Download citation
Download citation
link to html
The investigated crystal of [alpha]-LiRb2(CF3SO3)3 [lithium dirubidium tris­(tri­fluoro­methane­sulfonate)] was a twin, with the twin matrix given by (\overline 100/010/001). The structure consists of channel-like patterns built up of lipophilic CF3 groups pointing towards each other. The polar interstices are occupied by cations. One Rb atom is coordinated by O atoms in the form of a distorted square antiprism, while the coordination around the second Rb atom is best described as a distorted pentagonal plane, with one O atom and one F atom situated above and an additional F atom below this plane. The O atoms around the Li atom form a strongly distorted tetrahedron.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103021693/sk1657sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021693/sk1657Isup2.hkl
Contains datablock I

Comment top

Salts consisting of complex anions often show phase transitions to rotationally disordered modifications. As a rule, these phase transitions are accompanied by an increase of the ionic conductivity (Jansen, 1991). Alkali metal salts of the trifluoromethylsulfonate (trifluoromethanesulfonate) ion belong to these so-called rotator phases. Due to their interesting properties, the ionic conductivities and crystal structures of, for example, β-LiSO3CF3 (Tremayne et al., 1992; Bolte & Lerner, 2001), α-NaSO3CF3 (Sofina et al., 2003) and RT-KSO3CF3 (Korus & Jansen, 2001) have been studied in detail. Furthermore, mixed alkali trifluoromethanesulfonates offer the possibility of exploring the `mixed cation effect', which can be observed in ion-conducting systems containing more than one mobile cation (Yanija & Secco, 1995). The ionic conductivity of compounds in such systems can generally be varied by adjusting the ratio of the cations.

Against this background, we have carried out systematic investigations of the phase diagram of the LiSO3CF3/RbSO3CF3 system. In the course of these investigations, crystals of α-LiRb2(SO3CF3)3 were found and the structure is presented here. The structure determination was rendered complicated due to underlying twinning.

In the structure of α-LiRb2(SO3CF3)3, three crystallographically independent trifluoromethanesulfonate ions can be distinguished. Their conformation is staggered and the observed bond lengths and angles are comparable to those in β-LiSO3CF3 (Bolte & Lerner, 2001), α-NaSO3CF3(Sofina et al., 2003), the low- and room-temperature modifications of NaSO3CF3·H2O (Korus & Jansen, 1997), NaSO3CF3·3HSO3CF3 (Korus & Jansen, 1998) and RT-KSO3CF3 (Korus & Jansen, 2001).

In α-LiRb2(SO3CF3)3, atom Rb1 is coordinated by O atoms in the form of a distorted square antiprism (Fig. 1). The cation is displaced towards the plane formed by atoms O1, O4, O7iv and O9ii [symmetry codes: (ii) 1 + x, y, z; (iv) −x, 2 − y, −z]. Atom O5iii is shifted from the ideal position and approaches atom O6iii, as both atoms are bridged by an S atom [symmetry code: (iii) x − 1, y, z]. Each of the remaining O atoms forms part of a different trifluoromethanesulfonate ion. Please check that added symmetry codes, here and elsewhere, are correct.

Atom Rb2 is coordinated by five O atoms to form a distorted pentagonal plane (Fig. 1). The O2vi—Rb2—O4iv angle is widened, as the atoms O2vi and O4iv are again bridged by an S atom [symmetry code: (vi) 1/2 − x, 1/2 + y, −1/2 − z]. The nearest atoms above the pentagonal plane are O7 and F1ii; below the plane is atom F7, with a large distance to the central atom (4.20 Å).

The Li atom is surrounded by O atoms in the form of a strongly distorted tetrahedron, with Li—O distances as large as 1.95 Å on average (Fig. 1). This value is only slightly different from that observed in β-LiSO3CF3 (1.94 Å; Bolte & Lerner, 2001).

In the structures of the pure alkali trifluoromethanesulfonates MSO3CF3 (M is Li or Na) which have been characterized to date (Bolte & Lerner, 2001; Sofina et al., 2003), as well as in the structure of NaSO3CF3·H2O; (Korus & Jansen, 1997), the nonpolar CF3 groups point towards each other and form double layers which are linked by cations. In α-LiRb2(SO3CF3)3 and RT-KSO3CF3 (Korus & Jansen, 2001), on the other hand, the CF3 groups build up channel-like patterns along the crystallographic a axis (Fig. 2) and the polar interstices between these channels are filled with cations (Fig. 3).

Experimental top

α-LiRb2(SO3CF3)3 was prepared from mixtures of solid LiSO3CF3 (Aldrich, 99.995%) and RbSO3CF3. Details concerning the synthesis are given in Pompetzki et al. (2003). The `single-crystal' investigated in the present work was found within a diphasic product consisting of LiRb2(SO3CF3)3 and Li0.55Rb0.45SO3CF3, which had formed on annealing (533 K, 7 d, cooling rate 5 K h−1) a mixture of LiSO3CF3 (40 mol%) and RbSO3CF3 (60 mol%). The crystal was selected in a glove box under dry argon.

Refinement top

The structure was solved in space group P21/n via direct methods and the solution yielded the positions of the heavy atoms. The positions of the light atoms were found using a difference Fourier synthesis. Refinement as a single-crystal stuck at an overall agreement factor of about 23%, and no satisfactory structural model could be obtained. Of course, the pseudo-orthorhombic metrics implied the possibility of twinning. Furthermore, the fact that differential scanning calorimetry measurements and X-ray powder diffraction studies confirmed a phase transition at approximately 383 K to a β phase with orthorhombic metrics (a = 5.476 (2), b = 16.554 (18) and c = 20.177 (11) Å) suggested the introduction of an additional mirror plane from the orthorhombic system as a twinning operation. Consequently, we chose a mirror plane perpendicular to the a axis and introduced the corresponding twin matrix. The refinement converged satisfactorily after taking the twinning into account. The twin matrix was given by (100/010/001). The volume fractions of the twin individuals are tI = 0.515 (2) and tII = 0.485 (2).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: JANA2000 (Petřiček & Dušek, 2000); molecular graphics: DIAMOND (Bergerhoff et al., 1996) and ORTEP-3 for Windows (Farrugia, 1996); software used to prepare material for publication: Details?.

Figures top
[Figure 1] Fig. 1. View of the coordination around the cations in α-LiRb2(SO3CF3)3. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) −1 − x, 2 − y, −z; (ii) 1 + x, y, z; (iii) x − 1, y, z; (iv) −x, 2 − y, −z; (v) 1 − x, 2 − y, −z; (vi) 1/2 − x, 1/2 + y, −1/2 − z; (vii) −1/2 − x, 1/2 + y, −1/2 − z].
[Figure 2] Fig. 2. A perspective view of the channel-like pattern formed by the CF3 groups in α-LiRb2(SO3CF3)3.
[Figure 3] Fig. 3. A projection on the bc plane of the structure of α-LiRb2(SO3CF3)3.
Lithium dirubidium tris(trifluoromethylsulfonate) top
Crystal data top
LiRb2(SO3CF3)3F(000) = 1184
Mr = 625.12Dx = 2.42 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 3752 reflections
a = 5.3408 (9) Åθ = 4.8–59.1°
b = 16.286 (2) ŵ = 6.20 mm1
c = 19.721 (3) ÅT = 293 K
β = 90.48 (1)°Irregular, colourless
V = 1715.3 (4) Å30.15 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker SMART-APEX CCD area-detector
diffractometer
5010 independent reflections
Radiation source: fine-focus sealed tube2625 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.114
ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 77
Tmin = 0.062, Tmax = 0.155k = 2222
21958 measured reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.068Secondary atom site location: difference Fourier map
wR(F2) = 0.061 w = 1/[σ2(Fo2)]
S = 4.17(Δ/σ)max = 0.0004
5010 reflectionsΔρmax = 1.86 e Å3
245 parametersΔρmin = 2.05 e Å3
Crystal data top
LiRb2(SO3CF3)3V = 1715.3 (4) Å3
Mr = 625.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.3408 (9) ŵ = 6.20 mm1
b = 16.286 (2) ÅT = 293 K
c = 19.721 (3) Å0.15 × 0.12 × 0.08 mm
β = 90.48 (1)°
Data collection top
Bruker SMART-APEX CCD area-detector
diffractometer
5010 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2625 reflections with I > 3σ(I)
Tmin = 0.062, Tmax = 0.155Rint = 0.114
21958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068245 parameters
wR(F2) = 0.0610 restraints
S = 4.17Δρmax = 1.86 e Å3
5010 reflectionsΔρmin = 2.05 e Å3
Special details top

Experimental. δω=0.3° per frame; 1800 frames; 45 sec per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement as twin. Twin matrix (100/010/001). Twin volumes tI = 0.515 (2), tII = 0.485 (2). Maximum angular difference for twin overlap = 0.2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.0264 (3)0.87556 (9)0.01184 (7)0.0367 (5)
Rb20.1026 (4)1.15805 (12)0.22444 (9)0.0654 (8)
S10.0316 (8)0.6932 (2)0.13409 (19)0.0310 (14)
S20.5460 (8)0.7516 (3)0.09017 (19)0.0344 (15)
S30.4912 (9)0.9677 (2)0.10632 (18)0.0320 (14)
O10.180 (2)0.7391 (6)0.0899 (5)0.038 (4)
O20.124 (2)0.6834 (7)0.1986 (5)0.053 (4)
O30.2256 (18)0.7116 (6)0.1317 (5)0.037 (4)
O40.282 (2)0.7632 (7)0.1033 (7)0.066 (6)
O50.713 (2)0.7910 (7)0.1325 (6)0.044 (4)
O60.6150 (19)0.7502 (6)0.0198 (5)0.049 (4)
O70.292 (2)1.0237 (8)0.1186 (6)0.066 (6)
O80.420 (2)0.8854 (6)0.0847 (5)0.054 (4)
O90.698 (2)0.9992 (7)0.0719 (5)0.052 (5)
C10.595 (4)0.9478 (13)0.1964 (8)0.061 (9)
C20.548 (4)1.0889 (10)0.4053 (11)0.068 (9)
C30.577 (4)0.6385 (12)0.1075 (9)0.060 (8)
F10.679 (2)1.0173 (7)0.2233 (6)0.118 (7)
F20.426 (3)0.9161 (9)0.2327 (6)0.146 (8)
F30.791 (3)0.9015 (8)0.1917 (6)0.113 (7)
F40.780 (2)1.0659 (7)0.4022 (7)0.098 (7)
F50.468 (4)1.0886 (6)0.4642 (5)0.126 (7)
F60.412 (3)1.0404 (6)0.3659 (6)0.103 (6)
F70.502 (3)0.6303 (6)0.1696 (5)0.117 (6)
F80.457 (3)0.5964 (7)0.0681 (6)0.110 (6)
F90.8187 (19)0.6242 (8)0.1085 (7)0.114 (7)
Li10.534 (5)0.7604 (12)0.0743 (11)0.027 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0342 (9)0.0356 (9)0.0403 (9)0.0022 (9)0.0000 (9)0.0031 (8)
Rb20.0454 (12)0.1113 (18)0.0393 (10)0.0068 (11)0.0093 (10)0.0037 (12)
S10.030 (3)0.034 (2)0.029 (2)0.001 (2)0.002 (2)0.0091 (17)
S20.031 (3)0.046 (3)0.026 (2)0.003 (2)0.004 (2)0.0054 (19)
S30.033 (3)0.026 (2)0.038 (2)0.001 (2)0.001 (2)0.0018 (18)
O10.037 (8)0.029 (7)0.048 (8)0.007 (5)0.010 (6)0.026 (6)
O20.061 (8)0.061 (8)0.038 (7)0.001 (7)0.013 (6)0.022 (6)
O30.025 (7)0.045 (8)0.042 (7)0.001 (5)0.002 (6)0.004 (6)
O40.022 (8)0.080 (12)0.096 (13)0.009 (6)0.005 (7)0.002 (9)
O50.042 (7)0.042 (8)0.047 (8)0.009 (6)0.008 (6)0.004 (7)
O60.067 (8)0.045 (7)0.036 (6)0.029 (6)0.012 (7)0.008 (6)
O70.036 (8)0.072 (10)0.091 (11)0.002 (7)0.010 (8)0.019 (9)
O80.067 (9)0.039 (7)0.055 (7)0.008 (7)0.038 (6)0.005 (6)
O90.039 (7)0.078 (10)0.040 (8)0.002 (7)0.002 (6)0.008 (7)
C10.079 (17)0.071 (17)0.031 (11)0.020 (13)0.034 (11)0.001 (11)
C20.064 (16)0.028 (11)0.112 (18)0.000 (11)0.002 (16)0.026 (12)
C30.086 (17)0.054 (15)0.040 (12)0.000 (12)0.025 (12)0.037 (10)
F10.186 (14)0.081 (10)0.087 (9)0.032 (9)0.037 (10)0.029 (8)
F20.146 (14)0.213 (17)0.078 (9)0.092 (12)0.037 (11)0.079 (10)
F30.151 (14)0.111 (12)0.077 (9)0.026 (10)0.079 (9)0.004 (8)
F40.087 (10)0.060 (9)0.146 (14)0.029 (7)0.014 (9)0.000 (8)
F50.233 (17)0.081 (9)0.063 (8)0.031 (12)0.030 (12)0.037 (6)
F60.138 (12)0.040 (7)0.133 (11)0.030 (8)0.018 (10)0.025 (7)
F70.162 (13)0.093 (9)0.098 (9)0.003 (11)0.008 (11)0.050 (8)
F80.137 (13)0.075 (9)0.118 (10)0.011 (10)0.027 (12)0.017 (7)
F90.078 (9)0.075 (10)0.189 (15)0.042 (8)0.011 (9)0.043 (10)
Li10.031 (17)0.016 (13)0.033 (14)0.006 (13)0.011 (13)0.007 (10)
Geometric parameters (Å, º) top
Rb1—O42.904 (12)S2—O51.376 (12)
Rb1—O9i2.944 (11)S2—O61.439 (11)
Rb1—O9ii2.998 (11)S2—O41.445 (12)
Rb1—O6iii3.004 (10)S2—C31.88 (2)
Rb1—O7iv3.014 (12)S2—Rb1ii3.620 (5)
Rb1—O83.043 (10)S2—Rb2iv3.859 (5)
Rb1—O13.108 (10)S3—O91.400 (12)
Rb1—O5iii3.228 (11)S3—O71.425 (13)
Rb1—S2iii3.620 (5)S3—O81.456 (10)
Rb1—Li1iii3.64 (2)S3—C11.885 (18)
Rb1—Li13.72 (2)S3—Rb1iii3.798 (4)
Rb2—O5v2.870 (11)S3—Rb1iv4.009 (4)
Rb2—O4iv2.883 (13)C1—F21.27 (3)
Rb2—O2vi3.011 (11)C1—F31.29 (3)
Rb2—O3vii3.100 (11)C1—F11.33 (2)
Rb2—O2vii3.188 (11)C2—F51.24 (2)
Rb2—O73.193 (13)C2—F41.29 (2)
Rb2—F1ii3.221 (12)C2—F61.32 (2)
Rb2—S1vii3.641 (4)C3—F81.21 (2)
Rb2—S2iv3.859 (5)C3—F71.30 (2)
Rb2—Rb1iv4.244 (2)C3—F91.31 (2)
S1—O21.378 (10)Li1—O3ii1.89 (3)
S1—O11.390 (11)Li1—O61.91 (2)
S1—O31.407 (11)Li1—O11.94 (3)
S1—C2viii1.870 (18)Li1—O8ii2.06 (2)
S1—Rb2viii3.641 (4)Li1—Rb1ii3.64 (2)
O4—Rb1—O9i117.7 (3)O2—S1—C2viii105.3 (8)
O4—Rb1—O9ii122.3 (3)O1—S1—C2viii101.8 (8)
O9i—Rb1—O9ii93.0 (3)O3—S1—C2viii102.9 (8)
O4—Rb1—O6iii83.1 (3)O2—S1—Rb2viii60.2 (5)
O9i—Rb1—O6iii90.7 (3)O1—S1—Rb2viii156.3 (4)
O9ii—Rb1—O6iii148.0 (3)O3—S1—Rb2viii56.7 (4)
O4—Rb1—O7iv72.1 (3)C2viii—S1—Rb2viii101.7 (7)
O9i—Rb1—O7iv67.7 (3)O5—S2—O6115.0 (7)
O9ii—Rb1—O7iv77.8 (3)O5—S2—O4117.3 (7)
O6iii—Rb1—O7iv132.3 (3)O6—S2—O4115.7 (7)
O4—Rb1—O8141.7 (3)O5—S2—C3106.9 (8)
O9i—Rb1—O875.5 (3)O6—S2—C397.8 (7)
O9ii—Rb1—O890.3 (3)O4—S2—C3100.4 (8)
O6iii—Rb1—O859.9 (3)O5—S2—Rb1ii62.6 (5)
O7iv—Rb1—O8140.4 (3)O6—S2—Rb1ii53.8 (4)
O4—Rb1—O180.0 (3)O4—S2—Rb1ii134.3 (5)
O9i—Rb1—O1156.3 (3)C3—S2—Rb1ii124.1 (7)
O9ii—Rb1—O189.5 (3)O5—S2—Rb1118.2 (5)
O6iii—Rb1—O175.2 (3)O6—S2—Rb178.8 (4)
O7iv—Rb1—O1135.7 (3)C3—S2—Rb1131.7 (7)
O8—Rb1—O180.9 (3)Rb1ii—S2—Rb192.80 (10)
O4—Rb1—O5iii61.2 (3)O5—S2—Rb2iv78.8 (5)
O9i—Rb1—O5iii71.6 (3)O6—S2—Rb2iv146.3 (5)
O9ii—Rb1—O5iii162.2 (3)C3—S2—Rb2iv107.6 (6)
O6iii—Rb1—O5iii44.6 (3)Rb1ii—S2—Rb2iv121.43 (12)
O7iv—Rb1—O5iii87.7 (3)Rb1—S2—Rb2iv67.76 (8)
O8—Rb1—O5iii94.3 (3)O9—S3—O7116.2 (7)
O1—Rb1—O5iii108.2 (3)O9—S3—O8113.6 (7)
O4—Rb1—O8ii88.4 (3)O7—S3—O8116.5 (7)
O9i—Rb1—O8ii133.5 (3)O9—S3—C1107.0 (9)
O9ii—Rb1—O8ii41.9 (3)O7—S3—C199.4 (9)
O6iii—Rb1—O8ii132.4 (3)O8—S3—C1101.1 (8)
O7iv—Rb1—O8ii87.8 (3)O9—S3—Rb1iii45.9 (5)
O8—Rb1—O8ii108.4 (2)O7—S3—Rb1iii150.4 (5)
O1—Rb1—O8ii57.2 (2)O8—S3—Rb1iii68.5 (4)
O5iii—Rb1—O8ii149.0 (2)C1—S3—Rb1iii108.3 (7)
O4—Rb1—S2iii73.5 (2)O9—S3—Rb1114.2 (5)
O9i—Rb1—S2iii77.8 (2)O7—S3—Rb179.7 (5)
O9ii—Rb1—S2iii164.2 (2)C1—S3—Rb1134.3 (7)
O6iii—Rb1—S2iii22.7 (2)Rb1iii—S3—Rb187.85 (8)
O7iv—Rb1—S2iii109.6 (2)S1—O1—Li1137.9 (9)
O8—Rb1—S2iii75.1 (2)S1—O1—Rb1129.7 (6)
O1—Rb1—S2iii93.9 (2)Li1—O1—Rb191.8 (7)
O5iii—Rb1—S2iii22.2 (2)S1—O2—Rb2ix142.5 (6)
O8ii—Rb1—S2iii148.7 (2)S1—O2—Rb2viii97.8 (5)
O4—Rb1—Li1iii107.5 (4)Rb2ix—O2—Rb2viii118.9 (3)
O9i—Rb1—Li1iii96.6 (4)S1—O3—Li1iii141.0 (10)
O9ii—Rb1—Li1iii116.4 (4)S1—O3—Rb2viii101.0 (5)
O6iii—Rb1—Li1iii31.6 (4)Li1iii—O3—Rb2viii117.8 (8)
O7iv—Rb1—Li1iii160.1 (4)S2—O4—Rb2iv122.6 (7)
O8—Rb1—Li1iii34.5 (4)S2—O4—Rb1115.1 (7)
O1—Rb1—Li1iii61.5 (4)Rb2iv—O4—Rb194.3 (3)
O5iii—Rb1—Li1iii75.4 (4)S2—O5—Rb2v168.9 (7)
O8ii—Rb1—Li1iii112.1 (4)S2—O5—Rb1ii95.1 (5)
S2iii—Rb1—Li1iii53.1 (4)Rb2v—O5—Rb1ii88.0 (3)
O4—Rb1—Li168.0 (4)S2—O6—Li1151.4 (11)
O9i—Rb1—Li1166.4 (4)S2—O6—Rb1ii103.5 (5)
O9ii—Rb1—Li174.0 (4)Li1—O6—Rb1ii92.9 (8)
O6iii—Rb1—Li1102.5 (4)S3—O7—Rb1iv125.3 (7)
O7iv—Rb1—Li1104.7 (4)S3—O7—Rb2142.3 (7)
O8—Rb1—Li1108.1 (4)Rb1iv—O7—Rb286.2 (3)
O1—Rb1—Li131.5 (4)S3—O8—Li1iii155.1 (10)
O5iii—Rb1—Li1120.4 (4)S3—O8—Rb1115.7 (5)
O8ii—Rb1—Li132.9 (4)Li1iii—O8—Rb188.9 (8)
S2iii—Rb1—Li1115.8 (3)S3—O8—Rb1iii89.0 (5)
Li1iii—Rb1—Li193.1 (5)Li1iii—O8—Rb1iii78.5 (8)
O5v—Rb2—O4iv66.0 (3)Rb1—O8—Rb1iii108.4 (3)
O5v—Rb2—O2vi70.5 (3)S3—O9—Rb1i157.6 (7)
O4iv—Rb2—O2vi130.3 (3)S3—O9—Rb1iii114.5 (6)
O5v—Rb2—O3vii134.8 (3)Rb1i—O9—Rb1iii87.0 (3)
O4iv—Rb2—O3vii122.3 (3)F2—C1—F3112.5 (18)
O2vi—Rb2—O3vii75.3 (3)F2—C1—F1111.3 (16)
O5v—Rb2—O2vii152.7 (3)F3—C1—F1104.8 (18)
O4iv—Rb2—O2vii92.3 (3)F2—C1—S3113.4 (16)
O2vi—Rb2—O2vii118.9 (3)F3—C1—S3105.3 (12)
O3vii—Rb2—O2vii43.7 (3)F1—C1—S3109.0 (13)
O5v—Rb2—O791.0 (3)F5—C2—F4112.4 (19)
O4iv—Rb2—O769.8 (3)F5—C2—F6110.9 (18)
O2vi—Rb2—O7134.3 (3)F4—C2—F6108.7 (16)
O3vii—Rb2—O7134.3 (3)F5—C2—S1vii112.2 (13)
O2vii—Rb2—O796.9 (3)F4—C2—S1vii106.5 (13)
O5v—Rb2—F1ii72.3 (3)F6—C2—S1vii105.9 (14)
O4iv—Rb2—F1ii123.3 (3)F8—C3—F7112.3 (18)
O2vi—Rb2—F1ii60.1 (3)F8—C3—F9115.1 (17)
O3vii—Rb2—F1ii114.2 (3)F7—C3—F9106.2 (16)
O2vii—Rb2—F1ii135.0 (3)F8—C3—S2113.0 (14)
O7—Rb2—F1ii74.6 (3)F7—C3—S2104.1 (12)
O5v—Rb2—S1vii152.5 (2)F9—C3—S2105.2 (13)
O4iv—Rb2—S1vii110.7 (2)C1—F1—Rb2iii147.7 (12)
O2vi—Rb2—S1vii97.1 (2)O3ii—Li1—O6113.2 (13)
O3vii—Rb2—S1vii22.30 (19)O3ii—Li1—O1119.7 (12)
O2vii—Rb2—S1vii22.02 (19)O6—Li1—O1110.6 (12)
O7—Rb2—S1vii114.1 (2)O3ii—Li1—O8ii105.8 (12)
F1ii—Rb2—S1vii123.7 (2)O6—Li1—O8ii99.0 (10)
O5v—Rb2—S2iv84.4 (2)O1—Li1—O8ii106.1 (11)
O4iv—Rb2—S2iv18.4 (2)O3ii—Li1—Rb1ii90.2 (9)
O2vi—Rb2—S2iv145.3 (2)O6—Li1—Rb1ii55.5 (7)
O3vii—Rb2—S2iv110.0 (2)O1—Li1—Rb1ii149.7 (10)
O2vii—Rb2—S2iv74.84 (19)O8ii—Li1—Rb1ii56.7 (6)
O7—Rb2—S2iv67.2 (2)O3ii—Li1—Rb1170.2 (10)
F1ii—Rb2—S2iv134.5 (2)O6—Li1—Rb176.1 (8)
S1vii—Rb2—S2iv94.60 (10)O1—Li1—Rb156.7 (7)
O2—S1—O1115.7 (7)O8ii—Li1—Rb168.6 (7)
O2—S1—O3114.4 (7)Rb1ii—Li1—Rb193.1 (5)
O1—S1—O3114.4 (6)
Symmetry codes: (i) x1, y+2, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y+2, z; (v) x+1, y+2, z; (vi) x+1/2, y+1/2, z1/2; (vii) x1/2, y+1/2, z1/2; (viii) x1/2, y1/2, z1/2; (ix) x+1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaLiRb2(SO3CF3)3
Mr625.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.3408 (9), 16.286 (2), 19.721 (3)
β (°) 90.48 (1)
V3)1715.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.20
Crystal size (mm)0.15 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART-APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.062, 0.155
No. of measured, independent and
observed [I > 3σ(I)] reflections
21958, 5010, 2625
Rint0.114
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.061, 4.17
No. of reflections5010
No. of parameters245
Δρmax, Δρmin (e Å3)1.86, 2.05

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1999), SIR97 (Altomare et al., 1997), JANA2000 (Petřiček & Dušek, 2000), DIAMOND (Bergerhoff et al., 1996) and ORTEP-3 for Windows (Farrugia, 1996), Details?.

Selected geometric parameters (Å, º) top
Rb1—O42.904 (12)Rb2—O2vi3.011 (11)
Rb1—O9i2.944 (11)Rb2—O3vii3.100 (11)
Rb1—O9ii2.998 (11)Rb2—O2vii3.188 (11)
Rb1—O6iii3.004 (10)Rb2—O73.193 (13)
Rb1—O7iv3.014 (12)Rb2—F1ii3.221 (12)
Rb1—O83.043 (10)Li1—O3ii1.89 (3)
Rb1—O13.108 (10)Li1—O61.91 (2)
Rb1—O5iii3.228 (11)Li1—O11.94 (3)
Rb2—O5v2.870 (11)Li1—O8ii2.06 (2)
Rb2—O4iv2.883 (13)
O3ii—Li1—O6113.2 (13)O3ii—Li1—O8ii105.8 (12)
O3ii—Li1—O1119.7 (12)O6—Li1—O8ii99.0 (10)
O6—Li1—O1110.6 (12)O1—Li1—O8ii106.1 (11)
Symmetry codes: (i) x1, y+2, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y+2, z; (v) x+1, y+2, z; (vi) x+1/2, y+1/2, z1/2; (vii) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds