Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Molecules of the title compound, alternatively called (R,R)-N,N'-bis(3-methoxysalicylidene)-trans-cyclohexane-1,2-diamine, C22H26N2O4, contain two intramolecular O-H...N hydrogen bonds and adopt a conformation with approximate twofold rotational symmetry. The mol­ecules are linked by three C-H...O hydrogen bonds [H...O = 2.45-2.55 Å, C...O = 3.329 (2)-3.398 (2) Å and C-H...O = 142-172°] into a continuous framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103010205/sk1640sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103010205/sk1640Isup2.hkl
Contains datablock I

CCDC reference: 217141

Comment top

Chiral Schiff base complexes have been used as efficient catalysts for Michael reactions (Jha & Joshi, 2001), for epoxidation (Larrow & Jacobson, 1994) and for aziridination (Liang et al., 2002) of alkenes. Furthermore the N atoms of azomethine groups in metal complexes can act as hydrogen-bond acceptors, and it has been proposed that this interaction can account for some of the antibacterial and antifungal activities of ruthenium complexes (Ramesh & Sivagamasundari, 2003). The title compound, (I), was prepared as a forerunner to the synthesis and investigation of chiral ruthenium Schiff base complexes, and the present structural investigation was undertaken in order to assign unambiguously the structure and the hydrogen bonding.

The cyclohexane moiety adopts the usual chain conformation, with the two substituents in equatorial sites. There are two intramolecular O—H···N hydrogen bonds (Fig. 1), each forming an S(6) motif (Bernstein et al., 1995), and these undoubtedly play a part in controlling the overall molecular conformation. This conformation is close to C2 symmetry, but examination of the key torsion angles (Table 1) confirms the absence of exact twofold rotational symmetry. The bond distances show no unusual features, and the exocyclic C—C—O angles at C13 and C23 show the usual pattern (Seip & Seip, 1973; Ferguson et al., 1996; Patterson et al., 1998; Abonia et al., 2003)

The absence of twofold rotational symmetry is confirmed by the pattern and dimensions of the soft (Desiraju & Steiner, 1999) C—H···O hydrogen bonds (Table 2), where one phenyl ring, C11–C16, provides only one donor and one acceptor, while the other ring, C21–C26, provides two donors and two acceptors. These three hydrogen bonds serve to link the molecules into a continuous three-dimensional framework, whose description can be simplified by the use of the substructure approach (Gregson et al., 2000).

Atom C14 in the molecule at (x, y, z) acts as a hydrogen-bond donor to phenol atom O22 in the molecule at (−0.5 + x, −0.5 − y, 1 − z), while atom C14 at (−0.5 + x, −0.5 − y, 1 − z) in turn acts as a donor to atom O22 at (−1 + x, y, z), so producing a C(14) chain running parallel to the [100] direction and generated by the 21 screw axis along (x, −0.25, 1/2). At the same time, atom C24 at (x, y, z) acts as a donor to methoxyl atom O23 at (−0.5 + x, 0.5 − y, 1 − z), so producing a C(4) chain around the 21 screw axis along (x, 1/4, 1/2). These two chain motifs combine to produce a (001) sheet in the form of a (4,4) net (Batten & Robson, 1998) built from a single type of R44(38) ring (Fig. 2). Two sheets of this type pass through each unit cell, in the domains 0.23 < z < 0.77 and 0.73 < z < 1.27, and these sheets are linked into a single framework by the third of the C—H···O hydrogen bonds.

Atom C26 in the molecule at (x, y, z) acts as a hydrogen bond donor to phenol atom O12 in the molecule at (1 − x, 0.5 + y, 1.5 − z), and propagation of this interaction produces a C(12) chain running parallel to the [010] direction and generated by the 21 screw axis along (1/2, y, 3/4) (Fig. 3). The molecules at (x, y, z) and (1 − x, 0.5 + y, 1.5 − z) lie, respectively, in the 0.23 < z < 0.77 and 0.73 < z < 1.27 sheets. Similarly, atom C26 in the molecule at (−0.5 + x, −0.5 − y, 1 − z), which also lies in the 0.23 < z < 0.77 sheet, acts as a hydrogen-bond donor to atom O12 in the molecule at (0.5 − x, −1 − y, −0.5 + z), which lies in the −0.27 < z < 0.27 sheet. Hence, this hydrogen bond links each (001) sheet to the two neighbouring sheets, so forming a single continuous framework.

Experimental top

The Schiff base was obtained by refluxing a mixture of 2-methoxysalicylaldehyde (20 mmol) and the L-(+)-tartaric acid salt of trans-(1R,2R)-1,2-diaminocyclohexane (10 mmol) in the presence of anhydrous potassium carbonate, with a methanol–water mixture as solvent. The crude product was obtained by removing the solvent at reduced pressure and was recrystallized from hexane (yield 85%; m.p. 401–403 K). Analysis found: C 69.1, H 6.4, N 7.2%; C22H26N2O4 requires: C 69.3, H 6.9, N 7.3%. IR (cm−1): 3416 (OH), 1626 (CN); NMR (CDCl3): δ(H) 1.42–1.60 (m, 4H, CH2), 1.86–1.96 (m, 4H, CH2), 3.59 (m, 2H, CH), 3.93 (s, 6H, OCH3), 6.3–7.2 (m, 6H, aromatic), 8.24 (s, 2H, CHN), 13.81 (s, 2H, OH); [α]23D(CH3OH), −46.9° dm−1 g−1 cm3.

Refinement top

Crystals of (I) are orthorhombic and the space group P212121 was uniquely assigned from the systematic absences. All H atoms were treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH), and O—H distances of 0.84 Å. In the absence of significant anomalous scattering, the Flack (1983) parameter was indeterminate (Flack & Bernardinelli, 2000); hence the Friedel equivalents were merged before the final refinements, and the absolute structure was set by reference to the known (R,R) configuration of the trans-1,2-diaminocyclohexane used in the synthesis.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids have been drawn at the 30% probability level.
[Figure 2] Fig. 2. Stereoview of part of the crystal structure of (I), showing the formation of a (001) sheet of R44(38) rings.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of the C(12) chain that links the (001) sheets. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, 0.5 + y, 1.5 − z) and (x, 1 + y, z), respectively.
6,6'-Dimethoxy-2,2'-[(1R,2R)-cyclohexane-1,2- diylbis(nitrilomethylidyne)]diphenol top
Crystal data top
C22H26N2O4F(000) = 816
Mr = 382.45Dx = 1.252 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2642 reflections
a = 7.5558 (2) Åθ = 3.0–27.4°
b = 13.4054 (1) ŵ = 0.09 mm1
c = 20.0304 (3) ÅT = 120 K
V = 2028.85 (6) Å3Plate, yellow
Z = 40.32 × 0.25 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2642 independent reflections
Radiation source: rotating anode2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
DENZO–SMN (Otwinowski & Minor, 1997)
h = 99
Tmin = 0.962, Tmax = 0.994k = 1717
27432 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.3696P]
where P = (Fo2 + 2Fc2)/3
2646 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C22H26N2O4V = 2028.85 (6) Å3
Mr = 382.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5558 (2) ŵ = 0.09 mm1
b = 13.4054 (1) ÅT = 120 K
c = 20.0304 (3) Å0.32 × 0.25 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2642 independent reflections
Absorption correction: multi-scan
DENZO–SMN (Otwinowski & Minor, 1997)
2484 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.994Rint = 0.071
27432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
2646 reflectionsΔρmin = 0.22 e Å3
257 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0437 (2)0.11601 (12)0.67182 (8)0.0204 (3)
C20.9595 (2)0.02665 (12)0.70712 (8)0.0211 (3)
C31.1026 (3)0.04886 (13)0.72695 (9)0.0253 (4)
C41.2443 (3)0.00097 (14)0.77096 (9)0.0277 (4)
C51.3229 (3)0.09167 (14)0.73779 (10)0.0290 (4)
C61.1799 (3)0.16624 (13)0.71701 (9)0.0261 (4)
N110.9037 (2)0.18570 (10)0.65255 (7)0.0217 (3)
C110.7886 (2)0.30840 (12)0.57741 (8)0.0206 (3)
C120.6279 (2)0.31617 (12)0.61182 (8)0.0209 (3)
C130.5024 (2)0.38805 (13)0.59244 (8)0.0221 (4)
C140.5402 (3)0.45242 (13)0.53992 (8)0.0245 (4)
C150.7010 (3)0.44442 (14)0.50561 (8)0.0266 (4)
C160.8224 (2)0.37285 (14)0.52317 (8)0.0254 (4)
C170.9218 (2)0.23634 (13)0.59878 (8)0.0220 (3)
O120.58846 (18)0.25746 (9)0.66455 (6)0.0261 (3)
O130.35034 (18)0.38910 (10)0.62948 (6)0.0288 (3)
N210.8314 (2)0.02041 (11)0.66217 (7)0.0216 (3)
C210.5822 (2)0.12585 (12)0.64316 (8)0.0201 (3)
C220.5832 (2)0.10812 (12)0.57386 (8)0.0197 (3)
C230.4641 (2)0.15965 (13)0.53252 (8)0.0216 (3)
C240.3470 (2)0.22763 (13)0.55988 (9)0.0246 (4)
C250.3461 (3)0.24471 (13)0.62885 (9)0.0271 (4)
C260.4615 (2)0.19452 (13)0.66997 (8)0.0242 (4)
C270.7084 (2)0.07493 (12)0.68632 (8)0.0211 (3)
C1310.2188 (3)0.46056 (15)0.61131 (10)0.0333 (4)
C2310.3662 (3)0.19237 (15)0.42151 (9)0.0328 (4)
O220.69889 (18)0.04450 (9)0.54522 (6)0.0268 (3)
O230.47889 (17)0.13768 (9)0.46577 (5)0.0251 (3)
H11.10480.09190.63060.025*
H20.89690.05020.74820.025*
H3A1.15870.07610.68620.030*
H3B1.04720.10500.75130.030*
H4A1.19160.01780.81440.033*
H4B1.33970.04990.77960.033*
H5A1.40560.12440.76920.035*
H5B1.39120.07130.69790.035*
H6A1.23520.22280.69310.031*
H6B1.12030.19280.75730.031*
H120.67630.22170.67400.039*
H13A0.26470.52800.61880.050*
H13B0.18870.45240.56400.050*
H13C0.11270.45030.63860.050*
H140.45670.50190.52730.029*
H150.72630.48880.46990.032*
H160.92960.36670.49870.030*
H171.02450.22680.57220.026*
H220.76510.02010.57470.040*
H23A0.38990.26390.42620.049*
H23B0.24220.17890.43260.049*
H23C0.38940.17180.37540.049*
H240.26700.26280.53180.030*
H250.26520.29130.64740.032*
H260.45950.20640.71670.029*
H270.69900.08240.73340.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (8)0.0205 (8)0.0189 (7)0.0023 (7)0.0006 (7)0.0006 (6)
C20.0252 (8)0.0196 (8)0.0184 (7)0.0009 (7)0.0035 (7)0.0004 (6)
C30.0295 (9)0.0193 (8)0.0271 (8)0.0011 (8)0.0052 (8)0.0010 (7)
C40.0305 (10)0.0250 (9)0.0276 (8)0.0026 (8)0.0101 (8)0.0018 (7)
C50.0247 (9)0.0267 (9)0.0356 (10)0.0018 (8)0.0103 (8)0.0019 (8)
C60.0301 (10)0.0206 (8)0.0276 (8)0.0020 (8)0.0043 (8)0.0012 (7)
N110.0248 (7)0.0200 (7)0.0204 (6)0.0020 (6)0.0019 (6)0.0011 (6)
C110.0243 (8)0.0202 (8)0.0173 (7)0.0016 (7)0.0043 (7)0.0002 (6)
C120.0273 (9)0.0193 (8)0.0163 (7)0.0026 (7)0.0028 (7)0.0020 (6)
C130.0236 (8)0.0217 (8)0.0209 (7)0.0000 (7)0.0036 (7)0.0007 (6)
C140.0282 (9)0.0209 (8)0.0245 (8)0.0013 (8)0.0097 (7)0.0032 (6)
C150.0312 (9)0.0266 (9)0.0221 (8)0.0070 (8)0.0069 (8)0.0092 (7)
C160.0249 (9)0.0309 (9)0.0203 (7)0.0050 (8)0.0015 (7)0.0042 (7)
C170.0224 (8)0.0232 (8)0.0205 (8)0.0005 (7)0.0011 (7)0.0004 (6)
O120.0288 (7)0.0280 (6)0.0216 (6)0.0068 (6)0.0048 (5)0.0088 (5)
O130.0281 (7)0.0313 (7)0.0269 (6)0.0098 (6)0.0029 (5)0.0069 (5)
N210.0229 (7)0.0213 (7)0.0207 (6)0.0006 (6)0.0021 (6)0.0012 (5)
C210.0206 (8)0.0178 (7)0.0219 (8)0.0042 (7)0.0010 (6)0.0005 (6)
C220.0194 (8)0.0172 (7)0.0224 (7)0.0004 (7)0.0026 (7)0.0013 (6)
C230.0210 (8)0.0208 (8)0.0230 (7)0.0026 (7)0.0002 (7)0.0003 (6)
C240.0213 (9)0.0226 (8)0.0299 (9)0.0016 (7)0.0021 (7)0.0029 (7)
C250.0270 (9)0.0218 (8)0.0324 (9)0.0055 (8)0.0050 (8)0.0016 (7)
C260.0274 (9)0.0219 (8)0.0233 (8)0.0015 (8)0.0054 (7)0.0019 (7)
C270.0242 (8)0.0203 (8)0.0190 (7)0.0034 (7)0.0003 (7)0.0011 (6)
C1310.0320 (10)0.0359 (11)0.0320 (9)0.0114 (9)0.0041 (9)0.0027 (8)
C2310.0336 (10)0.0381 (10)0.0268 (9)0.0064 (9)0.0097 (8)0.0029 (8)
O220.0269 (7)0.0326 (7)0.0210 (5)0.0116 (6)0.0010 (5)0.0027 (5)
O230.0263 (6)0.0292 (6)0.0198 (5)0.0040 (6)0.0041 (5)0.0001 (5)
Geometric parameters (Å, º) top
C1—N111.463 (2)C27—H270.95
C1—C61.527 (2)C21—C261.403 (2)
C1—C21.530 (2)C21—C221.408 (2)
C1—H11.00C22—O221.349 (2)
N11—C171.281 (2)C22—C231.405 (2)
C17—C111.459 (2)O22—H220.84
C17—H170.95C23—O231.3736 (19)
C11—C121.400 (3)C23—C241.383 (2)
C11—C161.411 (2)O23—C2311.431 (2)
C12—O121.3504 (19)C231—H23A0.98
C12—C131.406 (2)C231—H23B0.98
O12—H120.84C231—H23C0.98
C13—O131.368 (2)C24—C251.400 (2)
C13—C141.390 (2)C24—H240.95
O13—C1311.428 (2)C25—C261.375 (3)
C131—H13A0.98C25—H250.95
C131—H13B0.98C26—H260.95
C131—H13C0.98C3—C41.528 (3)
C14—C151.400 (3)C3—H3A0.99
C14—H140.95C3—H3B0.99
C15—C161.373 (3)C4—C51.528 (3)
C15—H150.95C4—H4A0.99
C16—H160.95C4—H4B0.99
C2—N211.465 (2)C5—C61.529 (3)
C2—C31.533 (2)C5—H5A0.99
C2—H21.00C5—H5B0.99
N21—C271.278 (2)C6—H6A0.99
C27—C211.457 (2)C6—H6B0.99
N11—C1—C6111.23 (13)C22—C21—C27120.15 (16)
N11—C1—C2108.74 (14)O22—C22—C23118.38 (14)
C6—C1—C2110.59 (13)O22—C22—C21121.96 (15)
N11—C1—H1108.7C23—C22—C21119.64 (15)
C6—C1—H1108.7C22—O22—H22109.5
C2—C1—H1108.7O23—C23—C22114.60 (15)
C17—N11—C1118.88 (15)O23—C23—C24125.37 (15)
N11—C17—C11121.58 (16)C24—C23—C22120.02 (15)
N11—C17—H17119.2C23—O23—C231116.41 (14)
C11—C17—H17119.2O23—C231—H23A109.5
C12—C11—C16119.36 (16)O23—C231—H23B109.5
C12—C11—C17120.21 (15)H23A—C231—H23B109.5
C16—C11—C17120.41 (16)O23—C231—H23C109.5
O12—C12—C11122.20 (16)H23A—C231—H23C109.5
O12—C12—C13117.81 (16)H23B—C231—H23C109.5
C11—C12—C13119.98 (15)C23—C24—C25120.10 (17)
C12—O12—H12109.5C23—C24—H24120.0
O13—C13—C12115.06 (14)C25—C24—H24120.0
O13—C13—C14125.21 (16)C26—C25—C24120.53 (17)
C14—C13—C12119.72 (17)C26—C25—H25119.7
C13—O13—C131116.97 (14)C24—C25—H25119.7
O13—C131—H13A109.5C25—C26—C21120.26 (16)
O13—C131—H13B109.5C25—C26—H26119.9
H13A—C131—H13B109.5C21—C26—H26119.9
O13—C131—H13C109.5C4—C3—C2111.48 (14)
H13A—C131—H13C109.5C4—C3—H3A109.3
H13B—C131—H13C109.5C2—C3—H3A109.3
C13—C14—C15120.14 (17)C4—C3—H3B109.3
C13—C14—H14119.9C2—C3—H3B109.3
C15—C14—H14119.9H3A—C3—H3B108.0
C16—C15—C14120.51 (16)C3—C4—C5111.26 (14)
C16—C15—H15119.7C3—C4—H4A109.4
C14—C15—H15119.7C5—C4—H4A109.4
C15—C16—C11120.26 (17)C3—C4—H4B109.4
C15—C16—H16119.9C5—C4—H4B109.4
C11—C16—H16119.9H4A—C4—H4B108.0
N21—C2—C1109.15 (13)C4—C5—C6112.03 (16)
N21—C2—C3109.93 (13)C4—C5—H5A109.2
C1—C2—C3110.08 (15)C6—C5—H5A109.2
N21—C2—H2109.2C4—C5—H5B109.2
C1—C2—H2109.2C6—C5—H5B109.2
C3—C2—H2109.2H5A—C5—H5B107.9
C27—N21—C2119.63 (14)C1—C6—C5110.43 (14)
N21—C27—C21121.30 (15)C1—C6—H6A109.6
N21—C27—H27119.4C5—C6—H6A109.6
C21—C27—H27119.4C1—C6—H6B109.6
C26—C21—C22119.45 (16)C5—C6—H6B109.6
C26—C21—C27120.38 (15)H6A—C6—H6B108.1
C6—C1—N11—C1791.25 (18)C2—N21—C27—C21177.82 (15)
C2—C1—N11—C17146.74 (15)N21—C27—C21—C26172.42 (16)
C1—N11—C17—C11178.86 (14)N21—C27—C21—C226.1 (2)
N11—C17—C11—C126.8 (2)C26—C21—C22—O22178.55 (15)
N11—C17—C11—C16171.31 (16)C27—C21—C22—O220.0 (2)
C16—C11—C12—O12179.26 (15)C26—C21—C22—C230.3 (2)
C17—C11—C12—O121.1 (2)C27—C21—C22—C23178.29 (15)
C16—C11—C12—C130.3 (2)O22—C22—C23—O230.6 (2)
C17—C11—C12—C13177.84 (15)C21—C22—C23—O23178.98 (15)
O12—C12—C13—O131.0 (2)O22—C22—C23—C24178.15 (15)
C11—C12—C13—O13179.97 (15)C21—C22—C23—C240.2 (3)
O12—C12—C13—C14177.73 (15)C24—C23—O23—C2311.8 (2)
C11—C12—C13—C141.2 (2)C22—C23—O23—C231176.88 (15)
C14—C13—O13—C1311.7 (2)O23—C23—C24—C25179.07 (17)
C12—C13—O13—C131179.67 (15)C22—C23—C24—C250.4 (3)
O13—C13—C14—C15179.85 (16)C23—C24—C25—C260.2 (3)
C12—C13—C14—C151.3 (2)C24—C25—C26—C210.3 (3)
C13—C14—C15—C160.3 (3)C22—C21—C26—C250.5 (3)
C14—C15—C16—C111.9 (3)C27—C21—C26—C25178.04 (16)
C12—C11—C16—C151.9 (2)N21—C2—C3—C4176.99 (14)
C17—C11—C16—C15176.25 (16)C1—C2—C3—C456.73 (19)
N11—C1—C2—N2158.28 (17)C2—C3—C4—C554.1 (2)
C6—C1—C2—N21179.32 (14)C3—C4—C5—C653.5 (2)
N11—C1—C2—C3179.02 (13)N11—C1—C6—C5178.80 (14)
C6—C1—C2—C358.58 (18)C2—C1—C6—C557.87 (19)
C1—C2—N21—C27158.41 (15)C4—C5—C6—C155.4 (2)
C3—C2—N21—C2780.76 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···N110.841.842.580 (2)147
O22—H22···N210.841.822.568 (2)147
C14—H14···O22i0.952.503.329 (2)146
C24—H24···O23ii0.952.553.356 (2)142
C26—H26···O12iii0.952.453.398 (2)172
Symmetry codes: (i) x1/2, y1/2, z+1; (ii) x1/2, y+1/2, z+1; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H26N2O4
Mr382.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)7.5558 (2), 13.4054 (1), 20.0304 (3)
V3)2028.85 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.25 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
DENZO–SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.962, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
27432, 2642, 2484
Rint0.071
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.08
No. of reflections2646
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Selected bond and torsion angles (º) top
O13—C13—C12115.06 (14)O23—C23—C22114.60 (15)
O13—C13—C14125.21 (16)O23—C23—C24125.37 (15)
C2—C1—N11—C17146.74 (15)C1—C2—N21—C27158.41 (15)
C1—N11—C17—C11178.86 (14)C2—N21—C27—C21177.82 (15)
N11—C17—C11—C126.8 (2)N21—C27—C21—C226.1 (2)
C12—C13—O13—C131179.67 (15)C22—C23—O23—C231176.88 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···N110.841.842.580 (2)147
O22—H22···N210.841.822.568 (2)147
C14—H14···O22i0.952.503.329 (2)146
C24—H24···O23ii0.952.553.356 (2)142
C26—H26···O12iii0.952.453.398 (2)172
Symmetry codes: (i) x1/2, y1/2, z+1; (ii) x1/2, y+1/2, z+1; (iii) x+1, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds