Download citation
Download citation
link to html
The title compound is a methanol-solvated salt, C16H38N42+·C4H4O52-·2CH3OH, in which the ionic components are linked into chains by two pairs of N-H...O hydrogen bonds [H...O = 1.78-2.21 Å, N...O = 2.702 (14)-3.094 (8) Å and N-H...O = 160-179°]. The methanol mol­ecules are pendent from the chain and are linked to it by O-H...O hydrogen bonds [H...O = 1.86 and 1.89 Å, O...O = 2.691 (9) and 2.708 (16) Å, and O-H...O = 168 and 165°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010300920X/sk1635sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010300920X/sk1635Isup2.hkl
Contains datablock I

CCDC reference: 214407

Comment top

In the salt-type adducts formed between meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (tet-a, C16H36N4) and phenols or carboxylic acids, the [{(C16H36N4)H2}2+] cations generally lie across centres of inversion (Gregson et al., 2000; Lough et al., 2000; Burchell et al., 2000; Bowes et al., 2003a,b). An exception occurs in the salt formed with 5-hydroxyisophthalic acid, where the cation lies in a general position in space group P212121 (Burchell et al., 2000). In all of these examples the cation adopts the trans-III configuration (Barefield et al., 1986) and, even in the 5-hydroxyisophthalate salt, the cation is very nearly centrosymmetric.

We have now investigated an example in which a non-centrosymmetric cation environment is specifically imposed by the presence of an enantiopure chiral acid component, chosen in this case to be (S)-malic acid [(S)-2-hydroxy-butane-1,4-dioic acid, C4H6O5]. The 1:1 salt formed by tet-a and (S)-malic acid crystallizes from methanol solution as a solvate [{(C16H36N4)H2}2+].[(C4H4O5)2−]·2(CH3OH), (I), in space group P1, so that none of the components has any internal crystallographic symmetry. The presence of the chiral anion precludes any further symmetry.

The fully ordered cation adopts the usual trans-III configuration (Fig. 1), with four methyl groups in equatorial sites and two in axial sites, and with paired intracation N—H···N hydrogen bonds generating an R22(10) motif (Bernstein et al., 1995). There is almost perfect staggering about all of the C—C and C—N bonds in the cation, and the values of the torsion angles are clearly indicative of the near-centrosymmetric conformation of the cation (Table 1). There are four axial N—H bonds available for intermolecular hydrogen-bond formation, viz. two on each face of the disk-like cation.

The anion, by contrast, exhibits orientational disorder, which was modelled using two sets of atomic sites with refined occupancies of 0.702 (8) and 0.298 (8) (Fig. 2). This disorder is such that the O22 and O32 atom sites are very close to one another, as are the O23 and O33 sites. Accordingly, the interion hydrogen bonding is very similar for the two orientations, and hence only the major orientation will be considered further. The anion disorder observed in (I) is similar to that observed for the racemic tartrate anions (C4H5O6) in the salt with the monocation derived from 1,2-bis(4-pyridyl)ethene (Farrell et al., 2002a). Within the anion there is an O—H···O hydrogen bond, forming an S(6) motif, and this bond undoubtedly plays a role in controlling the anion conformation (Fig. 1 and Table 2).

The ionic components within the asymmetric unit are linked by paired N—H···O hydrogen bonds. Atoms N4 and N8 act as hydrogen-bond donors, via the axial H4 and H8A atoms, respectively, to carboxylate atoms O22 and O21, so generating an R22(10) motif (Fig. 1) of precisely the same type as that observed in the tetrahydrate salt formed between the tet-a cation and the terephthalate anion (Lough et al., 2000). The two independent methanol molecules are linked to the anion via O—H···O hydrogen bonds, both having a carboxylate O atom as the acceptor.

Despite the large number of hydrogen bonds within the asymmetric unit, the supramolecular structure depends on just one further pair of N—H···O hydrogen bonds. Atoms N1 and N11 in the cation at (x, y, z) act as hydrogen-bond donors, via H1B and H11, respectively, to carboxylate atoms O23 and O24 in the anion at (−1 + x, −1 + y, z), so generating by translation a chain of rings (Fig. 3) running parallel to the [110] direction. The methanol molecules are simply pendent from this chain and play no further role in the supramolecular aggregation. The only significant direction-specific interaction between adjacent chains is provided by a C—H···O hydrogen bond. Atom C2 in the cation at (x, y, z), which is adjacent to the cationic N1 atom, acts as hydrogen-bond donor, via H2B, to carboxylate atom O21 in the anion at (−1 + x, y, z), and propagation of this interaction thus links the [110] chains generated by the hard (Desiraju & Steiner, 1999) hydrogen bonds into (001) sheets.

As with other amine salts of (S)-malic acid (Farrell et al., 2002b), the supramolecular structure of (I) closely mimics a centrosymmetric arrangement, even though exact centrosymmetry is ruled out by the chiral anion.

Experimental top

Equimolar quantities of tet-a (Hay et al., 1975) and (S)-malic acid (purchased from Aldrich) were separately dissolved in methanol. The solutions were mixed, and the mixture was set aside to crystallize, providing analytically pure (I). Analysis found: C 54.7, H 11.0, N 11.7%; C22H50N4O7 requires: C 54.7, H 10.4, N 11.6%. Crystals of (I) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

Crystals of (I) are triclinic, and space group P1 was chosen as the acid component used was enantiopure (S)-malic acid. The anion is disordered over a major and a minor orientation, with refined occupancies of 0.702 (8) and 0.298 (8). Standard DFIX (SHELXL97; Sheldrick, 1997) restraints were used for the dimensions of the disordered anion. The atoms of the minor anion were refined with a common Uiso value, and all other non-H atoms were refined anisotropically. H atoms were visible in difference maps and were subsequently treated as riding atoms with C—H distances 0.98 (CH3), 0.99 (CH2) or 1.00 Å (CH) and N—H distances of 0.92 and O—H 0.84 Å. The cation was positioned so that it lies with its centre at (1/2, 1/2, 1/2) and the anion is then centred approximately at (1.0, 1.0, 1/2). In the absence of any significant anomalous scattering, the Flack parameter (Flack, 1983) was indeterminate (Flack & Bernardinelli, 2000). Hence the Friedel equivalents were merged prior to the final refinements, and the absolute structure was set by reference to the known chirality of the enantiopure acid employed.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and, for the sake of clarity, only the major component of the anion is shown.
[Figure 2] Fig. 2. The major (full lines) and minor (broken lines) components of the anion. For the sake of clarity, all H atoms have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a chain along [110]. For the sake of clarity, H atoms bonded to C atoms have been omitted, and only the major orientation of the anion is shown. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−1 + x, −1 + y, z) and (1 + x, 1 + y, z), respectively.
meso-5,5,7,12,12,14-Hexamethyl-4,11-diaza-1,8-diazoniacyclotetradecane (S)-malate(2-) methanol disolvate top
Crystal data top
C16H38N42+·C4H4O52·2CH4OZ = 1
Mr = 482.66F(000) = 266
Triclinic, P1Dx = 1.210 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6559 (9) ÅCell parameters from 8456 reflections
b = 9.3275 (9) Åθ = 3.5–27.6°
c = 10.1044 (12) ŵ = 0.09 mm1
α = 113.379 (5)°T = 150 K
β = 108.908 (4)°Plate, colourless
γ = 100.345 (4)°0.30 × 0.28 × 0.10 mm
V = 662.31 (12) Å3
Data collection top
Kappa-CCD
diffractometer
3022 independent reflections
Radiation source: fine-focus sealed X-ray tube1802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 3.5°
Absorption correction: multi-scan
DENZO–SMN (Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.950, Tmax = 0.988k = 1212
8456 measured reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.202 w = 1/[σ2(Fo2) + (0.1019P)2 + 0.0709P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3022 reflectionsΔρmax = 0.36 e Å3
333 parametersΔρmin = 0.32 e Å3
23 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.08 (2)
Crystal data top
C16H38N42+·C4H4O52·2CH4Oγ = 100.345 (4)°
Mr = 482.66V = 662.31 (12) Å3
Triclinic, P1Z = 1
a = 8.6559 (9) ÅMo Kα radiation
b = 9.3275 (9) ŵ = 0.09 mm1
c = 10.1044 (12) ÅT = 150 K
α = 113.379 (5)°0.30 × 0.28 × 0.10 mm
β = 108.908 (4)°
Data collection top
Kappa-CCD
diffractometer
3022 independent reflections
Absorption correction: multi-scan
DENZO–SMN (Otwinowski & Minor, 1997)
1802 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.988Rint = 0.064
8456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06423 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
3022 reflectionsΔρmin = 0.32 e Å3
333 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3490 (7)0.5886 (7)0.6152 (6)0.0348 (12)
C20.2646 (9)0.6456 (9)0.5044 (8)0.0417 (17)
C30.2031 (9)0.5122 (10)0.3277 (9)0.0454 (18)
N40.3509 (7)0.4851 (7)0.2942 (6)0.0351 (13)
C50.3038 (9)0.3576 (8)0.1258 (8)0.0427 (17)
C510.2029 (11)0.4108 (11)0.0063 (8)0.052 (2)
C520.1843 (9)0.1879 (9)0.0882 (9)0.051 (2)
C60.4699 (9)0.3468 (8)0.1112 (7)0.0409 (17)
C70.5846 (9)0.2865 (9)0.2113 (8)0.0392 (16)
C710.7346 (11)0.2657 (11)0.1687 (10)0.054 (2)
N80.6494 (8)0.4112 (7)0.3859 (6)0.0406 (14)
C90.7363 (9)0.3547 (9)0.5016 (8)0.0429 (18)
C100.8003 (8)0.4854 (9)0.6700 (8)0.0396 (16)
N110.6540 (7)0.5162 (8)0.7066 (6)0.0395 (14)
C120.7037 (8)0.6402 (9)0.8750 (8)0.0406 (17)
C1210.7940 (10)0.5848 (12)0.9938 (9)0.057 (2)
C1220.8195 (10)0.8099 (10)0.9186 (10)0.057 (2)
C130.5337 (9)0.6519 (9)0.8909 (8)0.0427 (18)
C140.4196 (9)0.7124 (9)0.7900 (8)0.0404 (16)
C1410.2675 (10)0.7357 (11)0.8319 (10)0.055 (2)
O210.8761 (18)0.6984 (15)0.4528 (14)0.055 (3)0.702 (8)
O220.6487 (12)0.767 (2)0.352 (2)0.060 (3)0.702 (8)
O231.1226 (15)1.2848 (13)0.5314 (17)0.053 (2)0.702 (8)
O241.3506 (8)1.2325 (8)0.6507 (9)0.0422 (17)0.702 (8)
O250.8473 (7)0.9921 (7)0.3250 (7)0.0543 (16)0.702 (8)
C210.8080 (11)0.7899 (11)0.4108 (12)0.042 (3)0.702 (8)
C220.9351 (13)0.9296 (15)0.4161 (15)0.0670 (17)0.702 (8)
C231.0659 (14)1.0562 (15)0.5800 (15)0.0670 (17)0.702 (8)
C241.1900 (8)1.2041 (11)0.5920 (12)0.045 (3)0.702 (8)
O410.4707 (9)0.9442 (8)0.2526 (8)0.0758 (19)
C420.3300 (13)0.8999 (12)0.2782 (10)0.069 (2)
O511.5287 (9)1.0569 (8)0.7487 (8)0.0758 (18)
C531.6701 (12)1.0910 (10)0.7186 (10)0.063 (2)
C310.829 (3)0.820 (3)0.461 (3)0.074 (3)*0.298 (8)
C320.956 (2)0.995 (3)0.538 (2)0.074 (3)*0.298 (8)
C331.062 (3)1.010 (2)0.450 (2)0.074 (3)*0.298 (8)
C341.179 (2)1.186 (2)0.519 (2)0.074 (3)*0.298 (8)
O310.891 (6)0.719 (5)0.490 (5)0.074 (3)*0.298 (8)
O320.671 (4)0.782 (6)0.372 (6)0.074 (3)*0.298 (8)
O331.127 (5)1.305 (4)0.531 (4)0.074 (3)*0.298 (8)
O341.337 (2)1.203 (2)0.561 (2)0.074 (3)*0.298 (8)
O351.100 (2)1.028 (2)0.679 (2)0.074 (3)*0.298 (8)
H1A0.43940.56150.59570.042*
H1B0.26940.49270.59320.042*
H2A0.34790.75050.52850.050*
H2B0.16290.66930.51980.050*
H3A0.12480.40560.30550.054*
H3B0.13570.54880.25570.054*
H40.42330.58530.31660.042*
H51A0.08640.39970.00200.078*
H51B0.19170.33890.10060.078*
H51C0.26690.52730.04210.078*
H52A0.23200.16800.17880.076*
H52B0.17870.09810.00830.076*
H52C0.06670.19010.07020.076*
H6A0.54170.45910.13930.049*
H6B0.43790.27150.00290.049*
H70.51200.17610.18910.047*
H71A0.80430.37250.18640.082*
H71B0.68830.18120.05580.082*
H71C0.80830.23010.23650.082*
H8A0.72760.50860.40900.049*
H8B0.55640.43510.40210.049*
H9A0.65180.25230.48070.052*
H9B0.83560.32690.48410.052*
H10A0.86880.45000.74270.048*
H10B0.87840.59030.68900.048*
H110.57900.41650.68250.047*
H12A0.90220.57360.98750.086*
H12B0.71620.47710.96700.086*
H12C0.82140.66841.10280.086*
H12D0.93250.80510.92100.086*
H12E0.83750.89321.02450.086*
H12F0.76340.84130.83860.086*
H13A0.46170.53990.86320.051*
H13B0.56610.72781.00490.051*
H140.49300.82200.81120.048*
H14A0.20350.78440.77280.082*
H14B0.31310.81050.94740.082*
H14C0.18860.62710.80220.082*
H250.90171.09490.36740.081*0.702 (8)
H221.00250.87560.36070.080*0.702 (8)
H23A1.13601.00120.62750.080*0.702 (8)
H23B1.00381.09890.64520.080*0.702 (8)
H410.54150.90030.28320.114*
H42D0.36640.94420.39350.103*
H42E0.27730.77780.22290.103*
H42F0.24430.94550.23670.103*
H511.46681.11140.72660.114*
H53A1.66451.16950.67690.095*
H53B1.66970.98730.63930.095*
H53C1.77761.14070.81820.095*
H320.89921.08090.55960.089*0.298 (8)
H33A1.13400.93930.45300.089*0.298 (8)
H33B0.98190.96760.33630.089*0.298 (8)
H351.08140.94670.69640.111*0.298 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.026 (3)0.034 (3)0.038 (3)0.012 (2)0.012 (2)0.014 (2)
C20.033 (4)0.044 (4)0.052 (4)0.016 (3)0.018 (3)0.026 (4)
C30.035 (4)0.049 (4)0.045 (4)0.014 (3)0.012 (3)0.022 (4)
N40.027 (3)0.031 (3)0.043 (3)0.006 (2)0.014 (3)0.017 (3)
C50.046 (4)0.036 (4)0.047 (4)0.016 (3)0.023 (4)0.019 (3)
C510.067 (5)0.057 (5)0.036 (4)0.027 (4)0.024 (4)0.023 (4)
C520.042 (4)0.029 (3)0.063 (5)0.001 (3)0.019 (4)0.014 (3)
C60.037 (4)0.034 (4)0.037 (4)0.006 (3)0.012 (3)0.011 (3)
C70.038 (4)0.035 (3)0.042 (4)0.008 (3)0.017 (3)0.018 (3)
C710.060 (5)0.065 (5)0.058 (5)0.038 (5)0.032 (5)0.037 (5)
N80.041 (3)0.041 (3)0.045 (3)0.013 (3)0.017 (3)0.028 (3)
C90.044 (4)0.050 (4)0.046 (4)0.024 (3)0.018 (3)0.031 (4)
C100.026 (4)0.049 (4)0.047 (4)0.013 (3)0.013 (3)0.029 (4)
N110.033 (3)0.041 (3)0.041 (3)0.010 (2)0.012 (3)0.022 (3)
C120.027 (3)0.043 (4)0.038 (4)0.006 (3)0.002 (3)0.019 (3)
C1210.042 (4)0.074 (5)0.056 (5)0.027 (4)0.009 (4)0.039 (4)
C1220.044 (5)0.055 (5)0.062 (5)0.014 (4)0.016 (4)0.025 (4)
C130.048 (5)0.050 (4)0.042 (4)0.021 (3)0.020 (4)0.032 (4)
C140.039 (4)0.042 (4)0.044 (4)0.020 (3)0.018 (3)0.022 (3)
C1410.048 (5)0.073 (6)0.047 (5)0.026 (4)0.022 (4)0.029 (4)
O210.039 (4)0.047 (5)0.075 (7)0.003 (4)0.017 (5)0.039 (5)
O220.040 (5)0.039 (5)0.087 (8)0.007 (4)0.018 (5)0.029 (6)
O230.030 (4)0.035 (4)0.082 (5)0.000 (3)0.010 (3)0.034 (4)
O240.039 (4)0.029 (3)0.050 (4)0.006 (3)0.019 (3)0.015 (3)
O250.044 (3)0.045 (3)0.058 (3)0.006 (2)0.005 (2)0.029 (3)
C210.050 (7)0.025 (5)0.046 (6)0.002 (4)0.025 (5)0.018 (5)
C220.047 (3)0.065 (3)0.064 (3)0.013 (2)0.003 (2)0.045 (3)
C230.047 (3)0.065 (3)0.064 (3)0.013 (2)0.003 (2)0.045 (3)
C240.027 (5)0.041 (5)0.045 (6)0.002 (4)0.002 (4)0.016 (5)
O410.071 (5)0.068 (4)0.075 (4)0.017 (3)0.015 (3)0.041 (4)
C420.068 (6)0.061 (5)0.059 (5)0.017 (5)0.017 (5)0.024 (5)
O510.086 (5)0.071 (4)0.083 (4)0.025 (4)0.039 (4)0.048 (4)
C530.083 (7)0.053 (5)0.069 (6)0.027 (5)0.034 (5)0.043 (5)
Geometric parameters (Å, º) top
N1—C21.466 (7)C121—H12C0.98
N1—C141.502 (8)C122—H12D0.98
N1—H1A0.92C122—H12E0.98
N1—H1B0.92C122—H12F0.98
C2—C31.550 (9)C13—C141.529 (9)
C2—H2A0.99C13—H13A0.99
C2—H2B0.99C13—H13B0.99
C3—N41.465 (8)C14—C1411.533 (10)
C3—H3A0.99C14—H141.00
C3—H3B0.99C141—H14A0.98
N4—C51.499 (8)C141—H14B0.98
N4—H40.92C141—H14C0.98
C5—C61.509 (9)O21—C211.250 (5)
C5—C521.549 (9)O22—C211.250 (5)
C5—C511.554 (9)O23—C241.254 (5)
C51—H51A0.98O24—C241.250 (5)
C51—H51B0.98O25—C221.377 (11)
C51—H51C0.98O25—H250.84
C52—H52A0.98C21—C221.518 (7)
C52—H52B0.98C22—C231.474 (7)
C52—H52C0.98C22—H221.00
C6—C71.525 (9)C23—C241.524 (8)
C6—H6A0.99C23—H23A0.99
C6—H6B0.99C23—H23B0.99
C7—N81.509 (9)O41—C421.352 (10)
C7—C711.515 (10)O41—H410.84
C7—H71.00C42—H42D0.98
C71—H71A0.98C42—H42E0.98
C71—H71B0.98C42—H42F0.98
C71—H71C0.98O51—C531.367 (9)
N8—C91.507 (7)O51—H510.84
N8—H8A0.92C53—H53A0.98
N8—H8B0.92C53—H53B0.98
C9—C101.480 (9)C53—H53C0.98
C9—H9A0.99C31—O311.250 (5)
C9—H9B0.99C31—O321.251 (5)
C10—N111.474 (8)C31—C321.504 (5)
C10—H10A0.99C32—O351.432 (10)
C10—H10B0.99C32—C331.498 (5)
N11—C121.484 (8)C32—H321.00
N11—H110.92C33—C341.498 (5)
C12—C1221.515 (10)C33—H33A0.99
C12—C1211.531 (8)C33—H33B0.99
C12—C131.549 (9)C34—O331.249 (5)
C121—H12A0.98C34—O341.249 (5)
C121—H12B0.98O35—H350.84
C2—N1—C14115.2 (5)N11—C12—C121112.2 (6)
C2—N1—H1A108.5C122—C12—C121110.2 (6)
C14—N1—H1A108.5N11—C12—C13107.8 (5)
C2—N1—H1B108.5C122—C12—C13109.8 (6)
C14—N1—H1B108.5C121—C12—C13106.0 (5)
H1A—N1—H1B107.5C12—C121—H12A109.5
N1—C2—C3111.2 (5)C12—C121—H12B109.5
N1—C2—H2A109.4H12A—C121—H12B109.5
C3—C2—H2A109.4C12—C121—H12C109.5
N1—C2—H2B109.4H12A—C121—H12C109.5
C3—C2—H2B109.4H12B—C121—H12C109.5
H2A—C2—H2B108.0C12—C122—H12D109.5
N4—C3—C2111.6 (5)C12—C122—H12E109.5
N4—C3—H3A109.3H12D—C122—H12E109.5
C2—C3—H3A109.3C12—C122—H12F109.5
N4—C3—H3B109.3H12D—C122—H12F109.5
C2—C3—H3B109.3H12E—C122—H12F109.5
H3A—C3—H3B108.0C14—C13—C12117.5 (5)
C3—N4—C5115.4 (5)C14—C13—H13A107.9
C3—N4—H4108.4C12—C13—H13A107.9
C5—N4—H4108.4C14—C13—H13B107.9
N4—C5—C6108.6 (5)C12—C13—H13B107.9
N4—C5—C52108.7 (5)H13A—C13—H13B107.2
C6—C5—C52111.6 (5)N1—C14—C13109.6 (5)
N4—C5—C51109.9 (5)N1—C14—C141109.5 (6)
C6—C5—C51109.2 (5)C13—C14—C141111.5 (5)
C52—C5—C51108.8 (6)N1—C14—H14108.7
C5—C51—H51A109.5C13—C14—H14108.7
C5—C51—H51B109.5C141—C14—H14108.7
H51A—C51—H51B109.5C14—C141—H14A109.5
C5—C51—H51C109.5C14—C141—H14B109.5
H51A—C51—H51C109.5H14A—C141—H14B109.5
H51B—C51—H51C109.5C14—C141—H14C109.5
C5—C52—H52A109.5H14A—C141—H14C109.5
C5—C52—H52B109.5H14B—C141—H14C109.5
H52A—C52—H52B109.5O21—C21—O22126.8 (11)
C5—C52—H52C109.5O21—C21—C22114.1 (10)
H52A—C52—H52C109.5O22—C21—C22118.7 (10)
H52B—C52—H52C109.5O25—C22—C23115.1 (7)
C5—C6—C7118.0 (6)O25—C22—C21110.8 (8)
C5—C6—H6A107.8C23—C22—C21113.2 (7)
C7—C6—H6A107.8O25—C22—H22105.6
C5—C6—H6B107.8C23—C22—H22105.6
C7—C6—H6B107.8C21—C22—H22105.6
H6A—C6—H6B107.1C22—C23—C24115.1 (7)
N8—C7—C71111.5 (6)C22—C23—H23A108.5
N8—C7—C6108.0 (5)C24—C23—H23A108.5
C71—C7—C6110.9 (5)C22—C23—H23B108.5
N8—C7—H7108.8C24—C23—H23B108.5
C71—C7—H7108.8H23A—C23—H23B107.5
C6—C7—H7108.8O24—C24—O23123.2 (9)
C7—C71—H71A109.5O24—C24—C23119.4 (8)
C7—C71—H71B109.5O23—C24—C23117.2 (8)
H71A—C71—H71B109.5C53—O51—H51109.5
C7—C71—H71C109.5O51—C53—H53A109.5
H71A—C71—H71C109.5O51—C53—H53B109.5
H71B—C71—H71C109.5H53A—C53—H53B109.5
C9—N8—C7114.8 (5)O51—C53—H53C109.5
C9—N8—H8A108.6H53A—C53—H53C109.5
C7—N8—H8A108.6H53B—C53—H53C109.5
C9—N8—H8B108.6O31—C31—O32123 (4)
C7—N8—H8B108.6O31—C31—C32116 (3)
H8A—N8—H8B107.5O32—C31—C32121 (3)
C10—C9—N8111.5 (5)O35—C32—C3395.1 (15)
C10—C9—H9A109.3O35—C32—C31110 (2)
N8—C9—H9A109.3C33—C32—C31112.7 (5)
C10—C9—H9B109.3O35—C32—H32112.8
N8—C9—H9B109.3C33—C32—H32112.8
H9A—C9—H9B108.0C31—C32—H32112.8
N11—C10—C9111.1 (5)C34—C33—C32113.1 (5)
N11—C10—H10A109.4C34—C33—H33A109.0
C9—C10—H10A109.4C32—C33—H33A109.0
N11—C10—H10B109.4C34—C33—H33B109.0
C9—C10—H10B109.4C32—C33—H33B109.0
H10A—C10—H10B108.0H33A—C33—H33B107.8
C10—N11—C12115.5 (5)O33—C34—O34122 (3)
C10—N11—H11108.4O33—C34—C33124 (3)
C12—N11—H11108.4O34—C34—C33113.2 (19)
N11—C12—C122110.7 (6)C32—O35—H35109.5
N1—C2—C3—N465.0 (9)N8—C9—C10—N1165.8 (9)
C2—C3—N4—C5179.9 (7)C9—C10—N11—C12177.4 (7)
C3—N4—C5—C6179.2 (7)C10—N11—C12—C13178.5 (7)
N4—C5—C6—C763.6 (9)N11—C12—C13—C1462.2 (9)
C5—C6—C7—N863.6 (9)C12—C13—C14—N164.9 (9)
C6—C7—N8—C9168.9 (7)C13—C14—N1—C2169.1 (7)
C7—N8—C9—C10178.4 (7)C14—N1—C2—C3177.7 (7)
O22—C21—C22—C23119.7 (14)O25—C22—C23—C2447.8 (15)
C21—C22—C23—C24176.7 (10)C22—C23—C24—O2355.5 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N110.922.052.799 (8)138
N8—H8B···N40.922.002.758 (8)138
O25—H25···O230.841.982.721 (12)146
O35—H35···O310.842.142.60 (5)114
N4—H4···O220.922.173.046 (15)160
N4—H4···O320.922.293.17 (4)159
N8—H8A···O210.921.782.702 (14)179
N8—H8A···O310.921.872.78 (5)171
O41—H41···O220.841.892.708 (16)165
O51—H51···O240.841.862.691 (9)168
O51—H51···O340.842.253.005 (18)150
N1—H1B···O23i0.921.852.760 (11)172
N1—H1B···O33i0.921.682.60 (4)173
N11—H11···O24i0.922.213.094 (8)161
N11—H11···O34i0.922.183.06 (2)158
C2—H2B···O21ii0.992.453.39 (2)159
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H38N42+·C4H4O52·2CH4O
Mr482.66
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.6559 (9), 9.3275 (9), 10.1044 (12)
α, β, γ (°)113.379 (5), 108.908 (4), 100.345 (4)
V3)662.31 (12)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.28 × 0.10
Data collection
DiffractometerKappa-CCD
diffractometer
Absorption correctionMulti-scan
DENZO–SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.950, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
8456, 3022, 1802
Rint0.064
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.202, 1.03
No. of reflections3022
No. of parameters333
No. of restraints23
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.32

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected torsion angles (º) top
N1—C2—C3—N465.0 (9)N8—C9—C10—N1165.8 (9)
C2—C3—N4—C5179.9 (7)C9—C10—N11—C12177.4 (7)
C3—N4—C5—C6179.2 (7)C10—N11—C12—C13178.5 (7)
N4—C5—C6—C763.6 (9)N11—C12—C13—C1462.2 (9)
C5—C6—C7—N863.6 (9)C12—C13—C14—N164.9 (9)
C6—C7—N8—C9168.9 (7)C13—C14—N1—C2169.1 (7)
C7—N8—C9—C10178.4 (7)C14—N1—C2—C3177.7 (7)
O22—C21—C22—C23119.7 (14)O25—C22—C23—C2447.8 (15)
C21—C22—C23—C24176.7 (10)C22—C23—C24—O2355.5 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N110.922.052.799 (8)138
N8—H8B···N40.922.002.758 (8)138
O25—H25···O230.841.982.721 (12)146
N4—H4···O220.922.173.046 (15)160
N8—H8A···O210.921.782.702 (14)179
O41—H41···O220.841.892.708 (16)165
O51—H51···O240.841.862.691 (9)168
N1—H1B···O23i0.921.852.760 (11)172
N11—H11···O24i0.922.213.094 (8)161
C2—H2B···O21ii0.992.453.39 (2)159
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds