Download citation
Download citation
link to html
In both of the title compounds, C23H19ClN2O, (I), and C23H18Cl2N2O, (II), the molecular packing is influenced by weak intermolecular C-H...O and C-H...[pi] interactions, but despite the chemical similarity of the compounds, the packing in (II) is entirely different from that observed in (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103023540/sk1671sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103023540/sk1671Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103023540/sk1671IIsup3.hkl
Contains datablock II

CCDC references: 229112; 229113

Comment top

The indolizines constitute the core structure of many naturally occurring alkaloids, viz. (-)-slaframine (Pourashraf et al., 2000; Cossy et al., 2002), (-)-dendroprimine (Diederich & Nubbemeyer, 1999), indalozin 167B (Chalard et al., 1999) and coniceine (Park et al., 2001). Heterocyclic compounds, such as indolizines, are important bioactive compounds that have wide applications in biology, pharmacology and agrochemistry (Wu & Chen, 2003, and references therein). The synthesis of biologically active indolizines (Gubin et al., 1992) continues to attract the attention of organic chemists (Bora et al., 2003, and references therein), because they are important as potential central nervous depressants, calcium entry blockers, cardiovascular agents, spectral sensitizers and novel dyes (Katritzky et al., 1999, and references therein). They are also used for the treatment of angina pectoris (Rosseels et al., 1982) and as testosterone 5α-reductase inhibitors (Okada et al., 1993). In view of these important attributes, we report here the crystal structures of the title compounds, (I) and (II). Full details of the syntheses of these compounds and their biological activities will be published elsewhere (Sarkunam & Nallu, 2003).

Perspective views of molecules of (I) and (II), with the atomic numbering schemes, are shown in Figs. 1 and 2, respectively. The corresponding bond lengths and bond angles in (I) and (II) are essentially equivalent and are comparable with those in related structures (Pritchard, 1988; Usman et al., 2002). The indolizine rings of (I) and (II) can be superimposed on one another, with only a small r.m.s. deviation of the constituent atoms [0.011 Å]. The carbonyl (C16O16) bond lengths [1.243 (2) and 1.247 (2) Å for (I) and (II), respectively] are significantly longer than typical carbonyl bonds. This fact may be due to the involvement of atom O16 in intermolecular C—H···O interactions in both (I) and (II) (Tables 1 and 2). The dihedral angles between the plane of the indolizine ring and the planes of the phenyl and chlorobenzyol moieties are 31.58 (4) and 60.93 (5)°, respectively, for (I), and 33.42 (4) and 72.47 (4)°, respectively, for (II). The angles between the planes of the phenyl and chlorobenzyol rings are 70.94 (6) and 67.73 (4)° for (I) and (II), respectively.

In (I), atom C6 is involved in a weak intermolecular C—H···O interaction with atom O16 of a centrosymmetrically related molecule, thus forming an R22(14) motif (Bernstein et al., 1995). Atom C18 (via atom H18) acts as a donor for a weak intermolecular C—H···π interaction with the centroid (Cg1) of the six-membered ring of the indolizine moiety in an adjacent molecule at (x, 1/2 − y, −1/2 + z). Atom C13 (via atom H13) is involved in a weak intermolecular C—H···π interaction with the centroid (Cg2) of the chlorobenzyol ring in the molecule at (-x, −y, −z) (Table 1).

Despite the similar chemical composition of the title compounds, the packing of the molecules in the crystal structures of (I) and (II) is entirely different. In (II), atom C13 acts as a donor in a weak intermolecular C—H···O interaction with carbonyl atom O16 of an adjacent molecule. This interaction links the molecules into chains that run parallel to the b axis and have a graph-set motif of C(10). Atom C22 also acts as a donor for a weak intermolecular C—H···O interaction with atom O16 of a different adjacent molecule. This interaction produces a continuous chain that runs parallel to the c axis and has a graph-set motif of C(5) (Bernstein et al., 1995). In addition, atom C19 (via atom H19) acts as a donor for a weak intermolecular C—H···π interaction with the centroid (Cg3) of the phenyl ring in the molecule at (−1 + x, y, z). Atom C24 (via atom H241) has a weak intermolecular C—H···π interaction with the centroid (Cg4) of the six-membered ring of the indolizine moiety in the molecule at (x, 1/2 − y, 1/2 + z) (Table 2). It is of interest to note that the shortest intermolecular Cl1···Cl1 contact is 3.1818 (6) Å, which is smaller than the sum of the van der Waals radii of the corresponding atoms.

Experimental top

A mixture of 4-dimethylaminopyridinium-1-(4-chloro)phenacylide (1.4 mmol), phenyl acetylene (1.6 mmol) and potassium carbonate (1.6 mmol) in dimethyl formamide (30 ml) was kept at room temperature overnight. The insoluble materials were removed by filtration, and the filtrate was extracted with a brine–dilute HCl mixture. The organic layer was evaporated and chromatographed to give crystals of (I) suitable for X-ray diffraction, which were recrystallized from ethyl acetate (yield 0.29 g, 55%; m.p. 474–476 K). Compound (II) was prepared in an identical fashion but with 4-dimethylaminopyridinium-1-(2,4-dichloro)phenacylide as a starting material (yield 0.31 g, 63%; m.p. 516–518 K). Crystals suitable for X-ray diffraction were grown from ethyl acetate.

Refinement top

For both compounds, methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å), with Uiso values of 1.5Ueq(C), but were allowed to rotate freely about the C—C bond. All remaining H atoms were placed in idealized positions (C—H = 0.95 Å) and constrained to ride on their parent atoms, with Uiso(H) values of 1.2Ueq(C). For compound (II), reflections −1 3 1, −2 2 1 and 0 2 1 were partially obscured by the beam stop and were omitted.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
(I) 3-(4-Chlorobenzoyl)-7-(N,N-dimethylamino)-1-phenylindolizine top
Crystal data top
C23H19ClN2OF(000) = 784
Mr = 374.85Dx = 1.353 Mg m3
Monoclinic, P21/cMelting point: 474 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.4641 (2) ÅCell parameters from 67543 reflections
b = 16.3479 (3) Åθ = 2.0–27.5°
c = 11.0110 (2) ŵ = 0.22 mm1
β = 102.4144 (11)°T = 160 K
V = 1839.57 (6) Å3Prism, yellow
Z = 40.25 × 0.13 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
4225 independent reflections
Radiation source: Nonius FR591 sealed tube generator3353 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.072
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.3°
ϕ and ω scans with κ offsetsh = 1313
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 2121
Tmin = 0.842, Tmax = 0.977l = 1414
41157 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.614P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4225 reflectionsΔρmax = 0.32 e Å3
247 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C23H19ClN2OV = 1839.57 (6) Å3
Mr = 374.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4641 (2) ŵ = 0.22 mm1
b = 16.3479 (3) ÅT = 160 K
c = 11.0110 (2) Å0.25 × 0.13 × 0.13 mm
β = 102.4144 (11)°
Data collection top
Nonius KappaCCD
diffractometer
4225 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3353 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.977Rint = 0.072
41157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
4225 reflectionsΔρmin = 0.35 e Å3
247 parameters
Special details top

Experimental. Solvent used: ethyl acetate Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.707 (1) Frames collected: 639 Seconds exposure per frame: 100 Degrees rotation per frame: 1.0 Crystal-Detector distance (mm): 40.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49345 (5)0.11765 (3)0.54943 (5)0.04739 (18)
O160.11659 (12)0.39519 (7)0.19807 (12)0.0351 (3)
N40.09373 (13)0.31888 (8)0.02034 (12)0.0260 (3)
N230.36468 (15)0.39986 (9)0.28933 (14)0.0359 (4)
C10.11992 (15)0.18242 (10)0.01436 (15)0.0269 (3)
C20.02542 (15)0.19495 (10)0.09374 (15)0.0274 (3)
H20.01970.15260.14470.033*
C30.00594 (15)0.27869 (10)0.11708 (14)0.0268 (3)
C50.11420 (16)0.40083 (10)0.00041 (15)0.0292 (4)
H50.06620.43920.05640.035*
C60.20226 (16)0.42777 (11)0.10111 (15)0.0314 (4)
H60.21510.48490.11410.038*
C70.27654 (16)0.37117 (10)0.18864 (15)0.0288 (4)
C80.25373 (15)0.28823 (10)0.16619 (15)0.0271 (3)
H80.30070.24930.22270.033*
C90.16255 (15)0.26114 (10)0.06150 (14)0.0254 (3)
C100.16490 (15)0.10186 (10)0.06672 (15)0.0273 (3)
C110.20536 (17)0.08822 (11)0.19505 (16)0.0314 (4)
H110.20430.13210.25140.038*
C120.24679 (17)0.01144 (11)0.24042 (16)0.0342 (4)
H120.27480.00340.32750.041*
C130.24789 (17)0.05347 (11)0.16073 (17)0.0346 (4)
H130.27760.10570.19250.042*
C140.20521 (17)0.04180 (11)0.03362 (17)0.0346 (4)
H140.20340.08650.02180.042*
C150.16532 (16)0.03490 (11)0.01250 (16)0.0319 (4)
H150.13760.04230.09980.038*
C160.09633 (15)0.32034 (10)0.20090 (14)0.0276 (3)
C170.19093 (15)0.26863 (10)0.29089 (14)0.0271 (3)
C180.15198 (16)0.20955 (11)0.36654 (15)0.0307 (4)
H180.06140.20070.36240.037*
C190.24424 (18)0.16335 (11)0.44813 (15)0.0336 (4)
H190.21760.12360.50060.040*
C200.37563 (17)0.17639 (11)0.45134 (15)0.0321 (4)
C210.41665 (17)0.23497 (11)0.37745 (15)0.0316 (4)
H210.50720.24290.38060.038*
C220.32409 (16)0.28177 (11)0.29899 (15)0.0293 (4)
H220.35160.32340.25000.035*
C240.40051 (18)0.48597 (11)0.30131 (17)0.0370 (4)
H2410.43230.50340.22800.055*
H2420.46960.49390.37600.055*
H2430.32370.51860.30800.055*
C250.42867 (18)0.34406 (11)0.38532 (16)0.0361 (4)
H2510.36280.31010.41230.054*
H2520.47740.37530.45630.054*
H2530.48920.30900.35240.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0496 (3)0.0497 (3)0.0402 (3)0.0159 (2)0.0039 (2)0.0106 (2)
O160.0377 (7)0.0274 (7)0.0367 (7)0.0029 (5)0.0001 (5)0.0002 (5)
N40.0263 (7)0.0254 (7)0.0260 (7)0.0007 (5)0.0053 (5)0.0010 (5)
N230.0428 (9)0.0282 (8)0.0314 (8)0.0008 (6)0.0041 (6)0.0007 (6)
C10.0271 (8)0.0262 (8)0.0282 (8)0.0014 (6)0.0076 (6)0.0015 (6)
C20.0272 (8)0.0281 (8)0.0276 (8)0.0010 (6)0.0073 (6)0.0009 (6)
C30.0270 (8)0.0277 (8)0.0257 (8)0.0013 (6)0.0054 (6)0.0011 (6)
C50.0324 (8)0.0252 (8)0.0298 (8)0.0020 (6)0.0058 (6)0.0033 (6)
C60.0360 (9)0.0247 (8)0.0323 (9)0.0001 (7)0.0043 (7)0.0017 (6)
C70.0282 (8)0.0301 (9)0.0281 (8)0.0010 (6)0.0060 (6)0.0013 (6)
C80.0272 (8)0.0273 (8)0.0265 (8)0.0024 (6)0.0053 (6)0.0022 (6)
C90.0236 (7)0.0270 (8)0.0266 (8)0.0021 (6)0.0073 (6)0.0033 (6)
C100.0237 (7)0.0267 (8)0.0320 (8)0.0003 (6)0.0071 (6)0.0021 (6)
C110.0365 (9)0.0279 (9)0.0302 (8)0.0015 (7)0.0079 (7)0.0001 (7)
C120.0367 (9)0.0334 (9)0.0316 (9)0.0007 (7)0.0052 (7)0.0050 (7)
C130.0344 (9)0.0271 (9)0.0427 (10)0.0017 (7)0.0093 (7)0.0070 (7)
C140.0385 (9)0.0267 (9)0.0397 (10)0.0014 (7)0.0105 (7)0.0025 (7)
C150.0344 (9)0.0300 (9)0.0311 (8)0.0005 (7)0.0067 (7)0.0010 (7)
C160.0277 (8)0.0302 (9)0.0258 (8)0.0008 (6)0.0076 (6)0.0013 (6)
C170.0305 (8)0.0276 (8)0.0230 (7)0.0008 (6)0.0051 (6)0.0047 (6)
C180.0301 (8)0.0365 (9)0.0271 (8)0.0013 (7)0.0099 (6)0.0020 (7)
C190.0430 (10)0.0322 (9)0.0266 (8)0.0001 (7)0.0100 (7)0.0014 (7)
C200.0387 (9)0.0327 (9)0.0235 (8)0.0060 (7)0.0037 (6)0.0003 (6)
C210.0285 (8)0.0360 (9)0.0290 (8)0.0003 (7)0.0033 (6)0.0039 (7)
C220.0328 (9)0.0301 (9)0.0255 (8)0.0037 (7)0.0073 (6)0.0012 (6)
C240.0384 (10)0.0291 (9)0.0394 (10)0.0037 (7)0.0006 (7)0.0005 (7)
C250.0402 (10)0.0341 (10)0.0297 (9)0.0023 (8)0.0022 (7)0.0025 (7)
Geometric parameters (Å, º) top
Cl1—C201.7425 (17)C12—C131.379 (3)
O16—C161.243 (2)C12—H120.9500
N4—C51.368 (2)C13—C141.388 (3)
N4—C91.394 (2)C13—H130.9500
N4—C31.411 (2)C14—C151.383 (2)
N23—C71.364 (2)C14—H140.9500
N23—C251.447 (2)C15—H150.9500
N23—C241.456 (2)C16—C171.502 (2)
C1—C21.389 (2)C17—C181.392 (2)
C1—C91.423 (2)C17—C221.394 (2)
C1—C101.474 (2)C18—C191.392 (2)
C2—C31.400 (2)C18—H180.9500
C2—H20.9500C19—C201.384 (3)
C3—C161.427 (2)C19—H190.9500
C5—C61.354 (2)C20—C211.383 (2)
C5—H50.9500C21—C221.382 (2)
C6—C71.438 (2)C21—H210.9500
C6—H60.9500C22—H220.9500
C7—C81.390 (2)C24—H2410.9800
C8—C91.401 (2)C24—H2420.9800
C8—H80.9500C24—H2430.9800
C10—C151.400 (2)C25—H2510.9800
C10—C111.403 (2)C25—H2520.9800
C11—C121.386 (2)C25—H2530.9800
C11—H110.9500
C5—N4—C9120.97 (14)C14—C13—H13120.3
C5—N4—C3129.46 (14)C15—C14—C13120.08 (16)
C9—N4—C3109.56 (13)C15—C14—H14120.0
C7—N23—C25120.19 (15)C13—C14—H14120.0
C7—N23—C24121.49 (15)C14—C15—C10121.41 (16)
C25—N23—C24118.28 (14)C14—C15—H15119.3
C2—C1—C9106.79 (14)C10—C15—H15119.3
C2—C1—C10125.13 (15)O16—C16—C3124.17 (15)
C9—C1—C10128.08 (14)O16—C16—C17118.61 (14)
C1—C2—C3110.50 (15)C3—C16—C17117.03 (14)
C1—C2—H2124.8C18—C17—C22119.07 (15)
C3—C2—H2124.8C18—C17—C16123.30 (14)
C2—C3—N4105.75 (13)C22—C17—C16117.62 (14)
C2—C3—C16130.16 (15)C19—C18—C17120.73 (15)
N4—C3—C16122.84 (14)C19—C18—H18119.6
C6—C5—N4120.66 (15)C17—C18—H18119.6
C6—C5—H5119.7C20—C19—C18118.70 (16)
N4—C5—H5119.7C20—C19—H19120.6
C5—C6—C7120.95 (16)C18—C19—H19120.6
C5—C6—H6119.5C21—C20—C19121.59 (16)
C7—C6—H6119.5C21—C20—Cl1118.58 (14)
N23—C7—C8122.71 (15)C19—C20—Cl1119.83 (13)
N23—C7—C6119.82 (15)C22—C21—C20119.11 (16)
C8—C7—C6117.46 (15)C22—C21—H21120.4
C7—C8—C9121.02 (15)C20—C21—H21120.4
C7—C8—H8119.5C21—C22—C17120.76 (16)
C9—C8—H8119.5C21—C22—H22119.6
N4—C9—C8118.93 (14)C17—C22—H22119.6
N4—C9—C1107.38 (13)N23—C24—H241109.5
C8—C9—C1133.69 (15)N23—C24—H242109.5
C15—C10—C11117.54 (15)H241—C24—H242109.5
C15—C10—C1119.90 (15)N23—C24—H243109.5
C11—C10—C1122.54 (15)H241—C24—H243109.5
C12—C11—C10120.69 (16)H242—C24—H243109.5
C12—C11—H11119.7N23—C25—H251109.5
C10—C11—H11119.7N23—C25—H252109.5
C13—C12—C11120.84 (16)H251—C25—H252109.5
C13—C12—H12119.6N23—C25—H253109.5
C11—C12—H12119.6H251—C25—H253109.5
C12—C13—C14119.41 (16)H252—C25—H253109.5
C12—C13—H13120.3
C9—C1—C2—C30.17 (18)C9—C1—C10—C15148.86 (17)
C10—C1—C2—C3179.98 (15)C2—C1—C10—C11147.54 (16)
C1—C2—C3—N40.99 (18)C9—C1—C10—C1132.7 (2)
C1—C2—C3—C16166.23 (16)C15—C10—C11—C121.4 (2)
C5—N4—C3—C2179.85 (15)C1—C10—C11—C12179.90 (15)
C9—N4—C3—C21.44 (17)C10—C11—C12—C130.7 (3)
C5—N4—C3—C1611.8 (2)C11—C12—C13—C140.9 (3)
C9—N4—C3—C16166.94 (14)C12—C13—C14—C151.7 (3)
C9—N4—C5—C60.1 (2)C13—C14—C15—C101.0 (3)
C3—N4—C5—C6178.71 (15)C11—C10—C15—C140.6 (2)
N4—C5—C6—C70.1 (3)C1—C10—C15—C14179.10 (16)
C25—N23—C7—C86.8 (3)C2—C3—C16—O16166.39 (16)
C24—N23—C7—C8170.96 (16)N4—C3—C16—O161.1 (2)
C25—N23—C7—C6172.80 (16)C2—C3—C16—C178.5 (2)
C24—N23—C7—C69.4 (3)N4—C3—C16—C17173.84 (14)
C5—C6—C7—N23179.98 (16)O16—C16—C17—C18133.83 (17)
C5—C6—C7—C80.4 (2)C3—C16—C17—C1851.0 (2)
N23—C7—C8—C9179.85 (15)O16—C16—C17—C2245.5 (2)
C6—C7—C8—C90.6 (2)C3—C16—C17—C22129.75 (16)
C5—N4—C9—C80.0 (2)C22—C17—C18—C190.8 (2)
C3—N4—C9—C8178.82 (13)C16—C17—C18—C19179.91 (15)
C5—N4—C9—C1179.81 (14)C17—C18—C19—C201.0 (2)
C3—N4—C9—C11.36 (17)C18—C19—C20—C211.2 (3)
C7—C8—C9—N40.4 (2)C18—C19—C20—Cl1178.28 (13)
C7—C8—C9—C1179.39 (17)C19—C20—C21—C220.3 (3)
C2—C1—C9—N40.72 (17)Cl1—C20—C21—C22179.80 (13)
C10—C1—C9—N4179.07 (15)C20—C21—C22—C172.1 (2)
C2—C1—C9—C8179.49 (16)C18—C17—C22—C212.4 (2)
C10—C1—C9—C80.7 (3)C16—C17—C22—C21178.31 (15)
C2—C1—C10—C1530.9 (2)C16—C17—C18—H180.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O16i0.952.483.276 (2)141
C13—H13···Cg2ii0.952.743.580 (2)148
C18—H18···Cg1iii0.952.863.781 (2)164
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y+1/2, z1/2.
(II) 3-(2,4-Dichlorobenzoyl)-7-(N,N-dimethylamino)-1-phenylindolizine top
Crystal data top
C23H18Cl2N2OF(000) = 848
Mr = 409.29Dx = 1.395 Mg m3
Monoclinic, P21/cMelting point: 516 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.5888 (2) ÅCell parameters from 34641 reflections
b = 19.0878 (4) Åθ = 2.0–27.5°
c = 10.6508 (2) ŵ = 0.35 mm1
β = 90.7580 (13)°T = 160 K
V = 1949.24 (7) Å3Prism, yellow
Z = 40.25 × 0.23 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
4465 independent reflections
Radiation source: Nonius FR591 sealed tube generator3434 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.071
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.1°
ϕ and ω scans with κ offsetsh = 1212
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 2423
Tmin = 0.842, Tmax = 0.936l = 1313
45923 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.7326P]
where P = (Fo2 + 2Fc2)/3
4465 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C23H18Cl2N2OV = 1949.24 (7) Å3
Mr = 409.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5888 (2) ŵ = 0.35 mm1
b = 19.0878 (4) ÅT = 160 K
c = 10.6508 (2) Å0.25 × 0.23 × 0.20 mm
β = 90.7580 (13)°
Data collection top
Nonius KappaCCD
diffractometer
4465 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3434 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.936Rint = 0.071
45923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
4465 reflectionsΔρmin = 0.37 e Å3
255 parameters
Special details top

Experimental. Solvent used: ethyl acetate Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.558 (1) Frames collected: 381 Seconds exposure per frame: 32 Degrees rotation per frame: 1.8 Crystal-Detector distance (mm): 30.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03651 (5)0.46401 (2)0.36978 (4)0.03622 (14)
Cl20.22330 (6)0.43130 (3)0.07726 (5)0.04995 (17)
O160.14559 (12)0.27657 (6)0.36970 (12)0.0323 (3)
N40.42783 (14)0.33413 (7)0.40907 (13)0.0248 (3)
N230.77134 (15)0.29188 (8)0.63802 (14)0.0312 (3)
C10.50803 (17)0.43405 (8)0.31911 (16)0.0247 (3)
C20.37829 (17)0.41813 (9)0.26813 (16)0.0263 (3)
H20.33180.44490.20510.032*
C30.32510 (17)0.35699 (9)0.32244 (16)0.0257 (3)
C50.42754 (18)0.27708 (9)0.48632 (17)0.0286 (4)
H50.34950.24640.48580.034*
C60.53780 (18)0.26382 (9)0.56383 (17)0.0311 (4)
H60.53490.22460.61870.037*
C70.65860 (17)0.30806 (9)0.56430 (15)0.0267 (4)
C80.65662 (16)0.36610 (9)0.48472 (15)0.0255 (3)
H80.73520.39640.48240.031*
C90.54036 (16)0.38021 (8)0.40831 (15)0.0241 (3)
C100.58970 (16)0.49703 (8)0.29029 (16)0.0249 (3)
C110.67224 (17)0.53156 (9)0.37963 (16)0.0275 (4)
H110.67990.51320.46240.033*
C120.74333 (18)0.59242 (9)0.34894 (17)0.0313 (4)
H120.80000.61500.41060.038*
C130.73244 (19)0.62070 (10)0.22912 (19)0.0350 (4)
H130.78070.66260.20870.042*
C140.6505 (2)0.58711 (10)0.13989 (18)0.0355 (4)
H140.64210.60610.05770.043*
C150.58045 (18)0.52588 (9)0.16994 (17)0.0301 (4)
H150.52520.50310.10750.036*
C160.19096 (17)0.32723 (8)0.30866 (16)0.0249 (3)
C170.09647 (16)0.35855 (8)0.20927 (15)0.0240 (3)
C180.01709 (17)0.41852 (9)0.22929 (16)0.0257 (3)
C190.08009 (18)0.44279 (9)0.14192 (17)0.0305 (4)
H190.13330.48380.15730.037*
C200.09686 (18)0.40523 (10)0.03173 (17)0.0320 (4)
C210.01867 (19)0.34574 (10)0.00696 (17)0.0324 (4)
H210.03070.32100.06980.039*
C220.07729 (17)0.32325 (9)0.09657 (16)0.0289 (4)
H220.13130.28260.08040.035*
C240.7604 (2)0.23997 (10)0.73725 (18)0.0365 (4)
H2410.68950.25480.79710.055*
H2420.85060.23540.78080.055*
H2430.73380.19470.70070.055*
C250.89512 (19)0.33557 (10)0.63370 (18)0.0345 (4)
H2510.92870.33780.54730.052*
H2520.96790.31550.68820.052*
H2530.87230.38290.66270.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0407 (3)0.0352 (3)0.0325 (2)0.00855 (18)0.00822 (18)0.01185 (18)
Cl20.0493 (3)0.0624 (4)0.0376 (3)0.0172 (2)0.0194 (2)0.0030 (2)
O160.0300 (6)0.0284 (6)0.0384 (7)0.0042 (5)0.0040 (5)0.0075 (5)
N40.0230 (7)0.0242 (7)0.0271 (7)0.0004 (5)0.0020 (5)0.0033 (5)
N230.0282 (7)0.0341 (8)0.0311 (8)0.0000 (6)0.0073 (6)0.0097 (6)
C10.0251 (8)0.0247 (8)0.0242 (8)0.0006 (6)0.0026 (6)0.0023 (6)
C20.0263 (8)0.0265 (8)0.0261 (8)0.0020 (7)0.0031 (6)0.0027 (7)
C30.0236 (8)0.0261 (8)0.0273 (8)0.0023 (6)0.0041 (6)0.0016 (7)
C50.0271 (8)0.0244 (8)0.0342 (9)0.0015 (7)0.0006 (7)0.0068 (7)
C60.0299 (9)0.0296 (9)0.0337 (9)0.0019 (7)0.0038 (7)0.0096 (7)
C70.0266 (8)0.0280 (9)0.0254 (8)0.0039 (7)0.0016 (6)0.0008 (7)
C80.0239 (8)0.0263 (8)0.0263 (8)0.0012 (6)0.0026 (6)0.0021 (7)
C90.0233 (8)0.0243 (8)0.0248 (8)0.0001 (6)0.0001 (6)0.0005 (6)
C100.0223 (8)0.0249 (8)0.0275 (8)0.0026 (6)0.0011 (6)0.0027 (7)
C110.0282 (8)0.0275 (8)0.0267 (8)0.0016 (7)0.0019 (7)0.0000 (7)
C120.0291 (9)0.0282 (9)0.0366 (10)0.0010 (7)0.0038 (7)0.0037 (7)
C130.0330 (9)0.0263 (9)0.0457 (11)0.0030 (7)0.0007 (8)0.0067 (8)
C140.0385 (10)0.0340 (10)0.0340 (10)0.0020 (8)0.0036 (8)0.0125 (8)
C150.0300 (9)0.0323 (9)0.0278 (9)0.0013 (7)0.0055 (7)0.0039 (7)
C160.0239 (8)0.0232 (8)0.0276 (8)0.0015 (6)0.0014 (6)0.0029 (6)
C170.0211 (7)0.0239 (8)0.0271 (8)0.0018 (6)0.0013 (6)0.0006 (6)
C180.0267 (8)0.0252 (8)0.0252 (8)0.0017 (6)0.0023 (6)0.0028 (6)
C190.0296 (9)0.0290 (9)0.0330 (10)0.0057 (7)0.0029 (7)0.0000 (7)
C200.0294 (9)0.0388 (10)0.0277 (9)0.0031 (7)0.0051 (7)0.0023 (8)
C210.0325 (9)0.0376 (10)0.0270 (9)0.0014 (7)0.0031 (7)0.0073 (7)
C220.0274 (8)0.0281 (9)0.0312 (9)0.0029 (7)0.0009 (7)0.0039 (7)
C240.0369 (10)0.0385 (10)0.0339 (10)0.0023 (8)0.0073 (8)0.0097 (8)
C250.0295 (9)0.0389 (10)0.0349 (10)0.0026 (7)0.0078 (7)0.0059 (8)
Geometric parameters (Å, º) top
Cl1—C181.7379 (17)C11—H110.9500
Cl2—C201.7401 (18)C12—C131.388 (3)
O16—C161.247 (2)C12—H120.9500
N4—C51.365 (2)C13—C141.383 (3)
N4—C91.392 (2)C13—H130.9500
N4—C31.410 (2)C14—C151.388 (3)
N23—C71.363 (2)C14—H140.9500
N23—C251.452 (2)C15—H150.9500
N23—C241.454 (2)C16—C171.508 (2)
C1—C21.385 (2)C17—C221.387 (2)
C1—C91.431 (2)C17—C181.393 (2)
C1—C101.469 (2)C18—C191.388 (2)
C2—C31.401 (2)C19—C201.383 (3)
C2—H20.9500C19—H190.9500
C3—C161.412 (2)C20—C211.388 (3)
C5—C61.357 (2)C21—C221.385 (2)
C5—H50.9500C21—H210.9500
C6—C71.434 (2)C22—H220.9500
C6—H60.9500C24—H2410.9800
C7—C81.395 (2)C24—H2420.9800
C8—C91.398 (2)C24—H2430.9800
C8—H80.9500C25—H2510.9800
C10—C111.395 (2)C25—H2520.9800
C10—C151.397 (2)C25—H2530.9800
C11—C121.388 (2)
C5—N4—C9121.02 (14)C12—C13—H13120.4
C5—N4—C3129.38 (14)C13—C14—C15120.29 (17)
C9—N4—C3109.60 (13)C13—C14—H14119.9
C7—N23—C25119.60 (14)C15—C14—H14119.9
C7—N23—C24120.61 (15)C14—C15—C10121.24 (17)
C25—N23—C24118.78 (14)C14—C15—H15119.4
C2—C1—C9106.76 (14)C10—C15—H15119.4
C2—C1—C10125.19 (15)O16—C16—C3125.56 (16)
C9—C1—C10127.95 (15)O16—C16—C17117.58 (14)
C1—C2—C3110.55 (15)C3—C16—C17116.84 (14)
C1—C2—H2124.7C22—C17—C18117.74 (15)
C3—C2—H2124.7C22—C17—C16119.12 (14)
C2—C3—N4105.84 (14)C18—C17—C16122.89 (14)
C2—C3—C16128.91 (15)C19—C18—C17122.35 (15)
N4—C3—C16124.82 (15)C19—C18—Cl1118.29 (13)
C6—C5—N4120.53 (16)C17—C18—Cl1119.34 (13)
C6—C5—H5119.7C20—C19—C18117.75 (16)
N4—C5—H5119.7C20—C19—H19121.1
C5—C6—C7121.02 (16)C18—C19—H19121.1
C5—C6—H6119.5C19—C20—C21121.90 (16)
C7—C6—H6119.5C19—C20—Cl2119.34 (14)
N23—C7—C8122.30 (15)C21—C20—Cl2118.72 (14)
N23—C7—C6120.21 (15)C22—C21—C20118.56 (16)
C8—C7—C6117.47 (15)C22—C21—H21120.7
C7—C8—C9120.74 (15)C20—C21—H21120.7
C7—C8—H8119.6C21—C22—C17121.68 (16)
C9—C8—H8119.6C21—C22—H22119.2
N4—C9—C8119.16 (14)C17—C22—H22119.2
N4—C9—C1107.25 (14)N23—C24—H241109.5
C8—C9—C1133.56 (15)N23—C24—H242109.5
C11—C10—C15117.92 (15)H241—C24—H242109.5
C11—C10—C1122.90 (15)N23—C24—H243109.5
C15—C10—C1119.12 (15)H241—C24—H243109.5
C12—C11—C10120.71 (16)H242—C24—H243109.5
C12—C11—H11119.6N23—C25—H251109.5
C10—C11—H11119.6N23—C25—H252109.5
C11—C12—C13120.70 (17)H251—C25—H252109.5
C11—C12—H12119.7N23—C25—H253109.5
C13—C12—H12119.7H251—C25—H253109.5
C14—C13—C12119.13 (17)H252—C25—H253109.5
C14—C13—H13120.4
C9—C1—C2—C30.99 (19)C2—C1—C10—C1532.9 (2)
C10—C1—C2—C3175.63 (15)C9—C1—C10—C15151.23 (17)
C1—C2—C3—N40.83 (19)C15—C10—C11—C120.4 (2)
C1—C2—C3—C16171.81 (17)C1—C10—C11—C12177.54 (15)
C5—N4—C3—C2179.96 (16)C10—C11—C12—C130.8 (3)
C9—N4—C3—C20.34 (18)C11—C12—C13—C140.5 (3)
C5—N4—C3—C167.0 (3)C12—C13—C14—C150.2 (3)
C9—N4—C3—C16172.69 (15)C13—C14—C15—C100.5 (3)
C9—N4—C5—C60.4 (3)C11—C10—C15—C140.3 (3)
C3—N4—C5—C6179.94 (17)C1—C10—C15—C14176.99 (16)
N4—C5—C6—C71.7 (3)C2—C3—C16—O16172.16 (17)
C25—N23—C7—C80.7 (3)N4—C3—C16—O160.8 (3)
C24—N23—C7—C8167.66 (16)C2—C3—C16—C179.4 (3)
C25—N23—C7—C6177.49 (16)N4—C3—C16—C17179.20 (14)
C24—N23—C7—C614.2 (3)O16—C16—C17—C2275.5 (2)
C5—C6—C7—N23176.57 (17)C3—C16—C17—C22103.05 (18)
C5—C6—C7—C81.7 (3)O16—C16—C17—C1898.58 (19)
N23—C7—C8—C9178.54 (15)C3—C16—C17—C1882.9 (2)
C6—C7—C8—C90.3 (2)C22—C17—C18—C190.9 (2)
C5—N4—C9—C82.4 (2)C16—C17—C18—C19173.24 (16)
C3—N4—C9—C8177.90 (14)C22—C17—C18—Cl1179.42 (12)
C5—N4—C9—C1179.49 (15)C16—C17—C18—Cl15.3 (2)
C3—N4—C9—C10.25 (18)C17—C18—C19—C200.0 (3)
C7—C8—C9—N42.3 (2)Cl1—C18—C19—C20178.54 (14)
C7—C8—C9—C1179.84 (17)C18—C19—C20—C210.9 (3)
C2—C1—C9—N40.75 (18)C18—C19—C20—Cl2176.97 (14)
C10—C1—C9—N4175.75 (15)C19—C20—C21—C220.9 (3)
C2—C1—C9—C8177.02 (18)Cl2—C20—C21—C22176.99 (14)
C10—C1—C9—C86.5 (3)C20—C21—C22—C170.1 (3)
C2—C1—C10—C11144.24 (18)C18—C17—C22—C210.9 (3)
C9—C1—C10—C1131.7 (3)C16—C17—C22—C21173.45 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O16i0.952.443.370 (2)167
C22—H22···O16ii0.952.523.153 (2)124
C19—H19···Cg3iii0.952.683.568 (2)156
C24—H241···Cg4iv0.982.863.600 (2)132
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x1, y, z; (iv) x, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC23H19ClN2OC23H18Cl2N2O
Mr374.85409.29
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)160160
a, b, c (Å)10.4641 (2), 16.3479 (3), 11.0110 (2)9.5888 (2), 19.0878 (4), 10.6508 (2)
β (°) 102.4144 (11) 90.7580 (13)
V3)1839.57 (6)1949.24 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.220.35
Crystal size (mm)0.25 × 0.13 × 0.130.25 × 0.23 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Multi-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.842, 0.9770.842, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
41157, 4225, 3353 45923, 4465, 3434
Rint0.0720.071
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.06 0.041, 0.117, 1.04
No. of reflections42254465
No. of parameters247255
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.350.25, 0.37

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O16i0.952.483.276 (2)141
C13—H13···Cg2ii0.952.743.580 (2)148
C18—H18···Cg1iii0.952.863.781 (2)164
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O16i0.952.443.370 (2)167
C22—H22···O16ii0.952.523.153 (2)124
C19—H19···Cg3iii0.952.683.568 (2)156
C24—H241···Cg4iv0.982.863.600 (2)132
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x1, y, z; (iv) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds