of a neighbouring molecule [H31C···Cg = 2.75 Å, C31···Cg = 3.665 (2) Å and C31—H31C···Cg = 155°, where Cg is the centroid of ring E at (x − 1/2,1/2 − y,-z)].

In (II), atom N4 forms an intermolecular N—H···O hydrogen bond with hydroxy atom O17 of an adjacent molecule. This interaction links the molecules into a chain that runs parallel to the z axis and has a graph-set motif of C(10) (Bernstein et al., 1995). Hydroxy atom O17 participates in an intermolecular O—H···N hydrogen bond with atom N21 of the pyrazole moiety of a different adjacent molecule. This interaction links the molecules into a continuous chain that runs parallel to the y axis and has a graph-set motif of C(12) (Table 2). The is a short intermolecular contact between atoms H16B and H19B(1/2 − x,-y,-1/2 + z) (H···H = 2.15 Å), which is smaller than the sum of the van der Waals radii of the corresponding atoms.

Experimental top

To a refluxing solution of 17β-acetoxy-3-chloro-4-aza-5-androst-2-en-2-aldehyde (0.5 g, 1.32 mmol) in aldehyde free ethanol (250 ml) was added glacial acetic acid (1.5 ml) drop wise. The solution was refluxed for 10 min and then p-fluorophenylhydrazine hydrochloride (0.25 g) was added; he resulting solution was refluxed for 5 h. The solution was concentrated to about 20 ml and then poured in to ice-cold water and dried. The resulting solid, (I) (institution code DPJ-308), was crystallized from acetone (yield 0.25 g, 41.9%; m.p. 511–513 K). A mixture of (I) (0.2 g, 0.443 mmol) and potassium carbonate (0.5 g) in aqueous methanol (10%, 50 ml) was stirred at room temperature for 3 h. The resulting slurry was poured in to ice-cold water, and the precipitated product was filtered, washed and dried. The resulting solid, (II) (institution code DPJ-309), was crystallized from acetone (yield 0.125 g, 68.9%; m.p. 513–515 K).

Refinement top

The positions of the amine H atoms in (I) and (II) and of the hydroxy H atom in (II) were determined from a difference Fourier map and refined freely, along with their isotropic displacement parameters. For both compounds, the methyl H atoms were constrained to an ideal geometry [C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C)] but were allowed to rotate freely about the C—C bonds. All remaining H atoms were placed in idealized positions (C—H = 0.95–1.00 Å) and were constrained ride on their parent atoms. Because of the absence of any significant anomalous scatterers in (I) and (II), attempts to confirm the absolute structure by refinement of the Flack (1983) parameter in the presence of 2940 sets of Friedel equivalents for (I) [2094 for (II)] led to an inconclusive value (Flack & Bernardinelli, 2000) of 0.1 (8) [−0.1 (9) for (II)]. Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond to that of the known chiral centers in a precursor molecule, which remained unchanged during the synthesis of (I). The absolute configuration of (II) was assumed to correspond to that of the known chiral centers in (I), which remained unchanged during the synthesis of (II). Reflections 013, 020, 111, 112 and 041 in (I), and 012 in (II), were partially obscured by the beam stop and were omitted.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2000). Cell refinement: DENZO–SMN (Otwinowski & Minor, 1997) for (I); DENZO-SMN (Otwinowski & Minor, 1997) for (II). Data reduction: DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997) for (I); DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997) for (II). For both compounds, program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
(I) 2'-(p-fluorophenyl)-4-aza-pyrazolo[4',3':2,3]-5α-androstan-17β-yl acetate top
Crystal data top
C27H34FN3O2Dx = 1.292 Mg m3
Mr = 451.57Melting point: 511 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3850 reflections
a = 7.2545 (1) Åθ = 2.0–30.0°
b = 13.5417 (2) ŵ = 0.09 mm1
c = 23.6387 (4) ÅT = 160 K
V = 2322.23 (6) Å3Prism, colourless
Z = 40.25 × 0.10 × 0.08 mm
F(000) = 968
Data collection top
Nonius KappaCCD
diffractometer
3157 reflections with I > 2σ(I)
Radiation source: Nonius FR591 sealed tube generatorRint = 0.062
Horizontally mounted graphite crystal monochromatorθmax = 30.0°, θmin = 2.3°
Detector resolution: 9 pixels mm-1h = 010
ϕ and ω scans with κ offsetsk = 019
42805 measured reflectionsl = 033
3830 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.2409P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3825 reflectionsΔρmax = 0.23 e Å3
306 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (19)
Crystal data top
C27H34FN3O2V = 2322.23 (6) Å3
Mr = 451.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2545 (1) ŵ = 0.09 mm1
b = 13.5417 (2) ÅT = 160 K
c = 23.6387 (4) Å0.25 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3157 reflections with I > 2σ(I)
42805 measured reflectionsRint = 0.062
3830 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
3825 reflectionsΔρmin = 0.20 e Å3
306 parameters
Special details top

Experimental. Solvent used: acetone Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.414 (1) Frames collected: 470 Seconds exposure per frame: 78 Degrees rotation per frame: 1.3 Crystal-Detector distance (mm): 35.50

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F261.20629 (18)0.20271 (9)0.45368 (4)0.0417 (3)
O290.43477 (19)0.51402 (10)0.13771 (5)0.0298 (3)
O300.5792 (2)0.50523 (12)0.22164 (5)0.0424 (4)
N40.8472 (2)0.29914 (13)0.20522 (6)0.0245 (3)
H40.869 (4)0.352 (2)0.2269 (10)0.061 (8)*
N210.5397 (2)0.14574 (12)0.28683 (6)0.0300 (4)
N220.7004 (2)0.19881 (12)0.27946 (6)0.0265 (3)
C10.5065 (3)0.24673 (14)0.13985 (7)0.0258 (4)
H1A0.37380.26320.13720.031*
H1B0.53310.19370.11220.031*
C20.5501 (3)0.21126 (13)0.19837 (7)0.0259 (4)
C30.7065 (3)0.23968 (13)0.22659 (7)0.0246 (4)
C50.8249 (2)0.31820 (13)0.14397 (7)0.0216 (4)
H50.86400.25660.12390.026*
C60.9585 (3)0.39882 (14)0.12614 (7)0.0250 (4)
H6A1.08540.37930.13680.030*
H6B0.92810.46060.14650.030*
C70.9503 (2)0.41745 (14)0.06217 (7)0.0240 (4)
H7A1.03020.47440.05270.029*
H7B0.99920.35890.04210.029*
C80.7545 (2)0.43837 (13)0.04136 (7)0.0213 (4)
H80.71130.50210.05810.026*
C90.6234 (2)0.35487 (13)0.06033 (7)0.0211 (4)
H90.67320.29260.04350.025*
C100.6233 (2)0.33921 (13)0.12554 (7)0.0216 (4)
C110.4276 (3)0.36747 (14)0.03625 (7)0.0259 (4)
H11A0.35320.30860.04610.031*
H11B0.36900.42560.05410.031*
C120.4267 (3)0.38095 (14)0.02797 (7)0.0258 (4)
H12A0.46990.31940.04630.031*
H12B0.29920.39390.04090.031*
C130.5506 (2)0.46627 (13)0.04553 (7)0.0229 (4)
C140.7470 (2)0.44611 (14)0.02323 (7)0.0225 (4)
H140.78340.37990.03820.027*
C150.8664 (3)0.52190 (15)0.05438 (7)0.0275 (4)
H15A0.99460.49780.05840.033*
H15B0.86790.58580.03400.033*
C160.7720 (3)0.53264 (15)0.11318 (7)0.0297 (4)
H16A0.74450.60280.12140.036*
H16B0.85250.50640.14350.036*
C170.5934 (3)0.47229 (14)0.10900 (7)0.0256 (4)
H170.61640.40420.12380.031*
C180.4717 (3)0.56516 (14)0.02502 (7)0.0275 (4)
H18A0.34810.57450.04090.041*
H18B0.55210.61910.03750.041*
H18C0.46450.56500.01640.041*
C190.5469 (3)0.42890 (14)0.15773 (7)0.0275 (4)
H19A0.41810.43980.14690.041*
H19B0.61980.48760.14830.041*
H19C0.55400.41660.19850.041*
C200.4527 (3)0.15324 (14)0.23769 (7)0.0292 (4)
H200.33740.12280.22990.035*
C230.8318 (3)0.19894 (14)0.32384 (7)0.0265 (4)
C241.0180 (3)0.20602 (15)0.31219 (8)0.0308 (4)
H241.05910.21050.27410.037*
C251.1450 (3)0.20653 (16)0.35603 (8)0.0340 (5)
H251.27320.21170.34850.041*
C261.0817 (3)0.19946 (14)0.41054 (8)0.0314 (4)
C270.8977 (3)0.18936 (15)0.42349 (8)0.0326 (5)
H270.85840.18260.46160.039*
C280.7711 (3)0.18932 (14)0.37958 (8)0.0302 (4)
H280.64330.18280.38740.036*
C300.4436 (3)0.52348 (15)0.19410 (7)0.0302 (4)
C310.2651 (3)0.55944 (17)0.21817 (9)0.0388 (5)
H31A0.28970.60970.24700.058*
H31B0.18990.58820.18790.058*
H31C0.19880.50400.23540.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F260.0491 (7)0.0466 (7)0.0292 (6)0.0030 (6)0.0141 (5)0.0047 (6)
O290.0276 (7)0.0392 (7)0.0225 (6)0.0008 (6)0.0043 (5)0.0037 (5)
O300.0430 (9)0.0586 (10)0.0256 (7)0.0072 (8)0.0009 (6)0.0023 (7)
N40.0236 (8)0.0307 (8)0.0191 (7)0.0042 (7)0.0007 (6)0.0010 (7)
N210.0293 (8)0.0323 (8)0.0286 (8)0.0069 (7)0.0032 (7)0.0036 (7)
N220.0257 (8)0.0309 (8)0.0229 (7)0.0028 (7)0.0002 (6)0.0041 (7)
C10.0248 (9)0.0296 (9)0.0232 (8)0.0041 (8)0.0007 (7)0.0001 (7)
C20.0261 (9)0.0286 (9)0.0229 (8)0.0022 (8)0.0002 (7)0.0000 (7)
C30.0257 (9)0.0263 (9)0.0218 (8)0.0004 (8)0.0029 (7)0.0013 (7)
C50.0216 (8)0.0260 (9)0.0172 (7)0.0006 (7)0.0001 (7)0.0003 (7)
C60.0190 (9)0.0303 (9)0.0256 (9)0.0041 (8)0.0027 (7)0.0013 (7)
C70.0208 (9)0.0273 (9)0.0240 (8)0.0007 (8)0.0003 (7)0.0021 (7)
C80.0199 (8)0.0223 (8)0.0216 (8)0.0000 (7)0.0012 (7)0.0010 (7)
C90.0188 (8)0.0224 (9)0.0222 (8)0.0012 (7)0.0003 (7)0.0011 (7)
C100.0201 (8)0.0240 (9)0.0208 (8)0.0005 (7)0.0019 (6)0.0011 (7)
C110.0219 (9)0.0297 (9)0.0260 (8)0.0034 (8)0.0012 (7)0.0047 (8)
C120.0245 (9)0.0280 (9)0.0248 (9)0.0041 (8)0.0072 (7)0.0009 (7)
C130.0222 (8)0.0248 (9)0.0218 (8)0.0001 (8)0.0017 (7)0.0002 (7)
C140.0227 (9)0.0238 (9)0.0210 (8)0.0006 (7)0.0003 (7)0.0007 (7)
C150.0246 (9)0.0325 (10)0.0255 (9)0.0017 (8)0.0004 (7)0.0036 (8)
C160.0296 (10)0.0354 (11)0.0240 (9)0.0019 (9)0.0013 (8)0.0018 (8)
C170.0259 (9)0.0283 (9)0.0225 (8)0.0030 (8)0.0038 (7)0.0011 (7)
C180.0289 (10)0.0276 (9)0.0259 (9)0.0032 (8)0.0012 (8)0.0011 (7)
C190.0267 (9)0.0308 (9)0.0251 (9)0.0021 (8)0.0014 (8)0.0035 (8)
C200.0289 (10)0.0289 (9)0.0298 (9)0.0038 (9)0.0034 (8)0.0016 (8)
C230.0323 (10)0.0242 (9)0.0232 (8)0.0013 (8)0.0004 (7)0.0014 (8)
C240.0328 (10)0.0353 (11)0.0242 (8)0.0018 (9)0.0006 (8)0.0039 (8)
C250.0313 (11)0.0405 (12)0.0301 (10)0.0036 (10)0.0009 (8)0.0040 (9)
C260.0428 (11)0.0276 (10)0.0237 (9)0.0040 (9)0.0085 (8)0.0029 (8)
C270.0440 (12)0.0323 (11)0.0215 (8)0.0022 (9)0.0017 (8)0.0044 (8)
C280.0347 (11)0.0307 (10)0.0252 (9)0.0017 (9)0.0032 (8)0.0030 (8)
C300.0345 (10)0.0315 (10)0.0247 (9)0.0039 (9)0.0044 (8)0.0028 (8)
C310.0371 (12)0.0479 (13)0.0315 (10)0.0025 (10)0.0102 (9)0.0056 (10)
Geometric parameters (Å, º) top
F26—C261.364 (2)C12—C131.522 (3)
O29—C301.341 (2)C12—H12A0.9900
O29—C171.450 (2)C12—H12B0.9900
O30—C301.205 (2)C13—C171.534 (2)
N4—C31.394 (2)C13—C181.535 (3)
N4—C51.480 (2)C13—C141.544 (2)
N4—H40.90 (3)C14—C151.532 (2)
N21—C201.326 (2)C14—H141.0000
N21—N221.381 (2)C15—C161.556 (2)
N22—C31.368 (2)C15—H15A0.9900
N22—C231.417 (2)C15—H15B0.9900
C1—C21.498 (2)C16—C171.535 (3)
C1—C101.549 (3)C16—H16A0.9900
C1—H1A0.9900C16—H16B0.9900
C1—H1B0.9900C17—H171.0000
C2—C31.372 (3)C18—H18A0.9800
C2—C201.407 (3)C18—H18B0.9800
C5—C61.519 (2)C18—H18C0.9800
C5—C101.552 (2)C19—H19A0.9800
C5—H51.0000C19—H19B0.9800
C6—C71.534 (2)C19—H19C0.9800
C6—H6A0.9900C20—H200.9500
C6—H6B0.9900C23—C241.382 (3)
C7—C81.529 (2)C23—C281.395 (2)
C7—H7A0.9900C24—C251.386 (3)
C7—H7B0.9900C24—H240.9500
C8—C141.531 (2)C25—C261.371 (3)
C8—C91.544 (2)C25—H250.9500
C8—H81.0000C26—C271.376 (3)
C9—C111.540 (2)C27—C281.386 (3)
C9—C101.556 (2)C27—H270.9500
C9—H91.0000C28—H280.9500
C10—C191.537 (2)C30—C311.496 (3)
C11—C121.529 (2)C31—H31A0.9800
C11—H11A0.9900C31—H31B0.9800
C11—H11B0.9900C31—H31C0.9800
C30—O29—C17117.70 (15)C17—C13—C18109.76 (14)
C3—N4—C5112.06 (14)C12—C13—C14108.53 (14)
C3—N4—H4112.8 (17)C17—C13—C1499.01 (13)
C5—N4—H4115.9 (17)C18—C13—C14112.98 (15)
C20—N21—N22104.58 (14)C8—C14—C15120.34 (15)
C3—N22—N21110.70 (14)C8—C14—C13112.67 (13)
C3—N22—C23130.85 (16)C15—C14—C13103.86 (14)
N21—N22—C23118.36 (14)C8—C14—H14106.4
C2—C1—C10110.20 (14)C15—C14—H14106.4
C2—C1—H1A109.6C13—C14—H14106.4
C10—C1—H1A109.6C14—C15—C16104.07 (14)
C2—C1—H1B109.6C14—C15—H15A110.9
C10—C1—H1B109.6C16—C15—H15A110.9
H1A—C1—H1B108.1C14—C15—H15B110.9
C3—C2—C20104.52 (16)C16—C15—H15B110.9
C3—C2—C1122.25 (16)H15A—C15—H15B109.0
C20—C2—C1133.09 (18)C17—C16—C15105.32 (14)
N22—C3—C2107.70 (15)C17—C16—H16A110.7
N22—C3—N4126.06 (16)C15—C16—H16A110.7
C2—C3—N4126.24 (16)C17—C16—H16B110.7
N4—C5—C6109.10 (14)C15—C16—H16B110.7
N4—C5—C10114.15 (14)H16A—C16—H16B108.8
C6—C5—C10113.04 (14)O29—C17—C13108.53 (14)
N4—C5—H5106.7O29—C17—C16115.60 (14)
C6—C5—H5106.7C13—C17—C16105.19 (14)
C10—C5—H5106.7O29—C17—H17109.1
C5—C6—C7111.51 (14)C13—C17—H17109.1
C5—C6—H6A109.3C16—C17—H17109.1
C7—C6—H6A109.3C13—C18—H18A109.5
C5—C6—H6B109.3C13—C18—H18B109.5
C7—C6—H6B109.3H18A—C18—H18B109.5
H6A—C6—H6B108.0C13—C18—H18C109.5
C8—C7—C6112.55 (14)H18A—C18—H18C109.5
C8—C7—H7A109.1H18B—C18—H18C109.5
C6—C7—H7A109.1C10—C19—H19A109.5
C8—C7—H7B109.1C10—C19—H19B109.5
C6—C7—H7B109.1H19A—C19—H19B109.5
H7A—C7—H7B107.8C10—C19—H19C109.5
C7—C8—C14111.49 (14)H19A—C19—H19C109.5
C7—C8—C9110.06 (14)H19B—C19—H19C109.5
C14—C8—C9108.53 (14)N21—C20—C2112.48 (17)
C7—C8—H8108.9N21—C20—H20123.8
C14—C8—H8108.9C2—C20—H20123.8
C9—C8—H8108.9C24—C23—C28120.20 (17)
C11—C9—C8112.32 (14)C24—C23—N22120.65 (16)
C11—C9—C10112.40 (14)C28—C23—N22119.13 (17)
C8—C9—C10112.81 (14)C23—C24—C25120.03 (18)
C11—C9—H9106.2C23—C24—H24120.0
C8—C9—H9106.2C25—C24—H24120.0
C10—C9—H9106.2C26—C25—C24118.66 (19)
C19—C10—C1109.49 (14)C26—C25—H25120.7
C19—C10—C5110.23 (15)C24—C25—H25120.7
C1—C10—C5107.81 (14)F26—C26—C25118.58 (19)
C19—C10—C9112.52 (14)F26—C26—C27118.67 (17)
C1—C10—C9109.06 (14)C25—C26—C27122.75 (18)
C5—C10—C9107.61 (13)C26—C27—C28118.42 (18)
C12—C11—C9112.61 (15)C26—C27—H27120.8
C12—C11—H11A109.1C28—C27—H27120.8
C9—C11—H11A109.1C27—C28—C23119.88 (19)
C12—C11—H11B109.1C27—C28—H28120.1
C9—C11—H11B109.1C23—C28—H28120.1
H11A—C11—H11B107.8O30—C30—O29123.80 (18)
C13—C12—C11111.04 (14)O30—C30—C31124.60 (16)
C13—C12—H12A109.4O29—C30—C31111.60 (18)
C11—C12—H12A109.4C30—C31—H31A109.5
C13—C12—H12B109.4C30—C31—H31B109.5
C11—C12—H12B109.4H31A—C31—H31B109.5
H12A—C12—H12B108.0C30—C31—H31C109.5
C12—C13—C17115.26 (14)H31A—C31—H31C109.5
C12—C13—C18110.86 (15)H31B—C31—H31C109.5
C20—N21—N22—C31.5 (2)C11—C12—C13—C1457.29 (19)
C20—N21—N22—C23175.44 (16)C7—C8—C14—C1557.5 (2)
C10—C1—C2—C317.4 (2)C9—C8—C14—C15178.88 (15)
C10—C1—C2—C20157.7 (2)C7—C8—C14—C13179.47 (15)
N21—N22—C3—C21.4 (2)C9—C8—C14—C1358.08 (18)
C23—N22—C3—C2175.01 (18)C12—C13—C14—C860.90 (19)
N21—N22—C3—N4178.87 (17)C17—C13—C14—C8178.52 (14)
C23—N22—C3—N44.7 (3)C18—C13—C14—C862.48 (19)
C20—C2—C3—N220.7 (2)C12—C13—C14—C15167.28 (14)
C1—C2—C3—N22176.99 (16)C17—C13—C14—C1546.70 (16)
C20—C2—C3—N4179.56 (18)C18—C13—C14—C1569.34 (17)
C1—C2—C3—N43.3 (3)C8—C14—C15—C16160.61 (15)
C5—N4—C3—N22171.15 (17)C13—C14—C15—C1633.43 (18)
C5—N4—C3—C28.5 (3)C14—C15—C16—C176.63 (19)
C3—N4—C5—C6168.82 (15)C30—O29—C17—C13178.63 (15)
C3—N4—C5—C1041.3 (2)C30—O29—C17—C1663.5 (2)
N4—C5—C6—C7176.49 (15)C12—C13—C17—O2977.84 (19)
C10—C5—C6—C755.3 (2)C18—C13—C17—O2948.17 (19)
C5—C6—C7—C853.5 (2)C14—C13—C17—O29166.66 (14)
C6—C7—C8—C14174.14 (14)C12—C13—C17—C16157.88 (16)
C6—C7—C8—C953.65 (19)C18—C13—C17—C1676.11 (18)
C7—C8—C9—C11175.10 (15)C14—C13—C17—C1642.38 (17)
C14—C8—C9—C1152.84 (18)C15—C16—C17—O29142.41 (15)
C7—C8—C9—C1056.61 (19)C15—C16—C17—C1322.73 (19)
C14—C8—C9—C10178.87 (14)N22—N21—C20—C21.0 (2)
C2—C1—C10—C1974.06 (18)C3—C2—C20—N210.2 (2)
C2—C1—C10—C545.88 (19)C1—C2—C20—N21175.47 (19)
C2—C1—C10—C9162.43 (15)C3—N22—C23—C2427.8 (3)
N4—C5—C10—C1958.4 (2)N21—N22—C23—C24148.36 (19)
C6—C5—C10—C1967.10 (17)C3—N22—C23—C28153.75 (19)
N4—C5—C10—C161.08 (19)N21—N22—C23—C2830.0 (2)
C6—C5—C10—C1173.43 (13)C28—C23—C24—C251.9 (3)
N4—C5—C10—C9178.58 (14)N22—C23—C24—C25179.70 (17)
C6—C5—C10—C955.93 (19)C23—C24—C25—C260.3 (3)
C11—C9—C10—C1963.3 (2)C24—C25—C26—F26178.22 (18)
C8—C9—C10—C1964.90 (19)C24—C25—C26—C271.7 (3)
C11—C9—C10—C158.35 (19)F26—C26—C27—C28177.94 (17)
C8—C9—C10—C1173.41 (14)C25—C26—C27—C282.0 (3)
C11—C9—C10—C5175.03 (15)C26—C27—C28—C230.3 (3)
C8—C9—C10—C556.72 (18)C24—C23—C28—C271.6 (3)
C8—C9—C11—C1252.6 (2)N22—C23—C28—C27179.97 (18)
C10—C9—C11—C12178.93 (15)C17—O29—C30—O304.8 (3)
C9—C11—C12—C1354.7 (2)C17—O29—C30—C31175.23 (17)
C11—C12—C13—C17167.21 (15)C19—C10—C13—C180.73 (14)
C11—C12—C13—C1867.35 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O30i0.90 (3)2.31 (3)3.208 (2)177 (2)
C15—H15B···F26ii0.992.533.455 (2)155
C20—H20···O30iii0.952.563.477 (3)162
C25—H25···N21iv0.952.583.399 (3)145
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z; (iv) x+1, y, z.
(II) 2'-(p-fluorophenyl)-4-aza-pyrazolo[4',3':2,3]-5α-androstan-17β-ol top
Crystal data top
C25H32FN3ODx = 1.274 Mg m3
Mr = 409.54Melting point: 513 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2816 reflections
a = 7.0990 (2) Åθ = 2.0–27.5°
b = 14.8153 (4) ŵ = 0.08 mm1
c = 20.2961 (4) ÅT = 160 K
V = 2134.62 (9) Å3Prism, colourless
Z = 40.25 × 0.23 × 0.10 mm
F(000) = 880
Data collection top
Nonius KappaCCD
diffractometer
2390 reflections with I > 2σ(I)
Radiation source: Nonius FR591 sealed tube generatorRint = 0.063
Horizontally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 2.0°
Detector resolution: 9 pixels mm-1h = 09
ϕ and ω scans with κ offsetsk = 019
34805 measured reflectionsl = 026
2798 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.2133P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2797 reflectionsΔρmax = 0.22 e Å3
282 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0114 (15)
Crystal data top
C25H32FN3OV = 2134.62 (9) Å3
Mr = 409.54Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0990 (2) ŵ = 0.08 mm1
b = 14.8153 (4) ÅT = 160 K
c = 20.2961 (4) Å0.25 × 0.23 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
2390 reflections with I > 2σ(I)
34805 measured reflectionsRint = 0.063
2798 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
2797 reflectionsΔρmin = 0.17 e Å3
282 parameters
Special details top

Experimental. Solvent used: acetone Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.536 (1) Frames collected: 229 Seconds exposure per frame: 96 Degrees rotation per frame: 1.6 Crystal-Detector distance (mm): 30.50

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F260.4329 (2)0.28024 (10)0.44290 (7)0.0603 (5)
O170.5167 (2)0.03226 (10)0.21548 (7)0.0341 (4)
H17A0.583 (4)0.0113 (17)0.2267 (12)0.047 (7)*
N40.0383 (2)0.17335 (11)0.17876 (8)0.0260 (4)
H40.022 (3)0.1285 (14)0.2068 (10)0.027 (6)*
N210.2522 (2)0.36611 (11)0.25569 (8)0.0308 (4)
N220.1176 (2)0.29911 (10)0.25161 (7)0.0266 (4)
C10.3892 (3)0.22984 (13)0.10721 (9)0.0272 (4)
H1A0.52700.22130.11150.033*
H1B0.36610.27020.06920.033*
C20.3141 (3)0.27322 (13)0.16880 (9)0.0256 (4)
C30.1539 (3)0.24264 (12)0.19971 (9)0.0247 (4)
C50.0807 (3)0.14550 (13)0.11059 (9)0.0238 (4)
H50.02930.19370.08110.029*
C60.0281 (3)0.05996 (13)0.09519 (9)0.0275 (4)
H6A0.16270.06880.10620.033*
H6B0.02070.00980.12250.033*
C70.0092 (3)0.03568 (13)0.02240 (9)0.0275 (4)
H7A0.07360.08220.00440.033*
H7B0.07280.02270.01430.033*
C80.1963 (3)0.02866 (13)0.00040 (9)0.0230 (4)
H80.25550.02490.02200.028*
C90.3076 (3)0.11456 (12)0.01982 (8)0.0224 (4)
H90.24600.16590.00390.027*
C100.2941 (3)0.13698 (12)0.09439 (9)0.0227 (4)
C110.5106 (3)0.11018 (14)0.00588 (9)0.0276 (4)
H11A0.57840.06110.01720.033*
H11B0.57520.16770.00450.033*
C120.5209 (3)0.09347 (13)0.08074 (9)0.0273 (4)
H12A0.46830.14630.10430.033*
H12B0.65420.08660.09410.033*
C130.4116 (3)0.00899 (12)0.10018 (9)0.0236 (4)
C140.2094 (3)0.01776 (13)0.07426 (9)0.0250 (4)
H140.15850.07490.09350.030*
C150.1032 (3)0.05911 (15)0.10820 (10)0.0338 (5)
H15A0.03210.04430.11320.041*
H15B0.11530.11610.08310.041*
C160.2015 (3)0.06656 (15)0.17639 (10)0.0357 (5)
H16A0.24700.12890.18390.043*
H16B0.11290.05030.21220.043*
C170.3678 (3)0.00010 (13)0.17446 (9)0.0287 (5)
H170.32440.05970.19150.034*
C180.5122 (3)0.07648 (14)0.07613 (10)0.0323 (5)
H18A0.62950.08460.10090.048*
H18B0.43040.12890.08300.048*
H18C0.54110.07060.02910.048*
C190.3873 (3)0.06559 (14)0.13813 (9)0.0300 (4)
H19A0.33350.00620.12820.045*
H19B0.36480.08030.18450.045*
H19C0.52310.06460.12960.045*
C200.3671 (3)0.34977 (13)0.20530 (9)0.0294 (4)
H200.47360.38600.19510.035*
C230.0252 (3)0.29339 (13)0.30082 (9)0.0277 (5)
C240.2066 (3)0.26865 (14)0.28366 (10)0.0337 (5)
H240.23610.25460.23920.040*
C250.3454 (3)0.26446 (15)0.33172 (10)0.0391 (5)
H250.47080.24790.32080.047*
C260.2969 (4)0.28488 (14)0.39547 (11)0.0402 (6)
C270.1186 (4)0.30918 (14)0.41352 (10)0.0391 (6)
H270.09010.32270.45820.047*
C280.0200 (4)0.31379 (13)0.36565 (10)0.0344 (5)
H280.14480.33080.37710.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F260.0734 (11)0.0587 (9)0.0487 (8)0.0076 (8)0.0388 (8)0.0083 (7)
O170.0403 (9)0.0319 (8)0.0299 (7)0.0066 (7)0.0126 (7)0.0066 (6)
N40.0298 (9)0.0258 (8)0.0224 (8)0.0020 (7)0.0049 (7)0.0001 (7)
N210.0341 (10)0.0297 (8)0.0287 (9)0.0022 (8)0.0011 (8)0.0030 (7)
N220.0296 (9)0.0248 (8)0.0254 (8)0.0008 (7)0.0011 (7)0.0017 (7)
C10.0279 (10)0.0313 (10)0.0224 (9)0.0013 (9)0.0013 (8)0.0028 (8)
C20.0272 (10)0.0272 (10)0.0224 (9)0.0011 (8)0.0007 (8)0.0006 (7)
C30.0284 (11)0.0251 (9)0.0207 (9)0.0043 (8)0.0013 (8)0.0019 (7)
C50.0261 (10)0.0251 (9)0.0201 (9)0.0008 (8)0.0016 (8)0.0002 (7)
C60.0242 (10)0.0303 (10)0.0279 (10)0.0028 (9)0.0031 (8)0.0031 (8)
C70.0248 (10)0.0304 (10)0.0273 (10)0.0023 (9)0.0018 (8)0.0043 (8)
C80.0232 (10)0.0234 (9)0.0225 (9)0.0002 (8)0.0008 (8)0.0005 (7)
C90.0239 (10)0.0236 (9)0.0196 (9)0.0005 (8)0.0003 (8)0.0007 (7)
C100.0221 (10)0.0260 (9)0.0201 (9)0.0004 (8)0.0019 (8)0.0002 (7)
C110.0261 (11)0.0329 (10)0.0237 (9)0.0050 (9)0.0027 (8)0.0051 (8)
C120.0305 (11)0.0283 (10)0.0232 (9)0.0037 (9)0.0060 (8)0.0018 (8)
C130.0265 (10)0.0233 (9)0.0210 (9)0.0025 (8)0.0023 (8)0.0010 (7)
C140.0265 (10)0.0266 (9)0.0219 (9)0.0002 (9)0.0010 (8)0.0017 (8)
C150.0308 (11)0.0410 (12)0.0295 (10)0.0073 (10)0.0039 (9)0.0086 (9)
C160.0351 (11)0.0422 (12)0.0298 (10)0.0064 (11)0.0033 (9)0.0097 (9)
C170.0329 (11)0.0309 (10)0.0222 (9)0.0007 (9)0.0027 (9)0.0037 (8)
C180.0319 (12)0.0315 (10)0.0334 (11)0.0047 (9)0.0024 (9)0.0015 (8)
C190.0312 (11)0.0356 (11)0.0233 (9)0.0029 (10)0.0001 (9)0.0018 (8)
C200.0297 (11)0.0297 (10)0.0288 (10)0.0027 (9)0.0003 (9)0.0011 (8)
C230.0354 (12)0.0219 (9)0.0258 (10)0.0054 (9)0.0052 (9)0.0003 (8)
C240.0374 (12)0.0354 (11)0.0282 (10)0.0027 (10)0.0049 (9)0.0011 (9)
C250.0369 (13)0.0390 (12)0.0414 (12)0.0018 (10)0.0118 (10)0.0006 (10)
C260.0554 (15)0.0301 (11)0.0352 (12)0.0030 (11)0.0224 (11)0.0014 (9)
C270.0641 (17)0.0278 (10)0.0254 (10)0.0024 (12)0.0079 (11)0.0040 (8)
C280.0488 (14)0.0265 (10)0.0280 (10)0.0028 (10)0.0038 (10)0.0030 (8)
Geometric parameters (Å, º) top
F26—C261.365 (3)C11—H11B0.9900
O17—C171.428 (2)C12—C131.524 (3)
O17—H17A0.83 (3)C12—H12A0.9900
N4—C31.381 (2)C12—H12B0.9900
N4—C51.475 (2)C13—C181.534 (3)
N4—H40.88 (2)C13—C141.534 (3)
N21—C201.330 (3)C13—C171.545 (3)
N21—N221.380 (2)C14—C151.530 (3)
N22—C31.370 (2)C14—H141.0000
N22—C231.426 (3)C15—C161.554 (3)
C1—C21.503 (3)C15—H15A0.9900
C1—C101.555 (3)C15—H15B0.9900
C1—H1A0.9900C16—C171.538 (3)
C1—H1B0.9900C16—H16A0.9900
C2—C31.375 (3)C16—H16B0.9900
C2—C201.406 (3)C17—H171.0000
C5—C61.517 (3)C18—H18A0.9800
C5—C101.555 (3)C18—H18B0.9800
C5—H51.0000C18—H18C0.9800
C6—C71.526 (3)C19—H19A0.9800
C6—H6A0.9900C19—H19B0.9800
C6—H6B0.9900C19—H19C0.9800
C7—C81.529 (3)C20—H200.9500
C7—H7A0.9900C23—C241.384 (3)
C7—H7B0.9900C23—C281.388 (3)
C8—C141.527 (2)C24—C251.388 (3)
C8—C91.549 (3)C24—H240.9500
C8—H81.0000C25—C261.373 (3)
C9—C111.534 (3)C25—H250.9500
C9—C101.552 (2)C26—C271.366 (4)
C9—H91.0000C27—C281.384 (3)
C10—C191.531 (3)C27—H270.9500
C11—C121.541 (2)C28—H280.9500
C11—H11A0.9900
C17—O17—H17A108.6 (19)C11—C12—H12B109.4
C3—N4—C5112.05 (15)H12A—C12—H12B108.0
C3—N4—H4116.1 (14)C12—C13—C18111.02 (16)
C5—N4—H4114.9 (13)C12—C13—C14108.53 (15)
C20—N21—N22104.33 (15)C18—C13—C14113.36 (16)
C3—N22—N21110.80 (16)C12—C13—C17115.25 (15)
C3—N22—C23129.52 (17)C18—C13—C17109.41 (15)
N21—N22—C23119.54 (15)C14—C13—C1798.82 (15)
C2—C1—C10111.30 (16)C8—C14—C15119.70 (17)
C2—C1—H1A109.4C8—C14—C13113.97 (16)
C10—C1—H1A109.4C15—C14—C13104.12 (15)
C2—C1—H1B109.4C8—C14—H14106.0
C10—C1—H1B109.4C15—C14—H14106.0
H1A—C1—H1B108.0C13—C14—H14106.0
C3—C2—C20104.27 (17)C14—C15—C16103.44 (16)
C3—C2—C1122.13 (18)C14—C15—H15A111.1
C20—C2—C1133.47 (19)C16—C15—H15A111.1
N22—C3—C2107.77 (17)C14—C15—H15B111.1
N22—C3—N4125.38 (18)C16—C15—H15B111.1
C2—C3—N4126.55 (17)H15A—C15—H15B109.0
N4—C5—C6108.85 (15)C17—C16—C15106.05 (15)
N4—C5—C10114.82 (16)C17—C16—H16A110.5
C6—C5—C10112.62 (16)C15—C16—H16A110.5
N4—C5—H5106.7C17—C16—H16B110.5
C6—C5—H5106.7C15—C16—H16B110.5
C10—C5—H5106.7H16A—C16—H16B108.7
C5—C6—C7110.59 (16)O17—C17—C16109.87 (15)
C5—C6—H6A109.5O17—C17—C13116.68 (17)
C7—C6—H6A109.5C16—C17—C13103.61 (15)
C5—C6—H6B109.5O17—C17—H17108.8
C7—C6—H6B109.5C16—C17—H17108.8
H6A—C6—H6B108.1C13—C17—H17108.8
C6—C7—C8112.48 (16)C13—C18—H18A109.5
C6—C7—H7A109.1C13—C18—H18B109.5
C8—C7—H7A109.1H18A—C18—H18B109.5
C6—C7—H7B109.1C13—C18—H18C109.5
C8—C7—H7B109.1H18A—C18—H18C109.5
H7A—C7—H7B107.8H18B—C18—H18C109.5
C14—C8—C7110.81 (16)C10—C19—H19A109.5
C14—C8—C9107.96 (15)C10—C19—H19B109.5
C7—C8—C9110.88 (15)H19A—C19—H19B109.5
C14—C8—H8109.0C10—C19—H19C109.5
C7—C8—H8109.0H19A—C19—H19C109.5
C9—C8—H8109.0H19B—C19—H19C109.5
C11—C9—C8110.98 (15)N21—C20—C2112.82 (19)
C11—C9—C10113.49 (16)N21—C20—H20123.6
C8—C9—C10113.10 (15)C2—C20—H20123.6
C11—C9—H9106.2C24—C23—C28120.8 (2)
C8—C9—H9106.2C24—C23—N22120.09 (17)
C10—C9—H9106.2C28—C23—N22119.1 (2)
C19—C10—C9113.00 (15)C23—C24—C25119.72 (19)
C19—C10—C1109.06 (16)C23—C24—H24120.1
C9—C10—C1109.01 (14)C25—C24—H24120.1
C19—C10—C5110.75 (16)C26—C25—C24118.3 (2)
C9—C10—C5106.48 (15)C26—C25—H25120.8
C1—C10—C5108.43 (16)C24—C25—H25120.8
C9—C11—C12112.73 (16)F26—C26—C27118.7 (2)
C9—C11—H11A109.0F26—C26—C25118.5 (2)
C12—C11—H11A109.0C27—C26—C25122.9 (2)
C9—C11—H11B109.0C26—C27—C28118.9 (2)
C12—C11—H11B109.0C26—C27—H27120.5
H11A—C11—H11B107.8C28—C27—H27120.5
C13—C12—C11111.29 (15)C27—C28—C23119.4 (2)
C13—C12—H12A109.4C27—C28—H28120.3
C11—C12—H12A109.4C23—C28—H28120.3
C13—C12—H12B109.4
C20—N21—N22—C30.8 (2)C11—C12—C13—C1870.6 (2)
C20—N21—N22—C23176.90 (17)C11—C12—C13—C1454.6 (2)
C10—C1—C2—C313.4 (3)C11—C12—C13—C17164.34 (17)
C10—C1—C2—C20171.3 (2)C7—C8—C14—C1555.1 (2)
N21—N22—C3—C20.4 (2)C9—C8—C14—C15176.73 (17)
C23—N22—C3—C2175.97 (18)C7—C8—C14—C13179.25 (15)
N21—N22—C3—N4174.40 (17)C9—C8—C14—C1359.1 (2)
C23—N22—C3—N410.1 (3)C12—C13—C14—C859.3 (2)
C20—C2—C3—N220.2 (2)C18—C13—C14—C864.5 (2)
C1—C2—C3—N22176.63 (17)C17—C13—C14—C8179.83 (15)
C20—C2—C3—N4173.72 (18)C12—C13—C14—C15168.52 (15)
C1—C2—C3—N42.7 (3)C18—C13—C14—C1567.65 (18)
C5—N4—C3—N22160.74 (17)C17—C13—C14—C1548.03 (18)
C5—N4—C3—C212.1 (3)C8—C14—C15—C16162.06 (18)
C3—N4—C5—C6170.72 (16)C13—C14—C15—C1633.3 (2)
C3—N4—C5—C1043.4 (2)C14—C15—C16—C175.1 (2)
N4—C5—C6—C7172.43 (16)C15—C16—C17—O17149.88 (17)
C10—C5—C6—C759.0 (2)C15—C16—C17—C1324.5 (2)
C5—C6—C7—C854.4 (2)C12—C13—C17—O1779.8 (2)
C6—C7—C8—C14171.87 (16)C18—C13—C17—O1746.1 (2)
C6—C7—C8—C952.0 (2)C14—C13—C17—O17164.82 (16)
C14—C8—C9—C1155.0 (2)C12—C13—C17—C16159.34 (17)
C7—C8—C9—C11176.55 (15)C18—C13—C17—C1674.7 (2)
C14—C8—C9—C10176.14 (16)C14—C13—C17—C1643.95 (18)
C7—C8—C9—C1054.6 (2)N22—N21—C20—C21.0 (2)
C11—C9—C10—C1962.2 (2)C3—C2—C20—N210.7 (2)
C8—C9—C10—C1965.4 (2)C1—C2—C20—N21176.6 (2)
C11—C9—C10—C159.2 (2)C3—N22—C23—C2441.6 (3)
C8—C9—C10—C1173.21 (16)N21—N22—C23—C24143.20 (19)
C11—C9—C10—C5176.00 (16)C3—N22—C23—C28139.1 (2)
C8—C9—C10—C556.4 (2)N21—N22—C23—C2836.1 (3)
C2—C1—C10—C1980.1 (2)C28—C23—C24—C250.2 (3)
C2—C1—C10—C9156.15 (16)N22—C23—C24—C25179.11 (18)
C2—C1—C10—C540.6 (2)C23—C24—C25—C260.3 (3)
N4—C5—C10—C1961.0 (2)C24—C25—C26—F26179.58 (18)
C6—C5—C10—C1964.3 (2)C24—C25—C26—C270.1 (3)
N4—C5—C10—C9175.77 (14)F26—C26—C27—C28179.85 (18)
C6—C5—C10—C958.9 (2)C25—C26—C27—C280.2 (3)
N4—C5—C10—C158.6 (2)C26—C27—C28—C230.2 (3)
C6—C5—C10—C1176.06 (14)C24—C23—C28—C270.1 (3)
C8—C9—C11—C1254.7 (2)N22—C23—C28—C27179.39 (18)
C10—C9—C11—C12176.59 (15)C19—C10—C13—C181.36 (16)
C9—C11—C12—C1354.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O17i0.88 (2)2.14 (2)3.021 (2)172.7 (18)
O17—H17A···N21ii0.83 (3)2.26 (3)3.086 (2)177 (3)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC27H34FN3O2C25H32FN3O
Mr451.57409.54
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)160160
a, b, c (Å)7.2545 (1), 13.5417 (2), 23.6387 (4)7.0990 (2), 14.8153 (4), 20.2961 (4)
V3)2322.23 (6)2134.62 (9)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.08
Crystal size (mm)0.25 × 0.10 × 0.080.25 × 0.23 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
42805, 3830, 3157 34805, 2798, 2390
Rint0.0620.063
(sin θ/λ)max1)0.7040.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.103, 1.04 0.037, 0.092, 1.04
No. of reflections38252797
No. of parameters306282
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.200.22, 0.17

Computer programs: COLLECT (Nonius, 2000), DENZO–SMN (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O30i0.90 (3)2.31 (3)3.208 (2)177 (2)
C15—H15B···F26ii0.992.533.455 (2)155
C20—H20···O30iii0.952.563.477 (3)162
C25—H25···N21iv0.952.583.399 (3)145
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O17i0.88 (2)2.14 (2)3.021 (2)172.7 (18)
O17—H17A···N21ii0.83 (3)2.26 (3)3.086 (2)177 (3)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds