Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, catena-poly[[triaquabarium(II)]-di-[mu]-6-amino-3-methyl-5-nitro­so­pyrimidine-2,4(1H,3H)-dionato], [Ba(C5H5N4O3)2(H2O)3]n, forms a coordination polymer chain in which the two distinct anions use different ligating atoms to bridge pairs of cations. Adjacent pairs of cations are also linked by pairs of bridging water mol­ecules. The chains are linked into a single three-dimensional framework by an extensive series of hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103009703/sk1638sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103009703/sk1638Isup2.hkl
Contains datablock I

CCDC reference: 214385

Comment top

We have recently reported the molecular and supramolecular structures of the hydrated sodium and strontium salts derived from 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dione, (1). The cations and the (C5H5N4O3) anions [denoted L and shown as (2) in the Scheme] in the sodium salt, Na(L)·2H2O, form a one-dimensional coordination polymer in the form of a molecular ladder, and the ladders are linked into a continuous three-dimensional framework by a combination of O—H···O and O—H···N hydrogen bonds (Cuesta et al., 2001). Within the ladder, the anion utilizes one amide O atom and the nitroso N atom to coordinate to a single Na atom, while the other amide O atom bridges a pair of cations, thus forming a centrosymmetric Na2O2 ring. By contrast, the Sr salt of composition Sr(L)2·3H2O forms a centrosymmetric dimer, in which the two L ligands adopt entirely different coordination modes: one water ligand bridges two Sr centres, and one of the anionic ligands is bidentate and bonded to just one Sr, while the other is tridentate and bridges the two Sr centres within the dimer. The dimeric units are linked by an extensive series of O—H···O, O—H···N and N—H···O hydrogen bonds to form a complex three-dimensional framework (Low et al., 2003).

Continuing this study, we report here the structure of the hydrated barium salt, (I), of L, whose composition, Ba(L)2·3H2O, is analogous to that of the Sr salt. While the structure of (I) (Fig. 1) is different from the structures of both the Na and the Sr complexes of L, it shares certain features with both of them. Complex (I) resembles Na(L)·2H2O in that both form one-dimensional coordination polymers, but differs from it in containing two distinct anions exhibiting different coordination behaviour and in forming a chain of spiro-fused rings rather than edge-fused rings. Complex (I) resembles Sr(L)2·3H2O in forming centrosymmetric M2(anion)2 and M2(H2O)2 rings, but differs from it in forming a coordination polymer containing ten-coordinate M (Fig. 2) rather than a finite centrosymmetric dimer containing nine-coordinate M.

The structures of the two independent anions are similar but not identical; each adopts the usual planar conformation with the nitroso group trans to the amide On4 atoms (n = 1 or 2), and each forms an intramolecular N—H···O hydrogen bond with the nitroso On5 atom as acceptor (Fig. 1). The anions show a number of the metrical features characteristic of 5-nitrosopyrimidines (Low et al., 2000, 2001a,b,c,d). In particular, the C4—C5 and C5—C6 distances are very similar, the difference between the C5—N5 and N5—O5 distances is less than 0.065 Å, and the C6—N6 bond is very short for a single C—N bond between three-connected atoms (Allen et al., 1987). While the similar C2—O2 and C4—O4 distances are both typical of those in neutral amides (Allen et al., 1987), the N1—C6 bond is somewhat shorter than the N1—C2 bond. These observations taken together indicate polarization of the electronic structure, so that (2a) is a significantly better representation than (2).

In forming the polymer chain in (I), the type 1 anion (containing N11, N13 etc.) uses two O atoms (O12 and O14) to coordinate to two different Ba atoms, reinforced by weak coordination of nitroso atom N15, while the type 2 anion (containing N21, N23 etc.) uses atom O22 and ring atom N21 to coordinate to a pair of Ba atoms different from those coordinated by the type 1 anion (Table 1). Thus, in the type 1 anion at (x, y, z), atoms O12 and O14 are bonded to Ba atoms at (x, y, z) and (1 − x, 1 − y, −z), respectively, while in the type 1 anion at (1 − x, 1 − y, −z), atoms O12 and O14 are bonded to Ba atoms at (1 − x, 1 − y, −z) and (x, y, z), respectively. In this manner, a centrosymmetric R24(12) ring (Starbuck et al., 1999) is formed, centred at (1/2, 1/2, 0). In the type 2 anion at (x, y, z), atoms N21 and O22 are bonded to Ba atoms at (x, y, z) and (1 − x, 1 − y, 1 − z), respectively, providing a centrosymmetric R24(8) ring centred at (1/2, 1/2, 1/2). Propagation by inversion of these two ring motifs thus generates a chain of spiro-fused rings running parallel to the [001] direction (Fig. 3), with R24(8) rings centred at (1/2, 1/2, 0.5 + n) (n = zero or integer) and R24(12) rings centred at (1/2, 1/2, n) (n = zero or integer). The chain is reinforced by two hydrogen bonds; atoms N26 and O2 at (x, y, z) act as hydrogen-bond donors, via atoms H26A and H2B, to atoms O14 and O15, respectively, both at (1 − x, 1 − y, −z).

Almost orthogonal to the R24(8) rings are centrosymmetric Ba2O2 rings containing water atom O1, where atom O1 at (x, y, z) is coordinated to Ba atoms at (x, y, z) and (1 − x, 1 − y, 1 − z). This feature thus resembles the Sr2O2 rings formed in the Sr(L)2·3H2O complex (Low et al., 2003). The coordination of the Ba cation at (x, y, z) is completed by the two water molecules containing atoms O2 and O3, both of which are bonded to a single cation, and by rather weak interactions with atom O22 in the type 2 cation at (x, y, z) and atom N15 in the type 1 cation at (1 − x, 1 − y, −z), so giving tenfold coordination (Fig. 2). This conformation may be contrasted with the near-octahedral six-coordination in Na(L)·2H2O and the nine-coordination in Sr(L)2·3H2O.

There is just one coordination polymer chain running through each unit cell, and adjacent chains are linked by an extensive series of O—H···O, O—H···N and N—H···O hydrogen bonds (Table 2) to form a single three-dimensional framework. The formation of this framework is readily analyzed in terms of several one-dimensional substructures.

Water atom O1 at (x, y, z) lies in a Ba2O2 ring centred at (1/2, 1/2, 1/2) and acts as hydrogen-bond donor to both water atom O2 and water atom O3 at (-x, 1 − y, 1 − z). These water molecules are directly coordinated to the Ba cation at (-x, 1 − y, 1 − z), which itself lies in the Ba2O2 ring centred at (−0.5, 1/2, 1/2). Propagation of these hydrogen bonds by translation and inversion leads to the formation of a chain of rings running parallel to the [100] direction (Fig. 4). This chain contains Ba2O2 rings centred at (0.5 + n, 1/2, 1/2) (n = zero or integer), and rectangular prismatic cages built from two Ba cations and six water molecules centred at (n, 1/2, 1/2) (n = zero or integer). This [100] chain is reinforced by the single O—H···N hydrogen bond in the structure, in which water atom O3 at (x, y, z) acts as hydrogen-bond donor, via atom H3B, to pyrimidine atom? N11 in the type 1 anion at (−1 + x, y, z) (Fig. 4).

Water atom O3 at (x, y, z) is directly coordinated to the Ba atom at (x, y, z). This water molecule acts as donor, via atom H3A, to both atom O24 and atom N25 in the type 2 anion at (1 − x, 2 − y, 1 − z) in an effectively planar three-centre O—H···(N,O) hydrogen bond. This type 2 anion is directly coordinated to the Ba atom at (1 − x, 2 − y, 1 − z), which forms part of a Ba2O2 ring centred at (1/2, 1.5, 1/2). Propagation of this three-centre hydrogen bond thus generates a chain of rings running parallel to [010], containing Ba2O2 rings centred at (1/2, 0.5 + n, 1/2) (n = zero or integer) and R46(14) rings (Bernstein et al., 1995; Starbuck et al., 1999) centred at (1/2, n, 1/2) (n = zero or integer) (Fig. 5).

The chains along [100], [010] and [001] (Figs. 3–5) are sufficient to generate a single three-dimensional framework. However, the formation of these chains does not fully utilize all of the intermolecular hydrogen bonds, and the final two bonds serve to reinforce the framework by forming a chain running parallel to the [110] direction. Amino atom N16 in the type 1 anion at (x, y, z) acts as hydrogen-bond donor to atom O24 in the type 2 anion at (2 − x, 2 − y, 1 − z), so generating a chain containing Ba2O2 rings centred at (0.5 + n, 0.5 + n, 1/2) (n = zero or integer) and R46(24) rings centred at (n, n, 1/2) (n = zero or integer) (Fig. 6). This [110] chain is itself reinforced by an O—H···O hydrogen bond in which water atom O2 at (x, y, z) acts as donor, via atom H2A, to O25 in the type 2 anion at (−1 + x, −1 + y, z).

Experimental top

The title compound was obtained by adding barium chloride trihydrate (3 mmol) to a solution of the corresponding potassium uracilate K(L) (1 mmol) in methanol–water (40 cm3, 9:1% v/v). Slow evaporation of this solution gave crystals, which were dried over CaCl2 for two weeks. Crystals suitable for single-crystal X-ray diffraction were selected directly from the prepared sample. Analysis found C 21.7, H 2.8, N 20.9%; C10H16BaN8O9 requires C 22.7, H 3.0, N 21.2%.

Refinement top

Crystals of (I) are triclinic, and the space group P-1 was chosen and confirmed by subsequent analysis. H atoms bonded to C or N atoms were treated as riding atoms, with C—H distances of 0.98 Å and N—H distances of 0.88 Å. H atoms bonded to O atoms were located from difference maps and refined initially using DFIX constraints (SHELXL97; Sheldrick, 1997), with O—H distances 0.90 (2) Å for atom O1 and 0.82 (2) Å for atoms O2 and O3, and finally as riding atoms with these distances. Although there are voids in the structure of ca 73 Å3 per unit cell, there is no evidence for the presence of any solvent molecules within the voids. Firstly, the only significant peaks in the difference map are clustered around the Ba atoms. In addition, the SQUEEZE option in PLATON (Spek, 2003) did not suggest that there was any significant electron density within the voids. Finally, when a supernumerary O atom was included in the void and refined with a fixed Uiso, its site-occupancy factor refined to a value of 0.036 (6), which is consistent with the absence of significant additional solvent in the void.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The ten-coordination of barium in (I). Atoms marked 'a' or 'b' are at the symmetry positions (1 − x, 1 − y, −z) and (1 − x, 1 − y, 1 − z), respectively.
[Figure 3] Fig. 3. Stereoview of part of the crystal structure of (I), showing the formation of the coordination polymer chain along (1/2, 1/2, z).
[Figure 4] Fig. 4. Stereoview of part of the crystal structure of (I), showing the formation of the hydrogen-bonded chain along (x, 1/2, 1/2).
[Figure 5] Fig. 5. Stereoview of part of the crystal structure of (I), showing the formation of the chain of rings along (1/2, y, 1/2).
[Figure 6] Fig. 6. Stereoview of part of the crystal structure of (I), showing the formation of the chain of rings parallel to [110].
Barium 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dionate trihydrate top
Crystal data top
[Ba(C5H5N4O3)2(H2O)3]Z = 2
Mr = 529.65F(000) = 520
Triclinic, P1Dx = 1.953 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7594 (1) ÅCell parameters from 3946 reflections
b = 11.2513 (3) Åθ = 2.9–27.5°
c = 12.6048 (2) ŵ = 2.27 mm1
α = 106.467 (2)°T = 120 K
β = 92.911 (1)°Block, pink
γ = 99.935 (1)°0.32 × 0.24 × 0.16 mm
V = 900.46 (3) Å3
Data collection top
Kappa-CCD
diffractometer
3946 independent reflections
Radiation source: rotating anode3892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 88
Tmin = 0.519, Tmax = 0.699k = 1414
11514 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.9783P]
where P = (Fo2 + 2Fc2)/3
3946 reflections(Δ/σ)max = 0.002
255 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
[Ba(C5H5N4O3)2(H2O)3]γ = 99.935 (1)°
Mr = 529.65V = 900.46 (3) Å3
Triclinic, P1Z = 2
a = 6.7594 (1) ÅMo Kα radiation
b = 11.2513 (3) ŵ = 2.27 mm1
c = 12.6048 (2) ÅT = 120 K
α = 106.467 (2)°0.32 × 0.24 × 0.16 mm
β = 92.911 (1)°
Data collection top
Kappa-CCD
diffractometer
3946 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
3892 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 0.699Rint = 0.059
11514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.15Δρmax = 0.71 e Å3
3946 reflectionsΔρmin = 1.22 e Å3
255 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.369848 (18)0.509100 (11)0.351704 (10)0.00851 (7)
O10.2337 (3)0.49118 (18)0.55253 (16)0.0138 (4)
O20.0037 (3)0.32634 (19)0.32702 (18)0.0200 (4)
O30.0645 (3)0.65064 (18)0.37146 (17)0.0152 (4)
N110.8127 (3)0.5797 (2)0.15918 (19)0.0144 (5)
C130.5650 (4)0.2546 (3)0.0094 (3)0.0183 (6)
C120.7010 (4)0.4606 (3)0.1292 (2)0.0136 (5)
O120.6292 (3)0.4111 (2)0.19801 (18)0.0197 (4)
N130.6609 (3)0.3878 (2)0.01561 (19)0.0124 (4)
C140.6967 (4)0.4394 (2)0.0701 (2)0.0111 (5)
O140.6357 (3)0.37826 (18)0.16708 (16)0.0146 (4)
C150.8093 (4)0.5693 (3)0.0372 (2)0.0120 (5)
N150.8521 (3)0.6148 (2)0.1218 (2)0.0141 (4)
O150.9579 (3)0.72742 (19)0.10135 (18)0.0199 (4)
C160.8658 (4)0.6331 (3)0.0807 (2)0.0128 (5)
N160.9716 (4)0.7505 (2)0.1111 (2)0.0171 (5)
N210.5886 (3)0.7722 (2)0.43837 (19)0.0130 (4)
C220.5983 (4)0.7828 (2)0.5479 (2)0.0121 (5)
O220.5342 (3)0.68965 (18)0.57903 (18)0.0175 (4)
N230.6781 (4)0.8980 (2)0.6287 (2)0.0149 (5)
C230.6800 (6)0.9033 (3)0.7461 (3)0.0271 (7)
C240.7623 (4)1.0050 (2)0.6018 (2)0.0146 (5)
O240.8411 (3)1.10250 (19)0.67474 (19)0.0245 (5)
C250.7492 (4)0.9940 (2)0.4835 (2)0.0123 (5)
N250.8242 (3)1.1009 (2)0.4611 (2)0.0161 (5)
O250.8216 (3)1.0996 (2)0.35792 (19)0.0231 (5)
C260.6595 (4)0.8727 (2)0.4049 (2)0.0120 (5)
N260.6451 (4)0.8600 (2)0.2975 (2)0.0205 (5)
H1A0.14350.42730.56220.017*
H1B0.20980.56410.59730.017*
H2A0.04390.26300.34570.024*
H2B0.02340.29700.25910.024*
H3A0.11310.72610.39830.018*
H3B0.00400.63770.31230.018*
H13A0.41830.24710.01010.027*
H13B0.61530.22010.04760.027*
H13C0.59720.20730.08240.027*
H16A1.00530.79150.18200.021*
H16B1.00810.78730.06020.021*
H21A0.67800.98970.79110.041*
H21B0.80250.87790.76970.041*
H21C0.56080.84580.75620.041*
H26A0.58980.78660.24960.025*
H26B0.69080.92490.27370.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.00978 (10)0.00822 (10)0.00699 (11)0.00011 (6)0.00006 (6)0.00254 (7)
O10.0118 (8)0.0137 (9)0.0145 (10)0.0002 (7)0.0029 (7)0.0033 (8)
O20.0264 (11)0.0144 (9)0.0169 (11)0.0049 (8)0.0005 (8)0.0065 (8)
O30.0154 (9)0.0103 (9)0.0185 (10)0.0005 (7)0.0021 (7)0.0043 (8)
N110.0135 (10)0.0188 (11)0.0093 (11)0.0043 (9)0.0001 (8)0.0012 (9)
C130.0182 (13)0.0148 (13)0.0209 (15)0.0021 (10)0.0018 (11)0.0044 (11)
C120.0122 (11)0.0184 (13)0.0109 (13)0.0078 (10)0.0020 (9)0.0027 (10)
O120.0209 (10)0.0267 (11)0.0150 (10)0.0066 (8)0.0058 (8)0.0100 (9)
N130.0114 (10)0.0138 (11)0.0114 (11)0.0024 (8)0.0008 (8)0.0031 (9)
C140.0093 (11)0.0137 (12)0.0104 (12)0.0045 (9)0.0007 (9)0.0025 (10)
O140.0173 (9)0.0150 (9)0.0089 (9)0.0010 (7)0.0023 (7)0.0017 (7)
C150.0088 (11)0.0168 (12)0.0097 (12)0.0027 (9)0.0001 (9)0.0029 (10)
N150.0122 (10)0.0152 (11)0.0142 (12)0.0018 (8)0.0008 (8)0.0039 (9)
O150.0227 (10)0.0171 (10)0.0158 (10)0.0050 (8)0.0006 (8)0.0038 (8)
C160.0090 (11)0.0162 (13)0.0116 (13)0.0056 (10)0.0003 (9)0.0001 (10)
N160.0192 (11)0.0181 (12)0.0091 (11)0.0001 (9)0.0022 (9)0.0012 (9)
N210.0159 (10)0.0080 (10)0.0124 (11)0.0016 (8)0.0009 (8)0.0018 (8)
C220.0116 (11)0.0085 (11)0.0150 (13)0.0023 (9)0.0006 (9)0.0014 (10)
O220.0221 (10)0.0121 (9)0.0197 (11)0.0020 (8)0.0025 (8)0.0074 (8)
N230.0213 (11)0.0110 (10)0.0110 (11)0.0013 (9)0.0015 (9)0.0026 (9)
C230.0482 (19)0.0213 (15)0.0120 (14)0.0088 (14)0.0011 (13)0.0043 (12)
C240.0132 (12)0.0104 (12)0.0182 (14)0.0038 (9)0.0016 (10)0.0006 (10)
O240.0333 (12)0.0119 (9)0.0196 (11)0.0030 (8)0.0090 (9)0.0026 (8)
C250.0100 (11)0.0093 (11)0.0164 (13)0.0005 (9)0.0004 (9)0.0031 (10)
N250.0142 (10)0.0123 (11)0.0217 (13)0.0017 (8)0.0017 (9)0.0054 (9)
O250.0298 (11)0.0164 (10)0.0245 (12)0.0003 (8)0.0060 (9)0.0104 (9)
C260.0101 (11)0.0094 (11)0.0150 (13)0.0012 (9)0.0005 (9)0.0017 (10)
N260.0292 (13)0.0137 (11)0.0147 (12)0.0040 (10)0.0016 (10)0.0031 (9)
Geometric parameters (Å, º) top
Ba1—O12.7852 (19)C13—H13C0.98
Ba1—O22.910 (2)N16—H16A0.88
Ba1—O32.7966 (19)N16—H16B0.88
Ba1—O122.800 (2)Ba1—N212.938 (2)
Ba1—O223.028 (2)Ba1—N15i3.023 (2)
O1—H1A0.90Ba1—O1ii2.8836 (19)
O1—H1B0.90Ba1—O14i2.9501 (19)
O2—H2A0.82Ba1—O22ii2.7809 (19)
O2—H2B0.82N21—C221.349 (4)
O3—H3A0.82C22—N231.401 (3)
O3—H3B0.82N23—C241.379 (4)
N11—C121.358 (4)C24—C251.457 (4)
C12—N131.419 (3)C25—C261.449 (4)
N13—C141.377 (3)C26—N211.338 (3)
C14—C151.459 (4)C22—O221.239 (3)
C15—C161.453 (4)N23—C231.464 (4)
C16—N111.329 (4)C24—O241.228 (3)
C12—O121.234 (3)C25—N251.335 (3)
C13—N131.464 (3)N25—O251.295 (3)
C14—O141.230 (3)C26—N261.316 (4)
C15—N151.332 (4)C23—H21A0.98
N15—O151.291 (3)C23—H21B0.98
C16—N161.328 (4)C23—H21C0.98
C13—H13A0.98N26—H26A0.88
C13—H13B0.98N26—H26B0.88
O22ii—Ba1—O164.43 (6)H3A—O3—H3B110.7
O22ii—Ba1—O3138.34 (6)C16—N11—C12119.3 (2)
O1—Ba1—O378.61 (6)N13—C13—H13A109.5
O22ii—Ba1—O1277.08 (6)N13—C13—H13B109.5
O1—Ba1—O12140.80 (6)H13A—C13—H13B109.5
O3—Ba1—O12140.05 (6)N13—C13—H13C109.5
O22ii—Ba1—O1ii56.37 (6)H13A—C13—H13C109.5
O1—Ba1—O1ii86.68 (5)H13B—C13—H13C109.5
O3—Ba1—O1ii142.83 (6)O12—C12—N11122.2 (3)
O12—Ba1—O1ii65.06 (6)O12—C12—N13117.1 (2)
O22ii—Ba1—O272.90 (6)N11—C12—N13120.7 (2)
O1—Ba1—O265.94 (6)C12—O12—Ba1125.41 (17)
O3—Ba1—O275.00 (6)C14—N13—C12122.7 (2)
O12—Ba1—O2110.56 (6)C14—N13—C13119.7 (2)
O1ii—Ba1—O2129.04 (6)C12—N13—C13117.5 (2)
O22ii—Ba1—N21124.34 (6)O14—C14—N13121.1 (2)
O1—Ba1—N2196.11 (6)O14—C14—C15123.4 (2)
O3—Ba1—N2176.09 (6)N13—C14—C15115.5 (2)
O12—Ba1—N2199.70 (6)C14—O14—Ba1i123.64 (17)
O1ii—Ba1—N2171.76 (6)N15—C15—C16127.4 (2)
O2—Ba1—N21148.43 (6)N15—C15—C14114.4 (2)
O22ii—Ba1—O14i145.45 (6)C16—C15—C14118.1 (2)
O1—Ba1—O14i149.21 (5)O15—N15—C15119.0 (2)
O3—Ba1—O14i70.93 (6)O15—N15—Ba1i117.78 (16)
O12—Ba1—O14i69.99 (6)C15—N15—Ba1i121.54 (17)
O1ii—Ba1—O14i115.16 (5)N16—C16—N11118.8 (2)
O2—Ba1—O14i108.99 (6)N16—C16—C15118.4 (3)
N21—Ba1—O14i72.64 (6)N11—C16—C15122.8 (2)
O22ii—Ba1—N15i104.74 (6)C16—N16—H16A120.0
O1—Ba1—N15i126.89 (6)C16—N16—H16B120.0
O3—Ba1—N15i81.88 (6)H16A—N16—H16B120.0
O12—Ba1—N15i68.56 (6)C26—N21—C22119.9 (2)
O1ii—Ba1—N15i132.69 (6)C26—N21—Ba1141.34 (18)
O2—Ba1—N15i61.41 (6)C22—N21—Ba198.61 (15)
N21—Ba1—N15i126.03 (6)O22—C22—N21120.0 (2)
O14i—Ba1—N15i53.61 (6)O22—C22—N23118.5 (3)
O22ii—Ba1—O2289.65 (6)N21—C22—N23121.5 (2)
O1—Ba1—O2254.65 (5)O22—C22—Ba161.73 (14)
O3—Ba1—O2283.74 (6)N21—C22—Ba158.38 (13)
O12—Ba1—O22121.11 (6)N23—C22—Ba1175.73 (17)
O1ii—Ba1—O2260.19 (5)C22—O22—Ba1ii146.43 (17)
O2—Ba1—O22119.66 (6)C22—O22—Ba197.15 (17)
N21—Ba1—O2244.09 (6)Ba1ii—O22—Ba190.35 (6)
O14i—Ba1—O22116.01 (5)C24—N23—C22122.6 (2)
N15i—Ba1—O22164.62 (6)C24—N23—C23118.8 (2)
O22ii—Ba1—C22107.29 (6)C22—N23—C23118.6 (2)
O1—Ba1—C2274.06 (6)N23—C23—H21A109.5
O3—Ba1—C2278.45 (6)N23—C23—H21B109.5
O12—Ba1—C22112.92 (6)H21A—C23—H21B109.5
O1ii—Ba1—C2264.67 (6)N23—C23—H21C109.5
O2—Ba1—C22135.31 (6)H21A—C23—H21C109.5
N21—Ba1—C2223.01 (6)H21B—C23—H21C109.5
O14i—Ba1—C2295.11 (6)O24—C24—N23120.8 (3)
N15i—Ba1—C22147.37 (6)O24—C24—C25123.4 (3)
O22—Ba1—C2221.12 (6)N23—C24—C25115.7 (2)
Ba1—O1—Ba1ii93.32 (5)N25—C25—C26127.5 (3)
Ba1—O1—H1A126.4N25—C25—C24114.0 (2)
Ba1ii—O1—H1A109.9C26—C25—C24118.5 (2)
Ba1—O1—H1B114.2O25—N25—C25118.4 (2)
Ba1ii—O1—H1B100.7N26—C26—N21118.5 (2)
H1A—O1—H1B108.1N26—C26—C25119.8 (2)
Ba1—O2—H2A138.0N21—C26—C25121.7 (2)
Ba1—O2—H2B100.9C26—N26—H26A120.0
H2A—O2—H2B100.5C26—N26—H26B120.0
Ba1—O3—H3A110.1H26A—N26—H26B120.0
Ba1—O3—H3B112.8
O22ii—Ba1—O1—Ba1ii54.04 (6)Ba1—N21—C22—O224.4 (3)
O3—Ba1—O1—Ba1ii145.68 (6)C26—N21—C22—N231.2 (4)
O12—Ba1—O1—Ba1ii42.31 (11)Ba1—N21—C22—N23175.0 (2)
O2—Ba1—O1—Ba1ii135.81 (7)C26—N21—C22—Ba1176.2 (3)
N21—Ba1—O1—Ba1ii71.24 (6)O22ii—Ba1—C22—O2234.56 (19)
O14i—Ba1—O1—Ba1ii137.25 (8)O1—Ba1—C22—O2221.44 (15)
N15i—Ba1—O1—Ba1ii143.67 (6)O3—Ba1—C22—O22102.74 (16)
O22—Ba1—O1—Ba1ii55.30 (6)O12—Ba1—C22—O22117.52 (16)
C22—Ba1—O1—Ba1ii64.59 (6)O1ii—Ba1—C22—O2272.48 (15)
C16—N11—C12—O12172.1 (2)O2—Ba1—C22—O2248.36 (18)
C16—N11—C12—N137.3 (4)N21—Ba1—C22—O22175.7 (3)
N11—C12—O12—Ba156.9 (3)O14i—Ba1—C22—O22172.07 (15)
N13—C12—O12—Ba1122.6 (2)N15i—Ba1—C22—O22156.83 (15)
O22ii—Ba1—O12—C12170.5 (2)Ba1ii—Ba1—C22—O2224.68 (14)
O1—Ba1—O12—C12159.64 (19)O22ii—Ba1—C22—N21141.11 (15)
O3—Ba1—O12—C1232.6 (3)O1—Ba1—C22—N21162.88 (16)
O1ii—Ba1—O12—C12111.8 (2)O3—Ba1—C22—N2181.58 (16)
O2—Ba1—O12—C12123.6 (2)O12—Ba1—C22—N2158.16 (16)
N21—Ba1—O12—C1247.3 (2)O1ii—Ba1—C22—N21103.20 (16)
O14i—Ba1—O12—C1220.1 (2)O2—Ba1—C22—N21135.97 (15)
N15i—Ba1—O12—C1277.8 (2)O14i—Ba1—C22—N2112.26 (16)
O22—Ba1—O12—C1288.9 (2)N15i—Ba1—C22—N2127.5 (2)
C22—Ba1—O12—C1267.0 (2)O22—Ba1—C22—N21175.7 (3)
Ba1ii—Ba1—O12—C12130.8 (2)Ba1ii—Ba1—C22—N21150.99 (17)
O12—C12—N13—C14166.7 (2)N21—C22—O22—Ba1ii97.3 (4)
N11—C12—N13—C1412.8 (4)N23—C22—O22—Ba1ii83.3 (4)
O12—C12—N13—C139.1 (3)Ba1—C22—O22—Ba1ii101.5 (3)
N11—C12—N13—C13171.4 (2)N21—C22—O22—Ba14.2 (3)
C12—N13—C14—O14170.1 (2)N23—C22—O22—Ba1175.1 (2)
C13—N13—C14—O145.7 (4)O22ii—Ba1—O22—C22147.20 (18)
C12—N13—C14—C159.6 (3)O1—Ba1—O22—C22154.47 (18)
C13—N13—C14—C15174.6 (2)O3—Ba1—O22—C2274.02 (16)
N13—C14—O14—Ba1i167.43 (16)O12—Ba1—O22—C2272.56 (17)
C15—C14—O14—Ba1i12.3 (3)O1ii—Ba1—O22—C2296.60 (16)
O14—C14—C15—N153.9 (4)O2—Ba1—O22—C22142.79 (15)
N13—C14—C15—N15176.4 (2)N21—Ba1—O22—C222.43 (15)
O14—C14—C15—C16177.5 (2)O14i—Ba1—O22—C228.80 (17)
N13—C14—C15—C162.2 (3)N15i—Ba1—O22—C2253.1 (3)
C16—C15—N15—O151.0 (4)Ba1ii—Ba1—O22—C22147.20 (18)
C14—C15—N15—O15177.4 (2)O1—Ba1—O22—Ba1ii58.33 (6)
C16—C15—N15—Ba1i164.07 (19)O3—Ba1—O22—Ba1ii138.79 (6)
C14—C15—N15—Ba1i17.5 (3)O12—Ba1—O22—Ba1ii74.64 (7)
C12—N11—C16—N16178.7 (2)O1ii—Ba1—O22—Ba1ii50.60 (5)
C12—N11—C16—C150.0 (4)O2—Ba1—O22—Ba1ii70.01 (7)
N15—C15—C16—N160.3 (4)N21—Ba1—O22—Ba1ii144.77 (10)
C14—C15—C16—N16178.7 (2)O14i—Ba1—O22—Ba1ii156.00 (5)
N15—C15—C16—N11179.0 (2)N15i—Ba1—O22—Ba1ii159.65 (19)
C14—C15—C16—N112.6 (4)C22—Ba1—O22—Ba1ii147.20 (18)
O22ii—Ba1—N21—C26138.8 (3)O22—C22—N23—C24176.6 (2)
O1—Ba1—N21—C26158.1 (3)N21—C22—N23—C244.0 (4)
O3—Ba1—N21—C2681.5 (3)O22—C22—N23—C230.7 (4)
O12—Ba1—N21—C2657.9 (3)N21—C22—N23—C23178.7 (3)
O1ii—Ba1—N21—C26117.4 (3)C22—N23—C24—O24175.9 (3)
O2—Ba1—N21—C26105.7 (3)C23—N23—C24—O241.4 (4)
O14i—Ba1—N21—C267.5 (3)C22—N23—C24—C254.6 (4)
N15i—Ba1—N21—C2612.6 (3)C23—N23—C24—C25178.1 (3)
O22—Ba1—N21—C26176.9 (3)O24—C24—C25—N252.3 (4)
C22—Ba1—N21—C26174.7 (4)N23—C24—C25—N25177.2 (2)
Ba1ii—Ba1—N21—C26159.9 (3)O24—C24—C25—C26177.7 (3)
O22ii—Ba1—N21—C2246.54 (18)N23—C24—C25—C262.8 (3)
O1—Ba1—N21—C2216.54 (16)C26—C25—N25—O250.9 (4)
O3—Ba1—N21—C2293.18 (16)C24—C25—N25—O25179.1 (2)
O12—Ba1—N21—C22127.46 (15)C22—N21—C26—N26179.0 (2)
O1ii—Ba1—N21—C2267.91 (15)Ba1—N21—C26—N265.0 (4)
O2—Ba1—N21—C2269.0 (2)C22—N21—C26—C250.5 (4)
O14i—Ba1—N21—C22167.20 (16)Ba1—N21—C26—C25174.47 (18)
N15i—Ba1—N21—C22162.07 (14)N25—C25—C26—N260.2 (4)
O22—Ba1—N21—C222.24 (13)C24—C25—C26—N26179.8 (2)
Ba1ii—Ba1—N21—C2225.39 (15)N25—C25—C26—N21179.7 (3)
C26—N21—C22—O22179.4 (2)C24—C25—C26—N210.3 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3iii0.901.882.735 (3)157
O1—H1B···O2iii0.902.112.918 (3)150
O2—H2A···O25iv0.821.962.761 (3)167
O2—H2B···O15i0.822.012.781 (3)156
O3—H3A···N25v0.822.192.934 (3)151
O3—H3A···O24v0.822.342.967 (3)133
O3—H3B···N11vi0.822.112.924 (3)173
N16—H16A···O24vii0.881.982.833 (3)163
N16—H16B···O150.881.952.611 (3)131
N26—H26A···O14i0.882.152.987 (3)159
N26—H26B···O250.881.972.628 (3)130
Symmetry codes: (i) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x1, y1, z; (v) x+1, y+2, z+1; (vi) x1, y, z; (vii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ba(C5H5N4O3)2(H2O)3]
Mr529.65
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.7594 (1), 11.2513 (3), 12.6048 (2)
α, β, γ (°)106.467 (2), 92.911 (1), 99.935 (1)
V3)900.46 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.32 × 0.24 × 0.16
Data collection
DiffractometerKappa-CCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.519, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
11514, 3946, 3892
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.15
No. of reflections3946
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 1.22

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) top
Ba1—O12.7852 (19)Ba1—N212.938 (2)
Ba1—O22.910 (2)Ba1—N15i3.023 (2)
Ba1—O32.7966 (19)Ba1—O1ii2.8836 (19)
Ba1—O122.800 (2)Ba1—O14i2.9501 (19)
Ba1—O223.028 (2)Ba1—O22ii2.7809 (19)
N11—C121.358 (4)N21—C221.349 (4)
C12—N131.419 (3)C22—N231.401 (3)
N13—C141.377 (3)N23—C241.379 (4)
C14—C151.459 (4)C24—C251.457 (4)
C15—C161.453 (4)C25—C261.449 (4)
C16—N111.329 (4)C26—N211.338 (3)
C12—O121.234 (3)C22—O221.239 (3)
C13—N131.464 (3)N23—C231.464 (4)
C14—O141.230 (3)C24—O241.228 (3)
C15—N151.332 (4)C25—N251.335 (3)
N15—O151.291 (3)N25—O251.295 (3)
C16—N161.328 (4)C26—N261.316 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3iii0.901.882.735 (3)157
O1—H1B···O2iii0.902.112.918 (3)150
O2—H2A···O25iv0.821.962.761 (3)167
O2—H2B···O15i0.822.012.781 (3)156
O3—H3A···N25v0.822.192.934 (3)151
O3—H3A···O24v0.822.342.967 (3)133
O3—H3B···N11vi0.822.112.924 (3)173
N16—H16A···O24vii0.881.982.833 (3)163
N16—H16B···O150.881.952.611 (3)131
N26—H26A···O14i0.882.152.987 (3)159
N26—H26B···O250.881.972.628 (3)130
Symmetry codes: (i) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x1, y1, z; (v) x+1, y+2, z+1; (vi) x1, y, z; (vii) x+2, y+2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds