Download citation
Download citation
link to html
A new diterpene, viz. 3[beta]-acetoxy-4[alpha],18:15,16-di­epoxy-6[beta],12-di­hydroxy­neocleroda-13(16),14-dien-19,20-olide, C22H28O8, exhibiting antifeedant activity against Spodoptera litura was isolated from the aerial parts of Teucrium tomentosum and its structure is reported. One of the two fused rings has a distorted-chair conformation and the other has a chair conformation. The mol­ecules in the crystal are stabilized via O-H...O and C-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103017050/sk1651sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103017050/sk1651Isup2.hkl
Contains datablock I

CCDC reference: 205654

Comment top

A large number of diterpenoids with the clerodane skeleton have been isolated from plants belonging to the genus Teucrium of the family Labiatae, from which a large number of clerodanes have been isolated in the past few years (Merrit & Ley, 1992; Rodriguez et al., 1994; Piozzi et al., 1998). The present study was carried out as part of our ongoing research on the structures of ecofriendly bioinsecticides. Interest in these compounds has been stimulated by their biological activity, particularly as antifeedant agents against lepidopterous pests (De la Torre et al., 1994; Merrit & Ley, 1992). The chemical structure of (I) was obtained from C13 and H1 NMR data and HMBC (Heteronuclear Multiple Bond Correlation) and the three-dimensional structure was obtained via single-crystal X-ray diffraction.

Rings A and B have distorted-chair and chair, respectively [QT =0.553 (2) Å, ϕ2 =-89.7 (7) ° and q2 =0.126 (1) Å for ring A, and QT =0.610 (1) Å, ϕ2 =0.3(1.5) ° and q2 =0.056 (2) Å for ring B; Cremer & Pople, 1975]. The lactone ring, C, adopts a sofa conformation [QT =0.502 (1) Å, ϕ2 =8.94 (2) ° and q2 = 0.367 (1) Å], whereas the ring D is planar (Nardelli, 1995). All interatomic distances and angles have normal values. Rings A/B and B/C are trans fused and ring A/C is cis fused. The furan ring, D, is in a synclinal conformation with respect to ring B [C11—C12—C13—C16 = −9.3 (3) °]. The acetyl group on atom C3 is in an anticlinal conformation as described by the C21—O3—C3—C2 dihedral angle [131.5 (2) °]. The methyl group on atom C8 is in an α configuration, whereas the hydroxyl group on atom C6 is in a β configuration.

The ORTEPIII (Burnett & Johnson, 1996) diagram of the molecule (Fig. 1) shows that the displacement parameters are normal; however, the furan ring is highly distorted, which can be attributed to rotational disorder about the C9—C11 bond, as demonstrated by the steady increase in the value of the thermal parameters from atoms C9 to C15. Similar behaviour is observed in many of the limonoids (Kabaleeswaran et al., 1997; 2000; Narayanan et al., 1980; Malathi et al., 2002).

The packing of the molecules (Fig.2) reveals that the crystal lattice is stabilized by a two-dimensional network (in the ab plane) of hydrogen bonds. The O6···O12 hydrogen bond forms an infinite chain along the [100] direction, forming a graph-set motif (Bernstein et al., 1995) of C(9), and the other O12···O20 bond forms a graph-set motif of C(7). In addition, there is a C—H···O hydrogen bond observed atoms C19 and O21 (Table 1). The two O—H···O hydrogen bonds in the crystal lattice together form an R44(26) ring motif.

Experimental top

The shade-dried powdered aerial parts (8.4 kg) of Teucrium tomentosum were exhaustively percolated with acetone (3 x 35 l). The extract was then dried in a rotary evaporator to yield a residue (146 g), 55 g of which were subjected to column chromatography using Silica gel (70–325) and eluted with chloroform–methanol (1:100), thus yielding 69 fractions in total. Fractions 28–38 were further chromatographed over Silica gel (70–325) and eluted with n-hexane–ethyl acetate (1:100) to yield Teuctosin (75 mg). Needle-shaped crystals of the compound were obtained from a mixture of methanol and chloroform at room temperature (293 K).

Refinement top

In the absence of suitable anomalous scatters, Friedel equivalents could not be used to determine the absolute structure. Refinement of the Flack parameter (Flack, 1983) led to inconclusive values (Flack & Bernadinelli, 2000) for this parameter [0.1 (8)]. Therefore, the 1990 Friedel equivalents were merged before the final refinement. The enantiomer employed in the refined model was chosen to agree with the accepted configuration of diterpenes (Rogers et al., 1979; De la Torre et al., 1994; Rodriguez et al., 1994). The CH, CH2 and OH H atoms were constrained to an ideal geometry [C—H = 0.98 Å, C—H2 = 0.97 Å and O—H = 0.82 Å, with Uiso(H) = 1.5Ueq(parent atom)], but where allowed to rotate freely about the C—C and C—O bonds, respectively. All remaining H atoms were placed in idealized positions (C—H = 0.97—0.98 Å) and constrained to ride on their parent atom with Uiso(H) values of 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PARST97 (Nardelli, 1995).

Figures top
[Figure 1]
[Figure 2]
Chemical diagram of compound(I).

Fig.1 The molecular structure of (I), showing displacement ellipsoids at the 30% probability level and the atomic numbering scheme.

Fig.2 A view of the crystal packing of (I), showing the R44(26) ring. Molecules labelled with an asterisk (*), dollar sign () or hash (#) correspond to symmetry positions (x + 1, y, z), (-x + 1/2, −y, z − 1) and (-x + 3/2, −y, z − 1/2), respectively.
(I) top
Crystal data top
C22H28O8F(000) = 896
Mr = 420.44Dx = 1.366 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5722 reflections
a = 7.7235 (5) Åθ = 2.6–27.8°
b = 19.0625 (9) ŵ = 0.10 mm1
c = 13.8907 (13) ÅT = 293 K
V = 2045.1 (3) Å3Needle, colourless
Z = 40.25 × 0.19 × 0.15 mm
Data collection top
CCD area-detector
diffractometer
2526 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.0°, θmin = 1.8°
ω scanh = 910
12937 measured reflectionsk = 2514
2759 independent reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0779P)2 + 0.2384P]
where P = (Fo2 + 2Fc2)/3
2759 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C22H28O8V = 2045.1 (3) Å3
Mr = 420.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7235 (5) ŵ = 0.10 mm1
b = 19.0625 (9) ÅT = 293 K
c = 13.8907 (13) Å0.25 × 0.19 × 0.15 mm
Data collection top
CCD area-detector
diffractometer
2526 reflections with I > 2σ(I)
12937 measured reflectionsRint = 0.022
2759 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
2759 reflectionsΔρmin = 0.15 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.4325 (2)0.25616 (8)0.28124 (10)0.0429 (4)
O40.7153 (2)0.21616 (9)0.40739 (13)0.0483 (4)
O60.6961 (2)0.02574 (8)0.38171 (11)0.0432 (4)
O120.0473 (2)0.02426 (8)0.38320 (10)0.0399 (3)
O160.1148 (4)0.21093 (12)0.5596 (2)0.0885 (8)
O190.4467 (2)0.12295 (9)0.64385 (10)0.0437 (4)
O200.2883 (2)0.04278 (9)0.71134 (10)0.0459 (4)
O210.4527 (3)0.35577 (9)0.36679 (13)0.0551 (5)
C10.2141 (2)0.12334 (11)0.43841 (14)0.0328 (4)
H1A0.19730.15300.49440.039*
H1B0.10950.09610.42870.039*
C20.2481 (3)0.16878 (11)0.35024 (16)0.0384 (5)
H2A0.26850.13910.29470.046*
H2B0.14740.19770.33710.046*
C30.4040 (3)0.21512 (11)0.36734 (14)0.0356 (4)
H30.37980.24680.42120.043*
C40.5641 (3)0.17236 (11)0.39022 (15)0.0344 (4)
C50.5384 (2)0.11518 (10)0.46797 (13)0.0291 (4)
C60.6921 (2)0.06328 (11)0.47095 (15)0.0353 (4)
H60.80050.08940.47890.042*
C70.6727 (3)0.01107 (12)0.55253 (17)0.0388 (5)
H7A0.67950.03570.61350.047*
H7B0.76710.02240.55000.047*
H6A0.79070.00670.37540.065*
C80.5006 (2)0.02813 (11)0.54669 (15)0.0336 (4)
C90.3445 (2)0.02451 (10)0.54306 (13)0.0286 (4)
H80.50070.05330.48510.040*
C100.3671 (2)0.07403 (9)0.45560 (13)0.0267 (3)
C110.1691 (2)0.01516 (10)0.54300 (13)0.0306 (4)
C120.1364 (3)0.06269 (10)0.45693 (14)0.0332 (4)
C130.0311 (3)0.12697 (11)0.48178 (19)0.0434 (5)
C140.0427 (6)0.17407 (16)0.4137 (3)0.0803 (10)
C150.1281 (6)0.22285 (17)0.4640 (4)0.0962 (14)
C160.0171 (4)0.15182 (14)0.5680 (2)0.0606 (7)
H100.37920.04450.39820.032*
C170.4918 (3)0.08413 (13)0.6258 (2)0.0527 (6)
C180.7112 (3)0.17230 (13)0.32312 (18)0.0477 (5)
H18A0.78550.13130.32220.057*
H18B0.69560.19490.26120.057*
C190.5310 (3)0.15653 (11)0.56329 (14)0.0359 (4)
H19A0.64870.16760.58220.043*
H19B0.47230.20060.55100.043*
C200.3534 (3)0.06463 (11)0.63771 (13)0.0338 (4)
H11A0.16270.04340.60100.037*
H11B0.07660.01920.54610.037*
H120.24840.07800.43130.040*
H160.01260.13120.62640.073*
H12A0.09030.03330.33070.060*
H150.18870.26010.43680.115*
H140.03340.17140.34700.096*
C210.4566 (3)0.32605 (12)0.29086 (16)0.0399 (5)
C220.4886 (5)0.35890 (15)0.1954 (2)0.0643 (8)
H22A0.48400.32360.14620.096*
H22B0.60080.38060.19520.096*
H22C0.40160.39380.18310.096*
H17A0.38400.10900.62120.079*
H17B0.49980.06200.68780.079*
H17C0.58600.11650.61810.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0571 (10)0.0368 (7)0.0347 (7)0.0080 (7)0.0012 (7)0.0047 (6)
O40.0390 (8)0.0464 (9)0.0596 (9)0.0156 (7)0.0009 (8)0.0003 (8)
O60.0346 (8)0.0465 (8)0.0486 (8)0.0053 (7)0.0060 (7)0.0110 (7)
O120.0411 (8)0.0492 (8)0.0294 (6)0.0040 (7)0.0020 (6)0.0005 (6)
O160.0793 (16)0.0546 (12)0.132 (2)0.0257 (12)0.0133 (17)0.0301 (14)
O190.0528 (9)0.0474 (8)0.0307 (7)0.0072 (8)0.0006 (7)0.0093 (6)
O200.0456 (9)0.0653 (10)0.0268 (6)0.0021 (8)0.0009 (7)0.0010 (7)
O210.0708 (12)0.0404 (8)0.0542 (10)0.0084 (9)0.0162 (10)0.0038 (8)
C10.0255 (8)0.0346 (9)0.0384 (9)0.0025 (8)0.0018 (8)0.0019 (8)
C20.0339 (10)0.0384 (10)0.0430 (10)0.0003 (9)0.0059 (8)0.0059 (9)
C30.0405 (11)0.0323 (9)0.0341 (9)0.0019 (8)0.0017 (8)0.0036 (8)
C40.0328 (10)0.0344 (9)0.0361 (9)0.0074 (8)0.0024 (8)0.0038 (8)
C50.0247 (8)0.0312 (9)0.0313 (8)0.0010 (7)0.0003 (7)0.0044 (7)
C60.0221 (8)0.0407 (10)0.0432 (10)0.0000 (8)0.0003 (8)0.0054 (9)
C70.0269 (9)0.0416 (11)0.0480 (11)0.0054 (8)0.0050 (8)0.0007 (9)
C80.0274 (9)0.0339 (9)0.0396 (10)0.0037 (7)0.0001 (8)0.0016 (8)
C90.0256 (8)0.0327 (9)0.0275 (8)0.0024 (7)0.0010 (7)0.0017 (7)
C100.0241 (7)0.0291 (8)0.0270 (8)0.0008 (7)0.0005 (7)0.0024 (7)
C110.0270 (9)0.0355 (9)0.0294 (8)0.0005 (7)0.0028 (7)0.0014 (8)
C120.0269 (8)0.0358 (9)0.0370 (9)0.0027 (8)0.0022 (8)0.0025 (8)
C130.0359 (10)0.0325 (9)0.0617 (13)0.0031 (9)0.0082 (11)0.0023 (10)
C140.095 (3)0.0558 (16)0.090 (2)0.0234 (19)0.025 (2)0.0132 (16)
C160.0591 (16)0.0479 (13)0.0747 (17)0.0159 (12)0.0020 (15)0.0153 (13)
C150.097 (3)0.0468 (16)0.145 (4)0.0287 (18)0.040 (3)0.006 (2)
C170.0436 (12)0.0462 (12)0.0683 (16)0.0097 (11)0.0019 (12)0.0195 (12)
C180.0435 (12)0.0480 (12)0.0516 (12)0.0077 (11)0.0140 (11)0.0026 (10)
C190.0363 (10)0.0365 (10)0.0349 (9)0.0036 (8)0.0031 (9)0.0067 (8)
C200.0294 (9)0.0442 (11)0.0278 (8)0.0056 (8)0.0029 (7)0.0028 (8)
C210.0352 (10)0.0388 (10)0.0456 (11)0.0060 (9)0.0002 (10)0.0053 (9)
C220.086 (2)0.0544 (15)0.0527 (14)0.0232 (15)0.0048 (15)0.0157 (12)
Geometric parameters (Å, º) top
C1—C101.529 (2)C10—H100.9800
C1—C21.523 (3)C18—H18A0.9700
C1—H1A0.9700C18—H18B0.9700
C1—H1B0.9700C19—O191.444 (3)
C2—C31.513 (3)C19—H19A0.9700
C2—H2A0.9700C19—H19B0.9700
C2—H2B0.9700O19—C201.327 (3)
O3—C211.352 (3)C20—O201.214 (2)
O3—C31.446 (2)C11—C121.521 (3)
C3—C41.514 (3)C11—H11A0.9700
C3—H30.9800C11—H11B0.9700
C4—O41.455 (2)C12—O121.435 (2)
C4—C181.470 (3)C12—C131.511 (3)
C4—C51.547 (3)C12—H120.9800
O4—C181.439 (3)C13—C161.340 (4)
C5—C191.542 (2)C13—C141.424 (4)
C5—C101.548 (2)C16—O161.361 (3)
C5—C61.546 (3)C16—H160.9300
C6—O61.432 (2)O12—H12A0.8200
C6—C71.516 (3)O16—C151.351 (5)
C6—H60.9800C15—C141.337 (5)
C7—C81.527 (3)C15—H150.9300
C7—H7A0.9700C14—H140.9300
C7—H7B0.9700C21—O211.198 (3)
O6—H6A0.8200C21—C221.487 (3)
C9—C201.523 (2)C22—H22A0.9600
C9—C101.548 (3)C22—H22B0.9600
C9—C111.551 (2)C22—H22C0.9600
C9—C81.570 (3)C17—H17A0.9600
C8—C171.534 (3)C17—H17B0.9600
C8—H80.9800C17—H17C0.9600
C10—C1—C2110.02 (16)C1—C10—H10107.4
C10—C1—H1A109.7C9—C10—H10107.4
C2—C1—H1A109.7C5—C10—H10107.4
C10—C1—H1B109.7O4—C18—C460.03 (14)
C2—C1—H1B109.7O4—C18—H18A117.8
H1A—C1—H1B108.2C4—C18—H18A117.8
C3—C2—C1110.06 (17)O4—C18—H18B117.8
C3—C2—H2A109.6C4—C18—H18B117.8
C1—C2—H2A109.6H18A—C18—H18B114.9
C3—C2—H2B109.6O19—C19—C5117.11 (16)
C1—C2—H2B109.6O19—C19—H19A108.0
H2A—C2—H2B108.2C5—C19—H19A108.0
C21—O3—C3118.19 (16)O19—C19—H19B108.0
O3—C3—C4109.91 (17)C5—C19—H19B108.0
O3—C3—C2107.90 (17)H19A—C19—H19B107.3
C4—C3—C2111.63 (16)C20—O19—C19124.47 (15)
O3—C3—H3109.1O20—C20—O19117.28 (18)
C4—C3—H3109.1O20—C20—C9122.44 (19)
C2—C3—H3109.1O19—C20—C9120.06 (17)
O4—C4—C1858.93 (15)C12—C11—C9115.82 (15)
O4—C4—C3112.37 (16)C12—C11—H11A108.3
C18—C4—C3119.90 (19)C9—C11—H11A108.3
O4—C4—C5113.11 (17)C12—C11—H11B108.3
C18—C4—C5122.76 (19)C9—C11—H11B108.3
C3—C4—C5114.91 (16)H11A—C11—H11B107.4
C18—O4—C461.04 (13)O12—C12—C13108.60 (17)
C19—C5—C10108.82 (15)O12—C12—C11109.67 (15)
C19—C5—C4104.13 (15)C13—C12—C11113.13 (17)
C10—C5—C4112.89 (16)O12—C12—H12108.4
C19—C5—C6109.43 (16)C13—C12—H12108.4
C10—C5—C6109.58 (14)C11—C12—H12108.4
C4—C5—C6111.79 (16)C16—C13—C14105.0 (3)
O6—C6—C7108.74 (16)C16—C13—C12129.8 (2)
O6—C6—C5108.25 (16)C14—C13—C12125.1 (3)
C7—C6—C5111.35 (16)C13—C16—O16111.7 (3)
O6—C6—H6109.5C13—C16—H16124.1
C7—C6—H6109.5O16—C16—H16124.1
C5—C6—H6109.5C12—O12—H12A109.5
C6—C7—C8111.60 (17)C15—O16—C16105.4 (3)
C6—C7—H7A109.3O16—C15—C14111.1 (3)
C8—C7—H7A109.3O16—C15—H15124.5
C6—C7—H7B109.3C14—C15—H15124.5
C8—C7—H7B109.3C15—C14—C13106.8 (3)
H7A—C7—H7B108.0C15—C14—H14126.6
C6—O6—H6A109.5C13—C14—H14126.6
C20—C9—C10111.48 (15)O21—C21—O3123.3 (2)
C20—C9—C11106.56 (15)O21—C21—C22126.2 (2)
C10—C9—C11113.29 (15)O3—C21—C22110.5 (2)
C20—C9—C8104.98 (15)C21—C22—H22A109.5
C10—C9—C8109.16 (14)C21—C22—H22B109.5
C11—C9—C8111.04 (15)H22A—C22—H22B109.5
C17—C8—C7109.95 (17)C21—C22—H22C109.5
C17—C8—C9115.71 (17)H22A—C22—H22C109.5
C7—C8—C9110.95 (16)H22B—C22—H22C109.5
C17—C8—H8106.6C8—C17—H17A109.5
C7—C8—H8106.6C8—C17—H17B109.5
C9—C8—H8106.6H17A—C17—H17B109.5
C1—C10—C9114.22 (15)C8—C17—H17C109.5
C1—C10—C5111.50 (14)H17A—C17—H17C109.5
C9—C10—C5108.56 (14)H17B—C17—H17C109.5
C10—C1—C2—C363.2 (2)C8—C9—C10—C1174.39 (15)
C21—O3—C3—C4106.6 (2)C20—C9—C10—C555.01 (18)
C21—O3—C3—C2131.5 (2)C11—C9—C10—C5175.20 (14)
C1—C2—C3—O3179.01 (16)C8—C9—C10—C560.51 (18)
C1—C2—C3—C458.1 (2)C19—C5—C10—C168.20 (19)
O3—C3—C4—O460.6 (2)C4—C5—C10—C146.9 (2)
C2—C3—C4—O4179.70 (16)C6—C5—C10—C1172.19 (16)
O3—C3—C4—C185.4 (3)C19—C5—C10—C958.49 (18)
C2—C3—C4—C18114.3 (2)C4—C5—C10—C9173.56 (15)
O3—C3—C4—C5168.15 (15)C6—C5—C10—C961.13 (18)
C2—C3—C4—C548.5 (2)C3—C4—C18—O499.6 (2)
C3—C4—O4—C18112.4 (2)C5—C4—C18—O499.0 (2)
C5—C4—O4—C18115.5 (2)C10—C5—C19—O1937.2 (2)
O4—C4—C5—C1955.9 (2)C4—C5—C19—O19157.86 (18)
C18—C4—C5—C19122.8 (2)C6—C5—C19—O1982.5 (2)
C3—C4—C5—C1975.0 (2)C5—C19—O19—C2010.8 (3)
O4—C4—C5—C10173.77 (15)C19—O19—C20—O20179.1 (2)
C18—C4—C5—C10119.4 (2)C19—O19—C20—C96.2 (3)
C3—C4—C5—C1042.9 (2)C10—C9—C20—O20156.6 (2)
O4—C4—C5—C662.1 (2)C11—C9—C20—O2032.5 (3)
C18—C4—C5—C64.7 (3)C8—C9—C20—O2085.3 (2)
C3—C4—C5—C6166.99 (16)C10—C9—C20—O1929.0 (2)
C19—C5—C6—O6179.92 (15)C11—C9—C20—O19153.03 (18)
C10—C5—C6—O660.84 (19)C8—C9—C20—O1989.1 (2)
C4—C5—C6—O665.1 (2)C20—C9—C11—C12176.55 (16)
C19—C5—C6—C760.6 (2)C10—C9—C11—C1260.5 (2)
C10—C5—C6—C758.6 (2)C8—C9—C11—C1262.8 (2)
C4—C5—C6—C7175.43 (16)C9—C11—C12—O1291.59 (19)
O6—C6—C7—C863.7 (2)C9—C11—C12—C13147.02 (17)
C5—C6—C7—C855.5 (2)O12—C12—C13—C16131.3 (3)
C6—C7—C8—C17175.81 (18)C11—C12—C13—C169.3 (3)
C6—C7—C8—C954.9 (2)O12—C12—C13—C1447.1 (3)
C20—C9—C8—C1764.2 (2)C11—C12—C13—C14169.1 (3)
C10—C9—C8—C17176.23 (18)C14—C13—C16—O160.2 (3)
C11—C9—C8—C1750.6 (2)C12—C13—C16—O16178.9 (2)
C20—C9—C8—C762.0 (2)C13—C16—O16—C150.3 (4)
C10—C9—C8—C757.6 (2)C16—O16—C15—C140.3 (5)
C11—C9—C8—C7176.76 (17)O16—C15—C14—C130.1 (5)
C2—C1—C10—C9179.12 (15)C16—C13—C14—C150.0 (4)
C2—C1—C10—C557.3 (2)C12—C13—C14—C15178.8 (3)
C20—C9—C10—C170.1 (2)C3—O3—C21—O211.2 (4)
C11—C9—C10—C150.1 (2)C3—O3—C21—C22178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O12i0.822.072.875 (2)166
O12—H12A···O20ii0.821.912.727 (2)171
C19—H19A···O21iii0.972.493.407 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, z1/2; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC22H28O8
Mr420.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.7235 (5), 19.0625 (9), 13.8907 (13)
V3)2045.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.19 × 0.15
Data collection
DiffractometerCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12937, 2759, 2526
Rint0.022
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.04
No. of reflections2759
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 1997) and PARST97 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O12i0.822.072.875 (2)166
O12—H12A···O20ii0.821.912.727 (2)171
C19—H19A···O21iii0.972.493.407 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, z1/2; (iii) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds