Download citation
Download citation
link to html
In the title compound, C10H28N44+·4C6H6O3P-·2H2O, the cation lies across a centre of inversion in space group P21/n. The two independent anions and the water mol­ecule are linked by four O-H...O hydrogen bonds [H...O = 1.74-2.15 (3) Å, O...O = 2.5482 (14)-3.0438 (16) Å and O-H...O = 160-176 (2)°] into sheets containing equal numbers of centrosymmetric R66(16) and R1010(36) rings. The cation lies at the centre of the R1010(36) ring and is linked to it by eight N-H...O hydrogen bonds [H...O = 1.77-1.98 Å, N...O = 2.6756 (15)-2.8168 (16) Å and N-H...O = 151-169°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010301182X/sk1643sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010301182X/sk1643Isup2.hkl
Contains datablock I

CCDC reference: 219581

Comment top

We reported recently (Gregson et al., 2000) the molecular and supramolecular structure of the adduct formed between meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (C16H36N4, tet-a) and phenylphosphonic acid, PhP(O)(OH)2. This adduct crystallizes from methanol solution as a hydrated 1:4 salt, [{(tet-a)H4}4+]·[{PhP(O)2OH}]4·(H2O)2, containing a centrosymmetric tetra-cation. The anions and the water molecules form chains of edge-fused R44(12) and R66(20) rings, and these chains are linked into sheets by the cations.

As part of a detailed structural comparison of the supramolecular behaviour of tet-a and its simpler analogue 1,4,8,11-tetraazacyclotetradecane (C10H24N4, cyclam), we have now prepared and structurally characterized the 1:4 adduct formed between cyclam and phenylphosphonic acid. This adduct is also a hydrated salt, [{(cyclam)H4}4+]·[{PhP(O)2OH}]4·(H2O)2, (I), with a composition similar to that of the adduct formed by tet-a. However, the supramolecular structure of (I) is entirely different from that of the tet-a analogues. Moreover, although both salts crystallize in monoclinic space group No. 14 (P21/c or P21/n for the adducts from tet-a and cyclam, respectively) with Z' = 1/2, and hence with unit cells of comparable volume, the shapes of these cells are very different. In particular, the b repeat vector in the tet-a adduct is three times the b vector in the cyclam adduct.

The cation in (I) (Fig. 1) lies across a centre of inversion, selected as that at (1/2, 1/2, 1/2), and there are two anions and one water molecule in general positions. All H atoms are fully ordered, corresponding to complete transfer of one H atom from each phenylphosphonic acid unit to the cyclam group. The N—C distances in the cation and the P—O distances in the anions (Table 1) are fully consistent with the locations of the H atoms deduced from difference maps. In the cation, there is almost perfect staggering about all of the C—C and C—N bonds (Table 1); the synclinal torsion angles are all within 5° of ±60° and the antiperiplanar torsional angles are all within 10° of 180°. The overall conformation of the [{(cyclam)H4}4+] cation is very similar to that of the [{(tet-a)H4}4+] cation in the corresponding phenylphosphonate salt.

The independent components are linked into continuous sheets by an extensive series of hydrogen bonds (Table 2) amplified by the inversion symmetry of the cation. The supramolecular structure is, however, readily analyzed and described in terms of the substructures generated first by the anions alone, and then by the anions and water molecules combined. Atom O21 in the type 2 anion (containing P2) at (x, y, z) acts as a hydrogen-bond donor to atom O22 in the type 2 anion at (1.5 − x, 0.5 + y, 1.5 − z), so producing a C(4) chain running parallel to the [010] direction and generated by the 21 screw axis along (3/4, y, 3/4) (Fig. 2). A second antiparallel C(4) chain, related to the first by inversion, is generated by the 21 screw axis along (1/4, −y, 1/4). In the corresponding salt derived from tet-a, by contrast, the two anions and the water molecule combine to form C33(10) chains generated by translation, and no simple C(4) motif can be identified (Gregson et al., 2000).

The C(4) chains in (I), containing only type 2 anions, are linked into (10–1) sheets by the type 1 anions (containing P1) and the water molecules. Water atom O3 at (x, y, z) acts as a hydrogen-bond donor, via atom H31, to the type 1 anion, also at (x, y, z). This type 1 anion is in turn hydrogen bonded to the type 2 anion at (x, y, z), which forms part of the (3/4, y, 3/4) chain. Atom O3 at (x, y, z) also acts as a hydrogen-bond donor, this time via atom H32, to atom O23 in the type 2 anion at (1 − x, 2 − y, 1 − z), which lies in the C(4) chain along (1/4, −y, 1/4). In this manner, an R66(16) ring is formed, centred at (1/2, 1, 1/2) (Fig. 2). At the same time, water atom O3 at (1.5 − x, 0.5 + y, 1.5 − z) acts as a donor to atom O23 in the type 2 anion at (0.5 + x, 2.5 − y, 0.5 + z), which lies in the C(4) chain along (1.25, −y, 1.25). Propagation of these hydrogen bonds by the space group thus generates a (10–1) sheet containing centrosymmetric R66(16) and R1010(36) rings alternating in checkerboard fashion (Fig. 2). Hence, the anion–water structure in (I) is two-dimensional, in contrast to the one-dimensional anion–water substructure in the corresponding salt formed by tet-a.

The cations lie at the centre of the R1010(36) rings in the anion–water substructure, linked to the anion–water sheet by eight N—H···O hydrogen bonds (Table 2). In the reference cation centred at (1/2, 1/2, 1/2), atom N1 at (x, y, z) is linked to atom O12 in the type 1 anion at (x, y, z) and to atom O13 in the type 1 anion at (1 − x, 2 − y, 1 − z), while atom N4 at (x, y, z) is linked to atom O12 at (x, y, z) and to atom O22 in the type 2 anion at (−0.5 + x, 1.5 − y, −0.5 + z). These interactions are all duplicated by inversion (Fig. 3). There are no direction-specific interactions between adjacent (10–1) sheets. In particular, there are neither C—H···π(arene) hydrogen bonds nor aromatic ππ-stacking interactions.

Experimental top

Stoichiometric quantities of cyclam and phenylphosphonic acid (both purchased from Aldrich) were dissolved separately in methanol. The solutions were mixed and the mixture was then set aside to crystallize, exposed to the laboratory atmosphere, providing analytically pure (I). Analysis found: C 47.8, H 6.5, N 6.4%; C34H56N4O14P4 requires: C47.0, H 6.5, N 6.5%. Crystals suitable for single-crystal X-ray diffraction were selected directly from the analytical sample.

Refinement top

Crystals of (I) are monoclinic and the space group P21/n was uniquely assigned from the systematic absences. All H atoms were located from difference maps, and those in the water molecule were refined using a DFIX restraint, leading to O—H distances of 0.88 (2) and 0.90 (2) Å. All other H atoms were treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.99 Å (CH2), N—H distances of 0.92 Å and O—H distances of 0.84 Å.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing the atom-labelling scheme. Atoms marked 'a' are at the symmetry position (1 − x, 1 − y, 1 − z), and displacement ellipsoids have been drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the R66(16) and R1010(36) rings in the anion–water substructure. For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), hash (#) or dollar sign ($) are at the symmetry positions (1.5 − x, −0.5 + y, 1.5 − z), (1 − x, 2 − y, 1 − z) and (x, −1 + y, z), respectively.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the linking of the cation to the anion–water substructure. For clarity, atoms C12–C16 and C22–C26 in the anions are omitted, as are all H atoms bonded to C atoms. Atoms marked with a hash (#) or ampersand (&) are at the symmetry positions (1 − x, 2 − y, 1 − z) and (−0.5 + x, 1.5 − y, −0.5 + z), respectively.
1,4,8,11-Tetraazoniacyclotetradecane tetrakis-phenylphosphonate dihydrate top
Crystal data top
C10H28N44+·4C6H6O3P·2H2OF(000) = 920
Mr = 868.71Dx = 1.433 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4536 reflections
a = 13.0678 (3) Åθ = 2.6–27.4°
b = 8.7475 (2) ŵ = 0.26 mm1
c = 17.6106 (5) ÅT = 150 K
β = 90.5130 (11)°Needle, colourless
V = 2013.00 (9) Å30.24 × 0.14 × 0.08 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
4536 independent reflections
Radiation source: fine-focus sealed X-ray tube3866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 2.6°
Absorption correction: multi-scan
DENZO–SMN (Otwinowski & Minor, 1997)
h = 1616
Tmin = 0.936, Tmax = 0.978k = 1111
14531 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0223P)2 + 0.9176P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4536 reflectionsΔρmax = 0.28 e Å3
265 parametersΔρmin = 0.38 e Å3
2 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0054 (9)
Crystal data top
C10H28N44+·4C6H6O3P·2H2OV = 2013.00 (9) Å3
Mr = 868.71Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.0678 (3) ŵ = 0.26 mm1
b = 8.7475 (2) ÅT = 150 K
c = 17.6106 (5) Å0.24 × 0.14 × 0.08 mm
β = 90.5130 (11)°
Data collection top
Nonius KappaCCD
diffractometer
4536 independent reflections
Absorption correction: multi-scan
DENZO–SMN (Otwinowski & Minor, 1997)
3866 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.978Rint = 0.042
14531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
4536 reflectionsΔρmin = 0.38 e Å3
265 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.62642 (9)0.71881 (13)0.45144 (6)0.0149 (2)
C20.59718 (11)0.61896 (16)0.38599 (8)0.0166 (3)
C30.50034 (11)0.67048 (16)0.34525 (8)0.0168 (3)
N40.40398 (9)0.65807 (13)0.39086 (7)0.0159 (3)
C50.38158 (12)0.49889 (16)0.41633 (8)0.0184 (3)
C60.29075 (11)0.49181 (17)0.46994 (8)0.0177 (3)
C70.28021 (11)0.33362 (17)0.50612 (8)0.0182 (3)
P10.42889 (3)0.87574 (4)0.59763 (2)0.01367 (10)
O110.52361 (8)0.97720 (11)0.62062 (6)0.0189 (2)
O120.45679 (8)0.75877 (11)0.53800 (6)0.0172 (2)
O130.34377 (8)0.98393 (11)0.57652 (6)0.0177 (2)
C110.39226 (11)0.77250 (16)0.68204 (8)0.0170 (3)
C120.46419 (13)0.73172 (18)0.73713 (9)0.0229 (3)
C130.43518 (15)0.6471 (2)0.80041 (10)0.0305 (4)
C140.33430 (15)0.6028 (2)0.80902 (10)0.0336 (4)
C150.26205 (14)0.64141 (19)0.75436 (10)0.0315 (4)
C160.29046 (13)0.72661 (18)0.69122 (9)0.0242 (3)
P20.78926 (3)0.84557 (4)0.70493 (2)0.01467 (11)
O210.83385 (8)1.00470 (11)0.72989 (6)0.0203 (2)
O220.77139 (8)0.74978 (11)0.77528 (6)0.0195 (2)
O230.69941 (8)0.86462 (12)0.65202 (6)0.0208 (2)
C210.89325 (11)0.76082 (16)0.65267 (8)0.0170 (3)
C220.93547 (12)0.83875 (19)0.59106 (9)0.0244 (3)
C231.01423 (14)0.7743 (2)0.54972 (10)0.0334 (4)
C241.05121 (15)0.6315 (2)0.56891 (11)0.0401 (5)
C251.01035 (16)0.5527 (2)0.62919 (11)0.0407 (5)
C260.93144 (13)0.61673 (19)0.67136 (10)0.0274 (4)
O30.23982 (10)0.86861 (14)0.44897 (7)0.0294 (3)
H1A0.57250.72310.48460.018*
H1B0.63760.81630.43370.018*
H2A0.58730.51330.40460.020*
H2B0.65410.61740.34930.020*
H3A0.50910.77830.32960.020*
H3B0.49190.60870.29850.020*
H4A0.40970.72020.43280.019*
H4B0.34980.69300.36200.019*
H5A0.44280.45660.44240.022*
H5B0.36710.43440.37130.022*
H6A0.22720.51650.44140.021*
H6B0.29970.56940.51040.021*
H7A0.22170.33530.54150.022*
H7B0.26420.25840.46570.022*
H110.57370.92050.63110.028*
H120.53360.76180.73160.028*
H130.48480.61970.83770.037*
H140.31460.54590.85250.040*
H150.19300.60970.75990.038*
H160.24050.75380.65410.029*
H210.78801.07170.72600.030*
H220.90990.93680.57740.029*
H231.04270.82830.50820.040*
H241.10510.58740.54040.048*
H251.03600.45430.64200.049*
H260.90360.56200.71300.033*
H310.2696 (17)0.906 (3)0.4898 (12)0.048 (6)*
H320.260 (2)0.940 (3)0.4156 (14)0.072 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0169 (6)0.0122 (6)0.0155 (6)0.0006 (4)0.0012 (5)0.0010 (4)
C20.0183 (7)0.0161 (7)0.0154 (7)0.0010 (5)0.0006 (5)0.0049 (5)
C30.0206 (7)0.0163 (7)0.0136 (7)0.0009 (5)0.0014 (6)0.0001 (5)
N40.0186 (6)0.0148 (6)0.0142 (6)0.0032 (5)0.0013 (5)0.0007 (4)
C50.0231 (8)0.0138 (7)0.0184 (7)0.0026 (6)0.0033 (6)0.0019 (5)
C60.0170 (7)0.0190 (7)0.0172 (7)0.0023 (6)0.0001 (6)0.0005 (5)
C70.0153 (7)0.0202 (7)0.0191 (7)0.0015 (6)0.0016 (6)0.0002 (6)
P10.01499 (19)0.01147 (18)0.01458 (18)0.00135 (13)0.00202 (14)0.00010 (12)
O110.0162 (5)0.0149 (5)0.0256 (5)0.0002 (4)0.0001 (4)0.0004 (4)
O120.0200 (5)0.0158 (5)0.0158 (5)0.0032 (4)0.0013 (4)0.0018 (4)
O130.0170 (5)0.0145 (5)0.0215 (5)0.0029 (4)0.0012 (4)0.0015 (4)
C110.0208 (7)0.0117 (7)0.0185 (7)0.0017 (5)0.0055 (6)0.0022 (5)
C120.0260 (8)0.0222 (8)0.0206 (7)0.0041 (6)0.0045 (6)0.0026 (6)
C130.0393 (10)0.0295 (9)0.0230 (8)0.0082 (7)0.0069 (7)0.0079 (7)
C140.0486 (11)0.0235 (9)0.0289 (9)0.0046 (8)0.0193 (8)0.0079 (7)
C150.0314 (9)0.0232 (9)0.0401 (10)0.0029 (7)0.0183 (8)0.0023 (7)
C160.0245 (8)0.0193 (8)0.0289 (8)0.0001 (6)0.0054 (7)0.0004 (6)
P20.01505 (19)0.01382 (19)0.01513 (19)0.00047 (13)0.00098 (14)0.00014 (13)
O210.0189 (5)0.0137 (5)0.0282 (6)0.0011 (4)0.0034 (4)0.0017 (4)
O220.0239 (6)0.0185 (5)0.0162 (5)0.0042 (4)0.0004 (4)0.0010 (4)
O230.0176 (5)0.0253 (6)0.0194 (5)0.0020 (4)0.0035 (4)0.0012 (4)
C210.0161 (7)0.0178 (7)0.0172 (7)0.0010 (5)0.0014 (6)0.0026 (5)
C220.0244 (8)0.0242 (8)0.0246 (8)0.0005 (6)0.0035 (6)0.0020 (6)
C230.0301 (10)0.0402 (10)0.0300 (9)0.0008 (8)0.0096 (7)0.0003 (7)
C240.0299 (10)0.0500 (12)0.0406 (11)0.0142 (9)0.0112 (8)0.0088 (9)
C250.0445 (11)0.0338 (10)0.0440 (11)0.0211 (9)0.0060 (9)0.0007 (8)
C260.0306 (9)0.0243 (8)0.0272 (8)0.0084 (7)0.0021 (7)0.0012 (6)
O30.0341 (7)0.0299 (7)0.0242 (6)0.0011 (5)0.0043 (5)0.0017 (5)
Geometric parameters (Å, º) top
N1—C21.4931 (17)C7—H7B0.99
N1—C7i1.4971 (17)O11—H110.84
P1—O111.5731 (10)C11—C121.391 (2)
P1—O121.5132 (10)C11—C161.400 (2)
P1—O131.5045 (10)C12—C131.393 (2)
P1—C111.8076 (15)C12—H120.95
N4—C31.5036 (19)C13—C141.384 (3)
N4—C51.4927 (18)C13—H130.95
P2—O211.5702 (10)C14—C151.384 (3)
P2—O221.5156 (10)C14—H140.95
P2—O231.5017 (10)C15—C161.392 (2)
P2—C211.8071 (15)C15—H150.95
N1—H1A0.92C16—H160.95
N1—H1B0.92O21—H210.84
C2—C31.5176 (19)C21—C261.394 (2)
C2—H2A0.99C21—C221.399 (2)
C2—H2B0.99C22—C231.386 (2)
C3—H3A0.99C22—H220.95
C3—H3B0.99C23—C241.380 (3)
N4—H4A0.92C23—H230.95
N4—H4B0.92C24—C251.378 (3)
C5—C61.525 (2)C24—H240.95
C5—H5A0.99C25—C261.394 (3)
C5—H5B0.99C25—H250.95
C6—C71.530 (2)C26—H260.95
C6—H6A0.99O3—H310.88 (2)
C6—H6B0.99O3—H320.90 (2)
C7—H7A0.99
C2—N1—C7i114.07 (11)O11—P1—C11106.49 (6)
C2—N1—H1A108.7P1—O11—H11109.5
C7i—N1—H1A108.7C12—C11—C16118.86 (14)
C2—N1—H1B108.7C12—C11—P1121.29 (12)
C7i—N1—H1B108.7C16—C11—P1119.80 (12)
H1A—N1—H1B107.6C11—C12—C13120.46 (16)
N1—C2—C3113.44 (11)C11—C12—H12119.8
N1—C2—H2A108.9C13—C12—H12119.8
C3—C2—H2A108.9C14—C13—C12120.18 (16)
N1—C2—H2B108.9C14—C13—H13119.9
C3—C2—H2B108.9C12—C13—H13119.9
H2A—C2—H2B107.7C13—C14—C15120.01 (16)
N4—C3—C2115.14 (11)C13—C14—H14120.0
N4—C3—H3A108.5C15—C14—H14120.0
C2—C3—H3A108.5C14—C15—C16120.07 (16)
N4—C3—H3B108.5C14—C15—H15120.0
C2—C3—H3B108.5C16—C15—H15120.0
H3A—C3—H3B107.5C15—C16—C11120.41 (15)
C5—N4—C3113.28 (11)C15—C16—H16119.8
C5—N4—H4A108.9C11—C16—H16119.8
C3—N4—H4A108.9O23—P2—O22116.31 (6)
C5—N4—H4B108.9O23—P2—O21111.19 (6)
C3—N4—H4B108.9O22—P2—O21108.71 (6)
H4A—N4—H4B107.7O23—P2—C21108.48 (6)
N4—C5—C6112.32 (12)O22—P2—C21108.16 (6)
N4—C5—H5A109.1O21—P2—C21103.14 (6)
C6—C5—H5A109.1P2—O21—H21109.5
N4—C5—H5B109.1C26—C21—C22118.75 (14)
C6—C5—H5B109.1C26—C21—P2121.33 (12)
H5A—C5—H5B107.9C22—C21—P2119.91 (11)
C5—C6—C7111.59 (12)C23—C22—C21120.59 (16)
C5—C6—H6A109.3C23—C22—H22119.7
C7—C6—H6A109.3C21—C22—H22119.7
C5—C6—H6B109.3C24—C23—C22119.99 (17)
C7—C6—H6B109.3C24—C23—H23120.0
H6A—C6—H6B108.0C22—C23—H23120.0
N1i—C7—C6114.14 (12)C25—C24—C23120.29 (17)
N1i—C7—H7A108.7C25—C24—H24119.9
C6—C7—H7A108.7C23—C24—H24119.9
N1i—C7—H7B108.7C24—C25—C26120.20 (17)
C6—C7—H7B108.7C24—C25—H25119.9
H7A—C7—H7B107.6C26—C25—H25119.9
O13—P1—O12115.85 (6)C25—C26—C21120.18 (17)
O13—P1—O11106.68 (6)C25—C26—H26119.9
O12—P1—O11111.48 (6)C21—C26—H26119.9
O13—P1—C11108.47 (6)H31—O3—H3299 (2)
O12—P1—C11107.47 (6)
C7i—N1—C2—C3177.99 (12)C14—C15—C16—C110.7 (2)
N1—C2—C3—N466.63 (16)C12—C11—C16—C150.1 (2)
C2—C3—N4—C559.50 (15)P1—C11—C16—C15177.25 (12)
C3—N4—C5—C6173.38 (11)O23—P2—C21—C26116.25 (13)
N4—C5—C6—C7170.20 (11)O22—P2—C21—C2610.72 (14)
C5—C6—C7—N1i56.80 (16)O21—P2—C21—C26125.76 (13)
C6—C7—N1i—C2i61.48 (15)O23—P2—C21—C2262.34 (13)
O13—P1—C11—C12144.81 (12)O22—P2—C21—C22170.70 (11)
O12—P1—C11—C1289.24 (13)O21—P2—C21—C2255.66 (13)
O11—P1—C11—C1230.32 (13)C26—C21—C22—C230.4 (2)
O13—P1—C11—C1637.88 (13)P2—C21—C22—C23179.03 (13)
O12—P1—C11—C1688.08 (13)C21—C22—C23—C240.4 (3)
O11—P1—C11—C16152.36 (12)C22—C23—C24—C250.1 (3)
C16—C11—C12—C130.2 (2)C23—C24—C25—C260.1 (3)
P1—C11—C12—C13177.54 (12)C24—C25—C26—C210.1 (3)
C11—C12—C13—C140.0 (3)C22—C21—C26—C250.1 (2)
C12—C13—C14—C150.6 (3)P2—C21—C26—C25178.73 (14)
C13—C14—C15—C160.9 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O120.921.812.7240 (15)169
N1—H1B···O13ii0.921.772.6756 (15)166
N4—H4A···O120.921.982.8168 (16)151
N4—H4B···O22iii0.921.902.7806 (16)160
O11—H11···O230.841.752.5555 (15)160
O21—H21···O22iv0.841.742.5482 (14)161
O3—H31···O130.88 (2)1.93 (2)2.8025 (16)176 (2)
O3—H32···O23ii0.90 (2)2.15 (3)3.0438 (16)171 (2)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x1/2, y+3/2, z1/2; (iv) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H28N44+·4C6H6O3P·2H2O
Mr868.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)13.0678 (3), 8.7475 (2), 17.6106 (5)
β (°) 90.5130 (11)
V3)2013.00 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.24 × 0.14 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
DENZO–SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.936, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
14531, 4536, 3866
Rint0.042
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.04
No. of reflections4536
No. of parameters265
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.38

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N1—C21.4931 (17)N4—C31.5036 (19)
N1—C7i1.4971 (17)N4—C51.4927 (18)
P1—O111.5731 (10)P2—O211.5702 (10)
P1—O121.5132 (10)P2—O221.5156 (10)
P1—O131.5045 (10)P2—O231.5017 (10)
P1—C111.8076 (15)P2—C211.8071 (15)
C7i—N1—C2—C3177.99 (12)N4—C5—C6—C7170.20 (11)
N1—C2—C3—N466.63 (16)C5—C6—C7—N1i56.80 (16)
C2—C3—N4—C559.50 (15)C6—C7—N1i—C2i61.48 (15)
C3—N4—C5—C6173.38 (11)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O120.921.812.7240 (15)169
N1—H1B···O13ii0.921.772.6756 (15)166
N4—H4A···O120.921.982.8168 (16)151
N4—H4B···O22iii0.921.902.7806 (16)160
O11—H11···O230.841.752.5555 (15)160
O21—H21···O22iv0.841.742.5482 (14)161
O3—H31···O130.88 (2)1.93 (2)2.8025 (16)176 (2)
O3—H32···O23ii0.90 (2)2.15 (3)3.0438 (16)171 (2)
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x1/2, y+3/2, z1/2; (iv) x+3/2, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds