Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the rac isomer of the title compound, C34H28O2, the two C-Phdi­methyl­phenyl bond axes make an angle of 58.7 (1)°. There is no short contact between the two 3,5-di­methyl­phenyl rings, although the dihedral angle between them is 4.93 (7)°. The meso isomer has a center of symmetry at the middle of the C=C bond, and the two C-Phdi­methyl­phenyl bond axes are antiparallel to one another.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103010308/sk1639sup1.cif
Contains datablocks General, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103010308/sk1639Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103010308/sk1639IIsup3.hkl
Contains datablock II

CCDC references: 217142; 217143

Comment top

Organic photochromic compounds have received considerable attention in recent years because of their potential applications in many fields (Gemert, 1999). The title compounds, (I) and (II), were prepared in the course of a study of crystal photochromism of 3,3'-diaryl-3H,3'H-[2,2']biindenylidene-1,1'-diones (Tanaka & Toda, 2000; Tanaka et al., 2003). Compounds (I) and (II) are geometrical isomers, and they are not conclusively identifiable from spectroscopic data. The colour of crystals of both (I) and (II) changed from yellow to orange when they were irradiated with Hg light. This colour changed back to yellow in 30 min for (I) but has been stable for (II) for more than six months. The ESR spectra suggest that the photochromism of these crystals is due to the biradical caused by breaking the π-bond at the center of the biindenylidene moiety. In the present study, X-ray structure analyses of (I) and (II) have been carried out in order to investigate their molecular structures and ππ interactions.

In (I), each indene rings is approximately planar (Fig. 1). The dihedral angle between the C3/C4/C5 and C6–C11 planes is 3.12 (5)°, and that between the C12/C13/C14 and C15–C20 planes is 4.55 (6)°. The two indene rings are skewed with respect to each other by 13.29 (4)°. The two 3,5-dimethylphenyl rings are almost parallel and the dihedral angle between the C21–C26 and C29–C34 planes is 4.93 (7)°. However, there is no intramolecular short contact between these rings. The shortest distance between the non-H atoms is 3.964 (4) Å for C27···C35 and the second shortest is 3.986 (3) Å for C22···C30.

The meso-isomer, (II), has a center of symmetry (Fig. 2). Each indene ring is twisted a little, and the dihedral angle between the C2/C3/C4 and C5–C10 planes is 11.31 (7)°. The puckering? of the five-membered ring can be seen also from the C—C—C—C torsion angles of the ring, which are in the range −9.1 (2)–10.5 (2)° (Table 2). Non-planality of the five-membered rings in the biindenylidene moiety was also observed in crystals of 2,2'-biindenylidene-1,3,1',3'-tetraone (Khodorkovsky et al., 1994), the torsion angles in the five-membered rings being in the range −18.8–18.1°.

The densities of (I) and (II) are 1.239 and 1.204 Mg m−3, respectively, indicating that the meso-isomer has a lightly lower packing efficiency than the rac-isomer. The more flexible space around the molecule might be preferable for photochromism. In the crystals of (I), a pair of molecules related by center of symmetry show ππ interactions between the 6–5-5 rings of the biindenylidene moieties with, C3···C3' = 3.479 (4) Å, C8···C13' = 3.480 (3) Å and C9···C15' = 3.283 (3) Å [symmetry code: (') −x, −y, −z; Fig. 3). In (II), ππ stacking is observed between the terminal phenyl rings of the biindenylidene moieties, thus forming columns along c (Fig. 4), the shortest distance being 3.409 (3) Å for C6···C8 (1 − x, −y, 2 − z).

Experimental top

Compounds (I) and (II) were synthesized according to the method reported by Tanaka & Toda (2000). The rac-isomer, (I), and meso-isomer, (II), were separated by repeated recrystallization of the crude reaction products from dichloromethane solution. The crystals of (I) and (II) suitable for X-ray study were grown from dichloromethane solutions. For (I) (m.p. 509–515 K); IR: 1686 (C=O), 1604 (C=C) cm−1; UV: λ/nm (ε) 241 (9600), 302 (24000); 1H NMR: δ 2.25 (12H, s, CH3), 5.74 (2H, s, CH), 6.83–7.76 (14H, m, Ph). For (II) (m.p. 529–532 K); IR: 1685 (C=O), 1600 (C=C) cm−1; UV: λ/nm (ε) 241 (9900), 294 (24200); 1H NMR: δ 2.22 (12H, s, CH3), 5.88 (2H, s, CH), 6.75–7.75 (14H, m, Ph).

Refinement top

All H atoms were positioned geometrically and fixed, with Uiso(H) equal to 1.2Ueq(parent atom). Some methyl H-atom positional parameters were modified further based on difference density maps.

Computing details top

For both compounds, data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of (II) with displacement ellipsoids shown at the 50% probability level.
[Figure 3] Fig. 3. The crystal structure of (I), projected along a.
[Figure 4] Fig. 4. The crystal structure of (II), projected along b.
(I) top
Crystal data top
C34H28O2Z = 2
Mr = 468.59F(000) = 496
Triclinic, P1Dx = 1.239 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 11.392 (2) ÅCell parameters from 25 reflections
b = 13.9700 (18) Åθ = 10.4–14.4°
c = 9.2771 (13) ŵ = 0.08 mm1
α = 97.705 (11)°T = 298 K
β = 109.950 (12)°Plate, yellow
γ = 109.492 (11)°0.5 × 0.25 × 0.1 mm
V = 1256.0 (4) Å3
Data collection top
Rigaku AFC7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 1414
6275 measured reflectionsk = 186
5773 independent reflectionsl = 1212
3911 reflections with I > 2σ(I)3 standard reflections every 150 reflections
Rint = 0.025 intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.2455P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.154(Δ/σ)max = 0.006
S = 1.03Δρmax = 0.21 e Å3
5773 reflectionsΔρmin = 0.25 e Å3
325 parameters
Crystal data top
C34H28O2γ = 109.492 (11)°
Mr = 468.59V = 1256.0 (4) Å3
Triclinic, P1Z = 2
a = 11.392 (2) ÅMo Kα radiation
b = 13.9700 (18) ŵ = 0.08 mm1
c = 9.2771 (13) ÅT = 298 K
α = 97.705 (11)°0.5 × 0.25 × 0.1 mm
β = 109.950 (12)°
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.025
6275 measured reflections3 standard reflections every 150 reflections
5773 independent reflections intensity decay: none
3911 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.050325 parameters
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
5773 reflectionsΔρmin = 0.25 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1395 (1)0.0481 (1)0.0679 (2)0.0506 (3)
O20.1733 (1)0.2675 (1)0.1794 (2)0.0569 (4)
C30.0183 (2)0.0998 (1)0.1123 (2)0.0342 (3)
C40.0491 (2)0.1686 (1)0.0266 (2)0.0310 (3)
C50.2030 (2)0.2168 (1)0.1228 (2)0.0326 (3)
C60.2190 (2)0.1656 (1)0.2586 (2)0.0352 (3)
C70.0943 (2)0.1038 (1)0.2556 (2)0.0353 (3)
C80.0857 (2)0.0547 (2)0.3750 (2)0.0454 (4)
C90.2057 (2)0.0698 (2)0.4990 (2)0.0520 (5)
C100.3313 (2)0.1306 (2)0.5016 (2)0.0524 (5)
C110.3395 (2)0.1786 (1)0.3823 (2)0.0455 (4)
C120.0514 (2)0.2302 (1)0.2145 (2)0.0375 (4)
C130.0183 (2)0.1801 (1)0.1147 (2)0.0323 (3)
C140.1721 (2)0.1417 (1)0.2056 (2)0.0338 (3)
C150.1851 (2)0.1673 (1)0.3633 (2)0.0376 (4)
C160.0588 (2)0.2175 (1)0.3658 (2)0.0401 (4)
C170.0471 (2)0.2457 (2)0.5013 (2)0.0531 (5)
C180.1646 (3)0.2226 (2)0.6332 (2)0.0628 (6)
C190.2913 (2)0.1736 (2)0.6304 (2)0.0607 (6)
C200.3038 (2)0.1456 (2)0.4967 (2)0.0501 (4)
C210.2640 (2)0.3367 (1)0.1914 (2)0.0352 (3)
C220.2035 (2)0.3830 (1)0.2689 (2)0.0444 (4)
C230.2618 (2)0.4915 (2)0.3407 (2)0.0535 (5)
C240.3819 (2)0.5524 (2)0.3324 (3)0.0582 (5)
C250.4461 (2)0.5088 (2)0.2578 (3)0.0539 (5)
C260.3847 (2)0.4000 (1)0.1870 (2)0.0445 (4)
C270.1969 (3)0.5413 (2)0.4274 (4)0.0871 (8)
C280.5772 (3)0.5773 (2)0.2517 (4)0.0817 (8)
C290.2380 (2)0.1950 (1)0.1235 (2)0.0358 (3)
C300.1758 (2)0.3033 (1)0.0518 (2)0.0435 (4)
C310.2377 (2)0.3544 (2)0.0165 (2)0.0500 (4)
C320.3639 (2)0.2938 (2)0.0121 (2)0.0543 (5)
C330.4290 (2)0.1855 (2)0.0585 (2)0.0493 (5)
C340.3643 (2)0.1368 (1)0.1257 (2)0.0416 (4)
C350.1699 (3)0.4724 (2)0.0920 (3)0.0754 (7)
C360.5670 (2)0.1222 (2)0.0627 (3)0.0709 (7)
H50.24690.19770.06050.0381*
H80.00030.01210.37190.0538*
H90.20210.03850.58250.0614*
H100.41290.13940.58740.0618*
H110.42600.21960.38420.0537*
H140.21420.06740.22420.0391*
H170.04040.28020.50170.0619*
H180.15950.24020.72690.0743*
H190.37150.15860.72250.0713*
H200.39160.11320.49640.0592*
H220.12080.33990.27320.0517*
H240.42210.62650.38060.0685*
H260.42650.36850.13410.0525*
H27A0.25890.57330.53700.1026*
H27B0.17760.59390.38120.1026*
H27C0.11540.48860.41940.1026*
H28A0.56330.62930.20010.0982*
H28B0.64650.61050.35670.0982*
H28C0.60390.53370.19270.0982*
H300.08900.34350.04920.0507*
H320.40690.32750.05910.0642*
H340.40750.06280.17470.0495*
H35A0.08330.48980.17790.0886*
H35B0.15610.50770.01560.0886*
H35C0.22560.49360.13350.0886*
H36A0.56060.12900.04390.0834*
H36B0.63160.14840.11780.0834*
H36C0.59700.05010.11520.0834*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0329 (6)0.0610 (8)0.0545 (8)0.0115 (6)0.0176 (6)0.0268 (6)
O20.0416 (7)0.0732 (9)0.0544 (8)0.0129 (7)0.0259 (6)0.0244 (7)
C30.0343 (8)0.0358 (8)0.0349 (8)0.0144 (7)0.0165 (7)0.0108 (6)
C40.0304 (7)0.0308 (7)0.0326 (8)0.0128 (6)0.0145 (6)0.0070 (6)
C50.0297 (7)0.0328 (7)0.0347 (8)0.0120 (6)0.0141 (6)0.0075 (6)
C60.0372 (8)0.0314 (7)0.0345 (8)0.0153 (7)0.0120 (7)0.0055 (6)
C70.0388 (8)0.0341 (8)0.0350 (8)0.0165 (7)0.0158 (7)0.0095 (6)
C80.050 (1)0.0506 (10)0.0419 (9)0.0222 (8)0.0220 (8)0.0198 (8)
C90.065 (1)0.058 (1)0.0394 (10)0.031 (1)0.0201 (9)0.0214 (9)
C100.052 (1)0.056 (1)0.0395 (10)0.0269 (9)0.0042 (8)0.0111 (8)
C110.0369 (9)0.0434 (9)0.0437 (10)0.0136 (8)0.0070 (7)0.0069 (8)
C120.0390 (9)0.0378 (8)0.0371 (8)0.0124 (7)0.0202 (7)0.0110 (7)
C130.0340 (8)0.0312 (7)0.0331 (8)0.0126 (6)0.0163 (6)0.0085 (6)
C140.0311 (8)0.0346 (8)0.0336 (8)0.0117 (6)0.0126 (6)0.0098 (6)
C150.0442 (9)0.0368 (8)0.0325 (8)0.0191 (7)0.0147 (7)0.0084 (6)
C160.0498 (10)0.0408 (9)0.0349 (8)0.0207 (8)0.0207 (8)0.0127 (7)
C170.069 (1)0.062 (1)0.044 (1)0.031 (1)0.0327 (10)0.0238 (9)
C180.091 (2)0.078 (1)0.039 (1)0.048 (1)0.032 (1)0.027 (1)
C190.073 (1)0.073 (1)0.0341 (9)0.040 (1)0.0110 (9)0.0148 (9)
C200.051 (1)0.056 (1)0.0397 (10)0.0253 (9)0.0113 (8)0.0110 (8)
C210.0336 (8)0.0333 (8)0.0344 (8)0.0112 (6)0.0117 (7)0.0088 (6)
C220.0463 (10)0.0385 (9)0.048 (1)0.0145 (8)0.0234 (8)0.0085 (8)
C230.066 (1)0.0405 (9)0.051 (1)0.0204 (9)0.0240 (10)0.0061 (8)
C240.063 (1)0.0336 (9)0.057 (1)0.0071 (9)0.015 (1)0.0045 (8)
C250.044 (1)0.0419 (10)0.056 (1)0.0027 (8)0.0145 (9)0.0120 (9)
C260.0358 (9)0.0424 (9)0.051 (1)0.0109 (7)0.0182 (8)0.0109 (8)
C270.114 (2)0.058 (1)0.099 (2)0.038 (1)0.060 (2)0.001 (1)
C280.055 (1)0.057 (1)0.105 (2)0.004 (1)0.031 (1)0.018 (1)
C290.0342 (8)0.0439 (9)0.0322 (8)0.0187 (7)0.0133 (7)0.0137 (7)
C300.0442 (10)0.0448 (9)0.0480 (10)0.0209 (8)0.0225 (8)0.0163 (8)
C310.059 (1)0.052 (1)0.049 (1)0.0315 (9)0.0239 (9)0.0153 (9)
C320.056 (1)0.078 (1)0.049 (1)0.043 (1)0.0277 (9)0.021 (1)
C330.0373 (9)0.077 (1)0.0407 (10)0.0277 (9)0.0178 (8)0.0223 (9)
C340.0339 (8)0.0517 (10)0.0373 (9)0.0158 (8)0.0134 (7)0.0143 (7)
C350.093 (2)0.058 (1)0.086 (2)0.040 (1)0.043 (2)0.013 (1)
C360.044 (1)0.109 (2)0.063 (1)0.028 (1)0.029 (1)0.023 (1)
Geometric parameters (Å, º) top
O1—C31.211 (2)C21—C221.387 (3)
O2—C121.213 (2)C21—C261.383 (3)
C3—C41.508 (3)C22—C231.392 (3)
C3—C71.478 (2)C22—H220.951
C4—C51.519 (2)C23—C241.384 (3)
C4—C131.337 (2)C23—C271.509 (5)
C5—C61.518 (3)C24—C251.383 (4)
C5—C211.526 (2)C24—H240.950
C5—H50.949C25—C261.393 (3)
C6—C71.383 (2)C25—C281.506 (4)
C6—C111.391 (2)C26—H260.951
C7—C81.393 (3)C27—H27A0.953
C8—C91.381 (3)C27—H27B0.949
C8—H80.950C27—H27C0.944
C9—C101.389 (3)C28—H28A0.948
C9—H90.945C28—H28B0.948
C10—C111.383 (3)C28—H28C0.954
C10—H100.952C29—C301.388 (2)
C11—H110.953C29—C341.389 (3)
C12—C131.509 (3)C30—C311.388 (4)
C12—C161.470 (2)C30—H300.950
C13—C141.521 (2)C31—C321.386 (3)
C14—C151.523 (3)C31—C351.509 (3)
C14—C291.520 (3)C32—C331.386 (3)
C14—H140.948C32—H320.948
C15—C161.384 (3)C33—C341.388 (3)
C15—C201.392 (2)C33—C361.509 (3)
C16—C171.402 (3)C34—H340.949
C17—C181.372 (3)C35—H35A0.959
C17—H170.953C35—H35B0.943
C18—C191.387 (4)C35—H35C0.948
C18—H180.950C36—H36A0.955
C19—C201.387 (3)C36—H36B0.954
C19—H190.948C36—H36C0.946
C20—H200.951
O1—C3—C4126.7 (2)C5—C21—C22120.1 (2)
O1—C3—C7127.4 (2)C5—C21—C26120.9 (2)
C4—C3—C7105.9 (1)C22—C21—C26118.9 (2)
C3—C4—C5109.0 (1)C21—C22—C23121.1 (2)
C3—C4—C13124.2 (1)C21—C22—H22119.5
C5—C4—C13126.7 (2)C23—C22—H22119.4
C4—C5—C6102.6 (1)C22—C23—C24118.3 (2)
C4—C5—C21113.6 (2)C22—C23—C27120.9 (2)
C4—C5—H5110.4C24—C23—C27120.8 (2)
C6—C5—C21109.3 (1)C23—C24—C25122.2 (2)
C6—C5—H5110.3C23—C24—H24118.8
C21—C5—H5110.4C25—C24—H24119.0
C5—C6—C7112.2 (1)C24—C25—C26117.9 (2)
C5—C6—C11128.0 (2)C24—C25—C28120.9 (2)
C7—C6—C11119.8 (2)C26—C25—C28121.2 (2)
C3—C7—C6110.0 (2)C21—C26—C25121.6 (2)
C3—C7—C8128.4 (2)C21—C26—H26119.1
C6—C7—C8121.6 (2)C25—C26—H26119.3
C7—C8—C9118.3 (2)C23—C27—H27A109.2
C7—C8—H8121.1C23—C27—H27B109.3
C9—C8—H8120.6C23—C27—H27C109.3
C8—C9—C10120.4 (2)H27A—C27—H27B109.2
C8—C9—H9119.7H27A—C27—H27C109.7
C10—C9—H9119.9H27B—C27—H27C110.1
C9—C10—C11121.2 (2)C25—C28—H28A109.7
C9—C10—H10119.2C25—C28—H28B109.7
C11—C10—H10119.6C25—C28—H28C108.7
C6—C11—C10118.8 (2)H28A—C28—H28B109.8
C6—C11—H11120.5H28A—C28—H28C109.4
C10—C11—H11120.7H28B—C28—H28C109.5
O2—C12—C13126.5 (2)C14—C29—C30120.5 (2)
O2—C12—C16127.3 (2)C14—C29—C34120.4 (1)
C13—C12—C16106.0 (1)C30—C29—C34119.1 (2)
C4—C13—C12123.3 (1)C29—C30—C31121.4 (2)
C4—C13—C14127.6 (2)C29—C30—H30119.5
C12—C13—C14109.0 (1)C31—C30—H30119.2
C13—C14—C15102.5 (1)C30—C31—C32118.0 (2)
C13—C14—C29114.3 (1)C30—C31—C35120.8 (2)
C13—C14—H14109.4C32—C31—C35121.2 (3)
C15—C14—C29111.2 (2)C31—C32—C33122.2 (2)
C15—C14—H14109.7C31—C32—H32118.9
C29—C14—H14109.5C33—C32—H32118.9
C14—C15—C16112.0 (1)C32—C33—C34118.3 (2)
C14—C15—C20128.2 (2)C32—C33—C36120.8 (2)
C16—C15—C20119.8 (2)C34—C33—C36120.9 (2)
C12—C16—C15110.4 (2)C29—C34—C33121.0 (2)
C12—C16—C17128.1 (2)C29—C34—H34119.5
C15—C16—C17121.5 (2)C33—C34—H34119.5
C16—C17—C18118.4 (2)C31—C35—H35A109.0
C16—C17—H17120.8C31—C35—H35B109.9
C18—C17—H17120.9C31—C35—H35C109.5
C17—C18—C19120.3 (2)H35A—C35—H35B109.3
C17—C18—H18120.0H35A—C35—H35C108.9
C19—C18—H18119.7H35B—C35—H35C110.3
C18—C19—C20121.8 (2)C33—C36—H36A109.6
C18—C19—H19119.1C33—C36—H36B109.7
C20—C19—H19119.2C33—C36—H36C110.0
C15—C20—C19118.3 (2)H36A—C36—H36B108.7
C15—C20—H20121.1H36A—C36—H36C109.4
C19—C20—H20120.6H36B—C36—H36C109.5
C3—C4—C13—C12166.8 (2)C4—C5—C6—C75.2 (2)
C3—C4—C13—C149.5 (3)C5—C4—C3—C71.9 (2)
C5—C4—C13—C1210.1 (3)C12—C13—C14—C152.8 (2)
C5—C4—C13—C14173.6 (2)C12—C16—C15—C140.6 (2)
C3—C4—C5—C64.1 (2)C13—C12—C16—C151.3 (2)
C3—C7—C6—C54.3 (2)C13—C14—C15—C162.1 (2)
C4—C3—C7—C61.5 (2)C14—C13—C12—C162.6 (2)
(II) top
Crystal data top
C34H28O2F(000) = 496
Mr = 468.59Dx = 1.204 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2yabCell parameters from 25 reflections
a = 19.230 (2) Åθ = 10.1–12.8°
b = 8.0506 (10) ŵ = 0.07 mm1
c = 8.4461 (11) ÅT = 298 K
β = 98.802 (10)°Needle, yellow
V = 1292.2 (3) Å30.5 × 0.2 × 0.2 mm
Z = 2
Data collection top
Rigaku AFC7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 2424
3542 measured reflectionsk = 010
2969 independent reflectionsl = 104
1870 reflections with I > 2σ(I)3 standard reflections every 150 reflections
Rint = 0.013 intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0887P)2 + 0.4121P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.195(Δ/σ)max = 0.004
S = 1.21Δρmax = 0.29 e Å3
2969 reflectionsΔρmin = 0.28 e Å3
164 parameters
Crystal data top
C34H28O2V = 1292.2 (3) Å3
Mr = 468.59Z = 2
Monoclinic, P21/aMo Kα radiation
a = 19.230 (2) ŵ = 0.07 mm1
b = 8.0506 (10) ÅT = 298 K
c = 8.4461 (11) Å0.5 × 0.2 × 0.2 mm
β = 98.802 (10)°
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.013
3542 measured reflections3 standard reflections every 150 reflections
2969 independent reflections intensity decay: none
1870 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.054164 parameters
wR(F2) = 0.195H-atom parameters constrained
S = 1.21Δρmax = 0.29 e Å3
2969 reflectionsΔρmin = 0.28 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46758 (9)0.2628 (2)0.6626 (2)0.0568 (5)
C20.46117 (9)0.1124 (3)0.6735 (2)0.0402 (5)
C30.48116 (9)0.0159 (2)0.5584 (2)0.0367 (4)
C40.45392 (9)0.1841 (3)0.6041 (2)0.0388 (5)
C50.4314 (1)0.1468 (3)0.7662 (2)0.0442 (5)
C60.4335 (1)0.0209 (3)0.8005 (2)0.0424 (5)
C70.4133 (1)0.0830 (3)0.9415 (3)0.0533 (6)
C80.3919 (1)0.0286 (4)1.0465 (3)0.0645 (7)
C90.3905 (1)0.1961 (4)1.0139 (3)0.0713 (8)
C100.4102 (1)0.2596 (3)0.8741 (3)0.0613 (7)
C110.39113 (9)0.2488 (2)0.4869 (2)0.0364 (4)
C120.3349 (1)0.1450 (2)0.4324 (2)0.0398 (5)
C130.2765 (1)0.2031 (3)0.3299 (3)0.0449 (5)
C140.2751 (1)0.3700 (3)0.2862 (3)0.0505 (6)
C150.3296 (1)0.4762 (3)0.3400 (3)0.0513 (6)
C160.3882 (1)0.4133 (3)0.4396 (3)0.0448 (5)
C170.2169 (1)0.0880 (3)0.2664 (4)0.0674 (7)
C180.3266 (2)0.6564 (4)0.2912 (5)0.087 (1)
H40.49090.26360.61650.0460*
H70.41450.19890.96390.0623*
H80.37770.00991.14310.0768*
H90.37570.27071.08910.0840*
H100.40910.37580.85360.0729*
H120.33640.03250.46580.0474*
H140.23510.41170.21730.0590*
H160.42670.48500.47540.0530*
H17A0.18190.14840.19850.0794*
H17B0.23430.00100.20750.0794*
H17C0.19740.04270.35350.0794*
H18A0.36880.71020.33740.1035*
H18B0.32150.66410.17780.1035*
H18C0.28750.70820.32760.1035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.066 (1)0.0450 (10)0.061 (1)0.0060 (8)0.0145 (8)0.0054 (8)
C20.0303 (9)0.048 (1)0.042 (1)0.0009 (8)0.0037 (8)0.0064 (9)
C30.0281 (8)0.041 (1)0.0396 (10)0.0035 (7)0.0002 (7)0.0079 (8)
C40.0300 (9)0.041 (1)0.044 (1)0.0046 (8)0.0019 (8)0.0103 (9)
C50.0333 (10)0.062 (1)0.035 (1)0.0114 (9)0.0025 (8)0.0094 (9)
C60.0299 (9)0.058 (1)0.038 (1)0.0016 (9)0.0016 (8)0.0070 (9)
C70.039 (1)0.079 (2)0.041 (1)0.004 (1)0.0026 (9)0.002 (1)
C80.054 (1)0.102 (2)0.038 (1)0.010 (1)0.009 (1)0.004 (1)
C90.067 (2)0.104 (2)0.043 (1)0.026 (2)0.012 (1)0.022 (1)
C100.063 (1)0.072 (2)0.047 (1)0.026 (1)0.001 (1)0.014 (1)
C110.0327 (9)0.0382 (10)0.0384 (9)0.0058 (8)0.0063 (7)0.0059 (8)
C120.0368 (10)0.0370 (10)0.045 (1)0.0022 (8)0.0057 (8)0.0002 (9)
C130.035 (1)0.051 (1)0.048 (1)0.0014 (9)0.0045 (9)0.0013 (10)
C140.043 (1)0.056 (1)0.051 (1)0.0115 (10)0.0004 (9)0.005 (1)
C150.057 (1)0.039 (1)0.058 (1)0.0091 (10)0.006 (1)0.002 (1)
C160.043 (1)0.037 (1)0.054 (1)0.0007 (8)0.0052 (9)0.0084 (9)
C170.045 (1)0.071 (2)0.080 (2)0.009 (1)0.011 (1)0.005 (1)
C180.096 (2)0.048 (2)0.110 (3)0.009 (1)0.009 (2)0.017 (2)
Geometric parameters (Å, º) top
O1—C21.222 (3)C11—C121.389 (3)
C2—C31.508 (3)C11—C161.383 (3)
C2—C61.467 (3)C12—C131.389 (3)
C3—C3i1.336 (4)C12—H120.947
C3—C41.523 (3)C13—C141.393 (3)
C4—C51.527 (3)C13—C171.507 (3)
C4—C111.531 (2)C14—C151.375 (3)
C4—H40.950C14—H140.951
C5—C61.381 (3)C15—C161.395 (3)
C5—C101.391 (3)C15—C181.507 (4)
C6—C71.400 (3)C16—H160.950
C7—C81.370 (4)C17—H17A0.950
C7—H70.952C17—H17B0.949
C8—C91.376 (5)C17—H17C0.949
C8—H80.951C18—H18A0.949
C9—C101.391 (4)C18—H18B0.950
C9—H90.949C18—H18C0.950
C10—H100.951
O1—C2—C3126.3 (2)C4—C11—C12120.5 (2)
O1—C2—C6127.2 (2)C4—C11—C16120.4 (2)
C3—C2—C6106.5 (2)C12—C11—C16119.1 (2)
C2—C3—C3i124.5 (2)C11—C12—C13121.2 (2)
C2—C3—C4108.3 (2)C11—C12—H12119.3
C3i—C3—C4127.2 (2)C13—C12—H12119.5
C3—C4—C5102.0 (2)C12—C13—C14118.1 (2)
C3—C4—C11114.0 (2)C12—C13—C17120.8 (2)
C3—C4—H4110.3C14—C13—C17121.0 (2)
C5—C4—C11110.0 (2)C13—C14—C15121.9 (2)
C5—C4—H4110.1C13—C14—H14119.0
C11—C4—H4110.1C15—C14—H14119.1
C4—C5—C6112.2 (2)C14—C15—C16118.6 (2)
C4—C5—C10127.7 (2)C14—C15—C18120.9 (2)
C6—C5—C10120.2 (2)C16—C15—C18120.5 (2)
C2—C6—C5109.9 (2)C11—C16—C15121.0 (2)
C2—C6—C7128.5 (2)C11—C16—H16119.6
C5—C6—C7121.6 (2)C15—C16—H16119.4
C6—C7—C8117.8 (2)C13—C17—H17A109.4
C6—C7—H7121.2C13—C17—H17B109.3
C8—C7—H7121.0C13—C17—H17C109.3
C7—C8—C9120.8 (2)H17A—C17—H17B109.6
C7—C8—H8119.8H17A—C17—H17C109.6
C9—C8—H8119.5H17B—C17—H17C109.7
C8—C9—C10122.0 (3)C15—C18—H18A109.4
C8—C9—H9119.0C15—C18—H18B109.4
C10—C9—H9118.9C15—C18—H18C109.4
C5—C10—C9117.5 (3)H18A—C18—H18B109.6
C5—C10—H10121.5H18A—C18—H18C109.5
C9—C10—H10121.0H18B—C18—H18C109.5
C2—C3—C4—C510.5 (2)C3—C4—C5—C68.7 (2)
C2—C6—C5—C43.4 (2)C4—C3—C2—C69.1 (2)
C3—C2—C6—C53.6 (2)
Symmetry code: (i) x+1, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC34H28O2C34H28O2
Mr468.59468.59
Crystal system, space groupTriclinic, P1Monoclinic, P21/a
Temperature (K)298298
a, b, c (Å)11.392 (2), 13.9700 (18), 9.2771 (13)19.230 (2), 8.0506 (10), 8.4461 (11)
α, β, γ (°)97.705 (11), 109.950 (12), 109.492 (11)90, 98.802 (10), 90
V3)1256.0 (4)1292.2 (3)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.080.07
Crystal size (mm)0.5 × 0.25 × 0.10.5 × 0.2 × 0.2
Data collection
DiffractometerRigaku AFC7R
diffractometer
Rigaku AFC7R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6275, 5773, 3911 3542, 2969, 1870
Rint0.0250.013
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.154, 1.03 0.054, 0.195, 1.21
No. of reflections57732969
No. of parameters325164
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.250.29, 0.28

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), TEXSAN (Molecular Structure Corporation, 2001), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) for (I) top
O1—C31.211 (2)C5—C211.526 (2)
O2—C121.213 (2)C12—C131.509 (3)
C3—C41.508 (3)C12—C161.470 (2)
C3—C71.478 (2)C13—C141.521 (2)
C4—C51.519 (2)C14—C151.523 (3)
C4—C131.337 (2)C14—C291.520 (3)
C5—C61.518 (3)
C3—C4—C13—C12166.8 (2)C5—C4—C13—C14173.6 (2)
C3—C4—C13—C149.5 (3)C3—C7—C6—C54.3 (2)
C5—C4—C13—C1210.1 (3)C4—C5—C6—C75.2 (2)
Selected geometric parameters (Å, º) for (II) top
O1—C21.222 (3)C3—C41.523 (3)
C2—C31.508 (3)C4—C51.527 (3)
C2—C61.467 (3)C4—C111.531 (2)
C3—C3i1.336 (4)
C2—C3—C4—C510.5 (2)C4—C3—C2—C69.1 (2)
Symmetry code: (i) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds