Download citation
Download citation
link to html
Molecules of the title compound, C13H8I2N2O3, are linked into C(4) chains by a single N-H...O=C hydrogen bond [H...O = 2.10 Å, N...O = 2.832 (5) Å and N-H...O = 140°]. Two independent two-centre iodo-nitro interactions, both involving the same O atom but different I atoms [I...O = 3.205 (3) and 3.400 (3) Å, and C-I...O = 160.4 (2) and 155.7 (2)°], link the hydrogen-bonded chains into bilayers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103021164/sk1666sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021164/sk1666Isup2.hkl
Contains datablock I

CCDC reference: 226133

Comment top

As part of a general study of the interplay of hydrogen bonds, iodo···nitro interactions and aromatic ππ stacking interactions in aromatic systems containing both iodo and nitro substituents, we have recently reported the molecular and supramolecular structures of a range of diaryl species containing a variety of spacer units, namely arenesulfonamides (Kelly et al., 2002), Schiff base imines (Wardell et al., 2002; Glidewell, Howie et al., 2002), benzylanilines (Glidewell, Low et al., 2002) and phenylhydrazones (Glidewell et al., 2003). Here, we report the structure of an analogous compound containing an amide linker unit, N-(2-iodo-4-nitrophenyl)-4-iodobenzamide, (I), where there is an excess of iodo substituents over nitro substituents. \sch

The central C—C(O)—NH—C unit of (I) adopts a nearly planar trans configuration, and the dihedral angles between the mean plane of the spacer unit and the two aryl rings, C11—C16 and C21—C26, are 26.8 (2) and 29.2 (2)°, respectively. The dihedral angle between the nitro group and the adjacent aryl ring is 120.0 (2)° (see also Table 1). The bond distances and inter-bond angles are all normal.

There are two short non-bonded contacts within the molecule of (I), between atoms H1 and I22 and between atoms H26 and O13 (Fig.1, Table 2). While neither of these contacts can be regarded as a hydrogen bond, both involve a positively polarized H atom and a negatively polarized atom, I or O, and so are weakly attractive. These attractive interactions may contribute to the conformation of the molecular skeleton.

The molecules of (I) are linked into bilayers by a combination of one hydrogen bond and two iodo···nitro interactions. The formation of the supramolecular structure is most readily analysed by first considering each of the intermolecular interactions in turn, and then the effects of combining these interactions.

The amido atom N1 in the molecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O17 in the molecule at (x, y − 1, z), so generating by translation a chain running parallel to the [010] direction (Fig. 2) which is characterized by the C(4) motif (Bernstein et al., 1995) typical of simple carboxylic amides.

The shorter of the two iodo···nitro interactions, between atom I14 in the molecule at (x, y, z) and nitro atom O24 in the molecule at (1 + x, 1/2 − y, 1/2 + z) [I···O 3.205 (3) Å, C—I···O 160.4 (2)° and I···O—N 135.0 (3)°] generates a C(13) chain (Starbuck et al., 1999) running parallel to the [201] direction (Fig. 2) and generated by the c-glide plane at y = 1/4. The longer of the iodo···nitro interactions, between atom I22 and nitro atom O24 in the molecules at (x, y, z) and (-x, −y, −z), respectively [I···O 3.400 (3) Å, C—I····O 155.7 (2)° and I···O—N 146.6 (3)°], generates an R22(12) ring centred at the origin (Fig. 3).

The combination of the two chain motifs together generates a (102) sheet in the form of a (4,4) net (Batten & Robson, 1998) built from a single type of R44(32) ring (Fig. 2), and pairs of these sheets, related by inversion, are linked by the R22(12) (Fig. 3) motif into bilayers, within which the two iodo···nitro interactions together form a C(13)[R22(12)] chain of rings (Fig. 3).

Table 2. Hydrogen bonds and short intramolecular contacts (Å, °) for compound (I).

Experimental top

A sample of (I) was prepared from 4-iodobenzoyl chloride and 2-iodo-4-nitroaniline according to the general procedure of Furniss et al. (1989). Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in ethanol-acetone (1/1 v/v). Analysis: m.p. 512–513 K; IR (KBr): 3277 cm−1 ν(NH), 1660 cm−1 ν(CO).

Refinement top

Space group P21/c was uniquely assigned from the systematic absences. All H atoms were located from difference maps and they were then treated as riding atoms, with C—H distances of 0.95 Å and N—H distances of 0.88 Å.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I) showing the formation of a (102) sheet of R44(32) rings by combination of C(4) and C(13) chains. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 3] Fig. 3. A view of part of the crystal structure of (I) showing the combination of the two independent iodo···nitro interactions. For the sake of clarity, H atoms bonded to C atoms have been omitted.
N-(2-Iodo-4-nitrophenyl)-4-iodobenzamide top
Crystal data top
C13H8I2N2O3F(000) = 920
Mr = 494.01Dx = 2.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3217 reflections
a = 15.6188 (5) Åθ = 3.0–27.5°
b = 4.7253 (1) ŵ = 4.45 mm1
c = 19.7669 (7) ÅT = 120 K
β = 104.0822 (12)°Needle, colourless
V = 1415.02 (7) Å30.60 × 0.03 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3217 independent reflections
Radiation source: fine-focus sealed X-ray tube2733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 2018
Tmin = 0.677, Tmax = 0.912k = 65
15901 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.016P)2 + 3.8598P]
where P = (Fo2 + 2Fc2)/3
3217 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
C13H8I2N2O3V = 1415.02 (7) Å3
Mr = 494.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.6188 (5) ŵ = 4.45 mm1
b = 4.7253 (1) ÅT = 120 K
c = 19.7669 (7) Å0.60 × 0.03 × 0.02 mm
β = 104.0822 (12)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3217 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
2733 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.912Rint = 0.079
15901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.06Δρmax = 0.71 e Å3
3217 reflectionsΔρmin = 1.22 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.4434 (3)0.5630 (9)0.0826 (2)0.0144 (9)
C120.5253 (3)0.6883 (9)0.0844 (2)0.0163 (9)
C130.6003 (3)0.6032 (9)0.1336 (2)0.0158 (9)
C140.5936 (3)0.3927 (9)0.1814 (2)0.0180 (9)
C150.5128 (3)0.2681 (9)0.1811 (2)0.0166 (9)
C160.4380 (3)0.3539 (9)0.1314 (2)0.0147 (9)
I140.70731 (2)0.25316 (7)0.254279 (15)0.02303 (10)
C170.3641 (3)0.6640 (9)0.0289 (2)0.0142 (9)
O170.3595 (2)0.9044 (6)0.00465 (16)0.0178 (7)
N10.2990 (2)0.4671 (8)0.00990 (18)0.0144 (7)
C210.2153 (3)0.5039 (9)0.0358 (2)0.0135 (9)
C220.1441 (3)0.3480 (9)0.0245 (2)0.0140 (9)
C230.0618 (3)0.3607 (9)0.0718 (2)0.0173 (9)
C240.0514 (3)0.5397 (10)0.1286 (2)0.0157 (9)
C250.1205 (3)0.7044 (9)0.1400 (2)0.0169 (9)
C260.2023 (3)0.6833 (9)0.0938 (2)0.0161 (9)
I220.15670 (2)0.10085 (6)0.065587 (14)0.01839 (9)
N240.0351 (3)0.5466 (8)0.17893 (19)0.0193 (8)
O240.0889 (2)0.3638 (7)0.17319 (18)0.0274 (8)
O250.0490 (2)0.7302 (7)0.22304 (17)0.0259 (8)
H120.52950.83220.05180.020*
H130.65580.68780.13480.019*
H150.50880.12660.21440.020*
H160.38250.26950.13070.018*
H10.31060.29760.02830.017*
H230.01390.24910.06510.021*
H250.11150.82910.17880.020*
H260.25030.79180.10150.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.013 (2)0.014 (2)0.016 (2)0.0011 (17)0.0024 (17)0.0018 (16)
C120.018 (2)0.012 (2)0.020 (2)0.0014 (17)0.0063 (18)0.0003 (17)
C130.012 (2)0.019 (2)0.017 (2)0.0027 (17)0.0034 (17)0.0034 (17)
C140.019 (2)0.020 (2)0.013 (2)0.0010 (18)0.0003 (18)0.0029 (17)
C150.017 (2)0.019 (2)0.013 (2)0.0025 (18)0.0020 (18)0.0017 (16)
C160.013 (2)0.019 (2)0.013 (2)0.0016 (17)0.0037 (17)0.0021 (16)
I140.01636 (17)0.0340 (2)0.01466 (16)0.00316 (13)0.00401 (12)0.00051 (12)
C170.012 (2)0.018 (2)0.012 (2)0.0026 (17)0.0021 (17)0.0033 (17)
O170.0155 (16)0.0122 (15)0.0241 (16)0.0007 (12)0.0017 (13)0.0031 (12)
N10.0135 (19)0.0115 (17)0.0165 (18)0.0005 (14)0.0003 (14)0.0036 (14)
C210.015 (2)0.012 (2)0.013 (2)0.0001 (17)0.0032 (17)0.0015 (16)
C220.015 (2)0.014 (2)0.013 (2)0.0003 (17)0.0032 (17)0.0007 (16)
C230.014 (2)0.018 (2)0.018 (2)0.0038 (18)0.0002 (18)0.0004 (17)
C240.010 (2)0.023 (2)0.0103 (19)0.0046 (18)0.0039 (16)0.0035 (17)
C250.018 (2)0.018 (2)0.013 (2)0.0029 (18)0.0013 (18)0.0002 (17)
C260.014 (2)0.017 (2)0.017 (2)0.0005 (18)0.0031 (18)0.0009 (17)
I220.01791 (16)0.02143 (17)0.01582 (15)0.00088 (12)0.00405 (11)0.00436 (11)
N240.018 (2)0.022 (2)0.0160 (19)0.0000 (17)0.0004 (16)0.0030 (16)
O240.0170 (18)0.034 (2)0.0266 (18)0.0063 (15)0.0039 (14)0.0013 (15)
O250.0222 (19)0.0277 (19)0.0217 (18)0.0049 (15)0.0065 (14)0.0067 (14)
Geometric parameters (Å, º) top
C11—C161.398 (6)N1—H10.88
C11—C121.403 (6)C21—C221.397 (6)
C11—C171.499 (6)C21—C261.401 (6)
C12—C131.388 (6)C22—C231.394 (6)
C12—H120.95C22—I222.099 (4)
C13—C141.392 (6)C23—C241.384 (6)
C13—H130.95C23—H230.95
C14—C151.391 (6)C24—C251.392 (6)
C14—I142.103 (4)C24—N241.471 (5)
C15—C161.392 (6)C25—C261.382 (6)
C15—H150.95C25—H250.95
C16—H160.95C26—H260.95
C17—O171.228 (5)N24—O251.212 (5)
C17—N11.362 (5)N24—O241.230 (5)
N1—C211.407 (5)
C16—C11—C12119.2 (4)C21—N1—H1116.3
C16—C11—C17122.4 (4)C22—C21—C26119.2 (4)
C12—C11—C17118.4 (4)C22—C21—N1119.0 (4)
C13—C12—C11120.3 (4)C26—C21—N1121.8 (4)
C13—C12—H12119.8C23—C22—C21120.8 (4)
C11—C12—H12119.8C23—C22—I22118.2 (3)
C12—C13—C14119.5 (4)C21—C22—I22121.0 (3)
C12—C13—H13120.3C24—C23—C22118.5 (4)
C14—C13—H13120.3C24—C23—H23120.8
C15—C14—C13121.2 (4)C22—C23—H23120.8
C15—C14—I14118.9 (3)C23—C24—C25122.0 (4)
C13—C14—I14119.8 (3)C23—C24—N24118.0 (4)
C14—C15—C16118.9 (4)C25—C24—N24120.0 (4)
C14—C15—H15120.5C26—C25—C24118.8 (4)
C16—C15—H15120.5C26—C25—H25120.6
C15—C16—C11120.8 (4)C24—C25—H25120.6
C15—C16—H16119.6C25—C26—C21120.7 (4)
C11—C16—H16119.6C25—C26—H26119.6
O17—C17—N1123.8 (4)C21—C26—H26119.6
O17—C17—C11122.1 (4)O25—N24—O24124.2 (4)
N1—C17—C11114.2 (4)O25—N24—C24118.5 (4)
C17—N1—C21127.4 (4)O24—N24—C24117.3 (4)
C17—N1—H1116.3
C12—C11—C17—N1153.2 (4)C26—C21—C22—C232.7 (6)
C11—C17—N1—C21175.9 (4)N1—C21—C22—C23174.7 (4)
C17—N1—C21—C22148.5 (4)C26—C21—C22—I22175.0 (3)
C16—C11—C12—C130.8 (6)N1—C21—C22—I227.6 (5)
C17—C11—C12—C13179.4 (4)C21—C22—C23—C242.5 (6)
C11—C12—C13—C140.2 (6)I22—C22—C23—C24175.3 (3)
C12—C13—C14—C150.7 (6)C22—C23—C24—C250.4 (7)
C12—C13—C14—I14178.2 (3)C22—C23—C24—N24178.7 (4)
C13—C14—C15—C160.9 (7)C23—C24—C25—C261.5 (7)
I14—C14—C15—C16177.9 (3)N24—C24—C25—C26176.8 (4)
C14—C15—C16—C110.3 (6)C24—C25—C26—C211.3 (7)
C12—C11—C16—C150.6 (6)C22—C21—C26—C250.8 (6)
C17—C11—C16—C15179.1 (4)N1—C21—C26—C25176.5 (4)
C16—C11—C17—O17151.8 (4)C23—C24—N24—O2410.5 (6)
C12—C11—C17—O1726.8 (6)C23—C24—N24—O25169.5 (4)
C16—C11—C17—N128.2 (6)C25—C24—N24—O24167.8 (4)
O17—C17—N1—C214.1 (7)C25—C24—N24—O2512.2 (6)
C17—N1—C21—C2634.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I220.882.843.215 (4)108
N1—H1···O17i0.882.102.832 (5)140
C26—H26···O170.952.422.929 (5)113
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H8I2N2O3
Mr494.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)15.6188 (5), 4.7253 (1), 19.7669 (7)
β (°) 104.0822 (12)
V3)1415.02 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.45
Crystal size (mm)0.60 × 0.03 × 0.02
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.677, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
15901, 3217, 2733
Rint0.079
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.074, 1.06
No. of reflections3217
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 1.22

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS86 (Sheldrick, 1985), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected torsion angles (º) top
C12—C11—C17—N1153.2 (4)C23—C24—N24—O2410.5 (6)
C11—C17—N1—C21175.9 (4)C25—C24—N24—O2512.2 (6)
C17—N1—C21—C22148.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I220.882.843.215 (4)108
N1—H1···O17i0.882.102.832 (5)140
C26—H26···O170.952.422.929 (5)113
Symmetry code: (i) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds