Download citation
Download citation
link to html
Crystals of titanium-doped distrontium ruthenium tetraoxide, Sr2Ru1-xTixO4, with x = 0.07 and 0.19, were grown by floating-zone melting, and their structures were solved using single-crystal X-ray diffraction. Increasing Ti content leads to a distinctive systematic variation of cell parameters and interatomic distances with respect to the undoped material.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103006693/sk1623sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103006693/sk1623Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103006693/sk1623IIsup3.hkl
Contains datablock II

Comment top

The origin of superconductivity in Sr2RuO4 (Maeno et al., 1994) still remains an unsolved problem. In contrast to the isostructural (La, Sr)2CuO4, superconductivity in Sr2RuO4 is easily suppressed, even by traces of impurities (Mackenzie et al., 1998). Although this effect is rather undesired, it offers the unique opportunity to study the normal state of distrontium ruthenate and thus can help us to understand the mechanism of superconductivity in this unusual material.

Single crystals of undoped Sr2RuO4 have been examined in detail by Walz & Lichtenberg (1993) and Müller-Buschbaum & Wilkens (1990).

Titanium doping was found to alter dramatically the physical characteristics of Sr2RuO4 (Minakata & Maeno, 2001; Braden et al., 2002), and extensive investigations of electrical resistivity, magnetism, heat capacity and infrared spectroscopy have been reported recently (Pucher et al., 2002). It is therefore important to study the effect of doping on the crystallographic structure.

Sr2RuO4 and its Ti-substituted analogues crystallizes in the so-called K2NiF4-type structure. This structure consists of perovskite monolayers, stacked along the c axis and separated by rock-salt-type layers. The coordination of the Ru atoms is typical for perovskites, consisting of an O-atom octahedron in the first coordination sphere, followed by a cube of eight Sr atoms. For the Sr atoms, the 12-fold cubic–octahedral coordination geometry in perovskites is replaced by a ninefold coordination, which can be described as a capped tetragonal antiprism. The different structural elements are shown in Fig. 1.

The structure refinements converged smoothly and led to small s.u. values for both fractional coordinates and anisotropic displacement parameters. The obtained titanium contents of 7.1 (2) and 19.0 (4)% are close to the expected values of x = 0.1 and 1/5, resepctively, indicating that there was no severe loss of titanium during the growth procedure.

Ti doping leads to a systematic modification of the crystal structure. With increasing Ti content, the cell parameter a increases while c decreases. At the same time, the Ru/Ti—O2 distance decreases, and consequently the elongation of the Ru/TiO6-octahedra is reduced. This result is in agreement with the expected behavior; Ru4+ is a Jahn–Teller-active ion, therefore a significant distortion of the RuO6-octahedra is expected. Ti4+, on the other hand, is not a Jahn-Teller ion. Consequently, a substitution of titanium for ruthenium should reduce the elongation of the octahedra.

The SrO9 unit shows only minor modifications. While the Sr–O1 distance decreases upon Ti doping, the distance of the equatorial O2 atoms (1/2, 1/2, 1/2 − zO2) increases. The interatomic distance to the capping O2 atom (0,0,zO2) also slightly increases. The deviations of the latter three values, on the other hand, are quite small (0.002–0.006 Å) and barely significant within a tolerance range of 3σ.

Experimental top

Single crystals of Sr2Ru1 − xTixO4 were grown by the floating zone melting technique (Ikeda et al., 2002; Mao et al., 2000) in a CSI FZ—T-10000-H furnace equipped with four power lamps of 1500 W each. Polycrystalline starting materials with x = 0.1 and 1/5, respectively, were synthesized by conventional solid-state reactions from SrCO3, RuO2 and TiO2. To take into account the evaporation of some RuO2 during crystal growth, a 10% excess of ruthenium oxide was used. Rods of the polycrystalline compounds, approximately 7 mm in diameter and 100 mm in length, were pressed and sintered at 1623 K for 24 h. Crystal growth was performed in flowing air (1 l h−1) with a growth rate of 5 mm h−1. Seed- and feed-rods were counter-rotated at 35 r min−1. The resulting boules could be easily cleaved, and single crystals of appropriate sizes were selected for structure analysis.

Refinement top

Because of the plate-like shape and high linear absorption coefficient of the crystals, an absorption correction was mandatory. The crystal faces and distances were thoroughly determined, and the analytical absorption-correction procedure (Alcock, 1970) implemented in PLATON (Spek, 2003) was used.

Equal thermal displacement parameters were used for Ru and Ti, and the sum of their site-occupancy factors was fixed to yield a complete occupation of the corresponding site.

Computing details top

For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The crystal structure of Sr2Ru1 − xTixO4, showing the Ru/Ti–O6 octahedra and Sr–O9 capped tetragonal antiprisms.
(I) distrontium ruthenium titanium tetraoxide top
Crystal data top
Sr2Ru0.93Ti0.07O4Dx = 5.829 Mg m3
Mr = 334.99Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mmmCell parameters from 25 reflections
Hall symbol: -I 4 2θ = 9.7–18.0°
a = 3.8736 (3) ŵ = 31.43 mm1
c = 12.720 (7) ÅT = 293 K
V = 190.87 (10) Å3Triangular plate, black
Z = 20.20 × 0.09 × 0.03 mm
F(000) = 300
Data collection top
Siemens Syntex P21
diffractometer
247 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 42.5°, θmin = 3.2°
ω/2θ scansh = 77
Absorption correction: analytical
de Meulenaer & Tompa (1965)
k = 77
Tmin = 0.077, Tmax = 0.453l = 2424
2882 measured reflections3 standard reflections every 100 reflections
247 independent reflections intensity decay: < 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014 w = 1/[σ2(Fo2) + (0.0158P)2 + 0.1824P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max < 0.001
S = 1.31Δρmax = 1.62 e Å3
247 reflectionsΔρmin = 1.43 e Å3
14 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.064 (3)
Crystal data top
Sr2Ru0.93Ti0.07O4Z = 2
Mr = 334.99Mo Kα radiation
Tetragonal, I4/mmmµ = 31.43 mm1
a = 3.8736 (3) ÅT = 293 K
c = 12.720 (7) Å0.20 × 0.09 × 0.03 mm
V = 190.87 (10) Å3
Data collection top
Siemens Syntex P21
diffractometer
247 reflections with I > 2σ(I)
Absorption correction: analytical
de Meulenaer & Tompa (1965)
Rint = 0.031
Tmin = 0.077, Tmax = 0.4533 standard reflections every 100 reflections
2882 measured reflections intensity decay: < 1%
247 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01414 parameters
wR(F2) = 0.0330 restraints
S = 1.31Δρmax = 1.62 e Å3
247 reflectionsΔρmin = 1.43 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru0.00000.00000.00000.00345 (8)0.929 (2)
Ti0.00000.00000.00000.00345 (8)0.071 (2)
Sr0.00000.00000.353311 (19)0.00653 (8)
O10.50000.00000.00000.0084 (3)
O20.00000.00000.16130 (18)0.0083 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.00334 (9)0.00334 (9)0.00366 (11)0.0000.0000.000
Ti0.00334 (9)0.00334 (9)0.00366 (11)0.0000.0000.000
Sr0.00752 (9)0.00752 (9)0.00456 (11)0.0000.0000.000
O10.0045 (6)0.0117 (8)0.0090 (7)0.0000.0000.000
O20.0103 (5)0.0103 (5)0.0043 (6)0.0000.0000.000
Geometric parameters (Å, º) top
Ru—O1i1.9368 (2)Sr—O2viii2.7453 (3)
Ru/Ti—O11.9368 (2)Sr—O2vi2.7453 (3)
Ru—O1ii1.9368 (2)Sr—O2xv2.7453 (3)
Ru—O1iii1.9368 (2)Sr—O2xvi2.7453 (3)
Ru—O2iv2.052 (3)Sr—Tixvii3.3142 (6)
Ru/Ti—O22.052 (3)Sr—Ruxvii3.3142 (6)
Ru—Srv3.3142 (6)Sr—Tixviii3.3142 (6)
Ru/Ti—Srvi3.3142 (6)O1—Tixix1.9368 (2)
Ru—Srvii3.3142 (6)O1—Ruxix1.9368 (2)
Ru—Srviii3.3142 (6)O1—Srvi2.6894 (7)
Ru—Srix3.3142 (6)O1—Srx2.6894 (7)
Ru—Srx3.3142 (6)O1—Srvii2.6894 (7)
Sr—O22.443 (3)O1—Srxvi2.6894 (7)
Sr—O1xi2.6894 (7)O2—Srviii2.7453 (3)
Sr—O1xii2.6894 (7)O2—Srvi2.7453 (3)
Sr—O1xiii2.6894 (7)O2—Srxvi2.7453 (3)
Sr—O1xiv2.6894 (7)O2—Srxv2.7453 (3)
O1i—Ru—O190.0O1xiii—Sr—O2vi123.71 (4)
O1i—Ru—O1ii180.0O1xiv—Sr—O2vi123.71 (4)
O1—Ru—O1ii90.0O2viii—Sr—O2vi172.24 (9)
O1i—Ru—O1iii90.0O2—Sr—O2xv86.12 (5)
O1—Ru—O1iii180.0O1xi—Sr—O2xv123.71 (4)
O1ii—Ru—O1iii90.0O1xii—Sr—O2xv62.54 (4)
O1i—Ru—O2iv90.0O1xiii—Sr—O2xv62.54 (4)
O1—Ru—O2iv90.0O1xiv—Sr—O2xv123.71 (4)
O1ii—Ru—O2iv90.0O2viii—Sr—O2xv89.738 (6)
O1iii—Ru—O2iv90.0O2vi—Sr—O2xv89.738 (6)
O1i—Ru—O290.0O2—Sr—O2xvi86.12 (5)
O1—Ru—O290.0O1xi—Sr—O2xvi62.54 (4)
O1ii—Ru—O290.0O1xii—Sr—O2xvi123.71 (4)
O1iii—Ru—O290.0O1xiii—Sr—O2xvi123.71 (4)
O2iv—Ru—O2180.0O1xiv—Sr—O2xvi62.54 (4)
O1i—Ru—Srv125.760 (7)O2viii—Sr—O2xvi89.738 (6)
O1—Ru—Srv125.760 (7)O2vi—Sr—O2xvi89.738 (6)
O1ii—Ru—Srv54.240 (7)O2xv—Sr—O2xvi172.24 (9)
O1iii—Ru—Srv54.240 (7)O2—Sr—Tixvii124.264 (15)
O2iv—Ru—Srv55.736 (15)O1xi—Sr—Tixvii35.760 (7)
O2—Ru—Srv124.264 (15)O1xii—Sr—Tixvii35.760 (7)
O1i—Ru—Srvi54.240 (7)O1xiii—Sr—Tixvii91.73 (3)
O1—Ru—Srvi54.240 (7)O1xiv—Sr—Tixvii91.73 (3)
O1ii—Ru—Srvi125.760 (7)O2viii—Sr—Tixvii149.62 (5)
O1iii—Ru—Srvi125.760 (7)O2vi—Sr—Tixvii38.15 (5)
O2iv—Ru—Srvi124.264 (15)O2xv—Sr—Tixvii92.18 (3)
O2—Ru—Srvi55.736 (15)O2xvi—Sr—Tixvii92.18 (3)
Srv—Ru—Srvi180.000 (7)O2—Sr—Ruxvii124.264 (15)
O1i—Ru—Srvii54.240 (7)O1xi—Sr—Ruxvii35.760 (7)
O1—Ru—Srvii54.240 (7)O1xii—Sr—Ruxvii35.760 (7)
O1ii—Ru—Srvii125.760 (7)O1xiii—Sr—Ruxvii91.73 (3)
O1iii—Ru—Srvii125.760 (7)O1xiv—Sr—Ruxvii91.73 (3)
O2iv—Ru—Srvii55.736 (15)O2viii—Sr—Ruxvii149.62 (5)
O2—Ru—Srvii124.264 (15)O2vi—Sr—Ruxvii38.15 (5)
Srv—Ru—Srvii111.47 (3)O2xv—Sr—Ruxvii92.18 (3)
Srvi—Ru—Srvii68.53 (3)O2xvi—Sr—Ruxvii92.18 (3)
O1i—Ru—Srviii125.760 (7)Tixvii—Sr—Ruxvii0.0
O1—Ru—Srviii125.760 (7)O2—Sr—Tixviii124.264 (15)
O1ii—Ru—Srviii54.240 (7)O1xi—Sr—Tixviii35.760 (7)
O1iii—Ru—Srviii54.240 (7)O1xii—Sr—Tixviii91.73 (3)
O2iv—Ru—Srviii124.264 (15)O1xiii—Sr—Tixviii91.73 (3)
O2—Ru—Srviii55.736 (15)O1xiv—Sr—Tixviii35.760 (7)
Srv—Ru—Srviii68.53 (3)O2viii—Sr—Tixviii92.18 (3)
Srvi—Ru—Srviii111.47 (3)O2vi—Sr—Tixviii92.18 (3)
Srvii—Ru—Srviii180.000 (7)O2xv—Sr—Tixviii149.62 (5)
O1i—Ru—Srix54.240 (7)O2xvi—Sr—Tixviii38.15 (5)
O1—Ru—Srix125.760 (7)Tixvii—Sr—Tixviii71.519 (15)
O1ii—Ru—Srix125.760 (7)Ruxvii—Sr—Tixviii71.519 (15)
O1iii—Ru—Srix54.240 (7)Tixix—O1—Ru180.0
O2iv—Ru—Srix55.736 (15)Ru—O1—Ruxix180.0
O2—Ru—Srix124.264 (15)Tixix—O1—Srvi90.0
Srv—Ru—Srix71.519 (14)Ru—O1—Srvi90.0
Srvi—Ru—Srix108.481 (15)Ruxix—O1—Srvi90.0
Srvii—Ru—Srix71.519 (15)Tixix—O1—Srx90.0
Srviii—Ru—Srix108.481 (15)Ru—O1—Srx90.0
O1i—Ru—Srx125.760 (7)Ruxix—O1—Srx90.0
O1—Ru—Srx54.240 (7)Srvi—O1—Srx180.000 (8)
O1ii—Ru—Srx54.240 (7)Tixix—O1—Srvii90.0
O1iii—Ru—Srx125.760 (7)Ru—O1—Srvii90.0
O2iv—Ru—Srx55.736 (15)Ruxix—O1—Srvii90.0
O2—Ru—Srx124.264 (15)Srvi—O1—Srvii87.87 (3)
Srv—Ru—Srx71.519 (14)Srx—O1—Srvii92.13 (3)
Srvi—Ru—Srx108.481 (15)Tixix—O1—Srxvi90.0
Srvii—Ru—Srx71.519 (15)Ru—O1—Srxvi90.0
Srviii—Ru—Srx108.481 (15)Ruxix—O1—Srxvi90.0
Srix—Ru—Srx111.47 (3)Srvi—O1—Srxvi92.13 (3)
O2—Sr—O1xi133.933 (16)Srx—O1—Srxvi87.87 (3)
O2—Sr—O1xii133.933 (16)Srvii—O1—Srxvi180.000 (8)
O1xi—Sr—O1xii61.225 (18)Ru—O2—Sr180.0
O2—Sr—O1xiii133.933 (16)Ru—O2—Srviii86.12 (5)
O1xi—Sr—O1xiii92.13 (3)Sr—O2—Srviii93.88 (5)
O1xii—Sr—O1xiii61.225 (18)Ru—O2—Srvi86.12 (5)
O2—Sr—O1xiv133.933 (16)Sr—O2—Srvi93.88 (5)
O1xi—Sr—O1xiv61.225 (18)Srviii—O2—Srvi172.24 (9)
O1xii—Sr—O1xiv92.13 (3)Ru—O2—Srxvi86.12 (5)
O1xiii—Sr—O1xiv61.225 (18)Sr—O2—Srxvi93.88 (5)
O2—Sr—O2viii86.12 (5)Srviii—O2—Srxvi89.738 (6)
O1xi—Sr—O2viii123.71 (4)Srvi—O2—Srxvi89.738 (6)
O1xii—Sr—O2viii123.71 (4)Ru—O2—Srxv86.12 (5)
O1xiii—Sr—O2viii62.54 (4)Sr—O2—Srxv93.88 (5)
O1xiv—Sr—O2viii62.54 (4)Srviii—O2—Srxv89.738 (6)
O2—Sr—O2vi86.12 (5)Srvi—O2—Srxv89.738 (6)
O1xi—Sr—O2vi62.54 (4)Srxvi—O2—Srxv172.24 (9)
O1xii—Sr—O2vi62.54 (4)
Symmetry codes: (i) y, x, z; (ii) y, x1, z; (iii) x1, y, z; (iv) x, y, z; (v) x1/2, y1/2, z1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z1/2; (viii) x1/2, y1/2, z+1/2; (ix) x1/2, y+1/2, z1/2; (x) x+1/2, y1/2, z1/2; (xi) y+1/2, x1/2, z+1/2; (xii) x1/2, y+1/2, z+1/2; (xiii) y1/2, x1/2, z+1/2; (xiv) x1/2, y1/2, z+1/2; (xv) x1/2, y+1/2, z+1/2; (xvi) x+1/2, y1/2, z+1/2; (xvii) x+1/2, y+1/2, z+1/2; (xviii) x+1/2, y1/2, z+1/2; (xix) x+1, y, z.
(II) distrontium ruthenium titanium tetraoxide top
Crystal data top
Sr2Ru0.81Ti0.19O4Dx = 5.747 Mg m3
Mr = 330.21Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mmmCell parameters from 25 reflections
Hall symbol: -I 4 2θ = 7.1–18.0°
a = 3.8767 (5) ŵ = 31.27 mm1
c = 12.698 (3) ÅT = 293 K
V = 190.83 (6) Å3Rectangular plate, black
Z = 20.15 × 0.09 × 0.02 mm
F(000) = 296
Data collection top
Siemens Syntex P21
diffractometer
246 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 42.5°, θmin = 3.2°
ω/2θ scansh = 77
Absorption correction: analytical
de Meulenaer & Tompa (1965)
k = 77
Tmin = 0.074, Tmax = 0.529l = 2424
2882 measured reflections3 standard reflections every 100 reflections
247 independent reflections intensity decay: < 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0183P)2 + 0.4584P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.001
S = 1.41Δρmax = 1.40 e Å3
247 reflectionsΔρmin = 2.97 e Å3
14 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.047 (3)
Crystal data top
Sr2Ru0.81Ti0.19O4Z = 2
Mr = 330.21Mo Kα radiation
Tetragonal, I4/mmmµ = 31.27 mm1
a = 3.8767 (5) ÅT = 293 K
c = 12.698 (3) Å0.15 × 0.09 × 0.02 mm
V = 190.83 (6) Å3
Data collection top
Siemens Syntex P21
diffractometer
246 reflections with I > 2σ(I)
Absorption correction: analytical
de Meulenaer & Tompa (1965)
Rint = 0.038
Tmin = 0.074, Tmax = 0.5293 standard reflections every 100 reflections
2882 measured reflections intensity decay: < 1%
247 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01914 parameters
wR(F2) = 0.0450 restraints
S = 1.41Δρmax = 1.40 e Å3
247 reflectionsΔρmin = 2.97 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru0.00000.00000.00000.00326 (13)0.810 (4)
Ti0.00000.00000.00000.00326 (13)0.190 (4)
Sr0.00000.00000.35362 (3)0.00642 (11)
O10.50000.00000.00000.0079 (4)
O20.00000.00000.1608 (2)0.0084 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.00320 (14)0.00320 (14)0.00338 (17)0.0000.0000.000
Ti0.00320 (14)0.00320 (14)0.00338 (17)0.0000.0000.000
Sr0.00744 (13)0.00744 (13)0.00439 (15)0.0000.0000.000
O10.0049 (10)0.0106 (11)0.0082 (9)0.0000.0000.000
O20.0106 (7)0.0106 (7)0.0041 (8)0.0000.0000.000
Geometric parameters (Å, º) top
Ru—O1i1.9383 (2)Sr—O2viii2.7474 (4)
Ru/Ti—O11.9383 (2)Sr—O2vi2.7474 (4)
Ru—O1ii1.9383 (2)Sr—O2xv2.7474 (4)
Ru—O1iii1.9383 (2)Sr—O2xvi2.7474 (4)
Ru—O2iv2.042 (3)Sr—Tixvii3.3120 (4)
Ru/Ti—O22.042 (3)Sr—Ruxvii3.3120 (4)
Ru/Ti—Srv3.3120 (4)Sr—Tixiv3.3120 (4)
Ru—Srvi3.3120 (4)O1—Tixviii1.9383 (2)
Ru—Srvii3.3120 (4)O1—Ruxviii1.9383 (2)
Ru—Srviii3.3120 (4)O1—Srvi2.6855 (4)
Ru—Srix3.3120 (4)O1—Srx2.6855 (4)
Ru—Srx3.3120 (4)O1—Srvii2.6855 (4)
Sr—O22.448 (3)O1—Srxvi2.6855 (4)
Sr—O1xi2.6855 (4)O2—Srviii2.7474 (4)
Sr—O1xii2.6855 (4)O2—Srvi2.7474 (4)
Sr—O1xiii2.6855 (4)O2—Srxvi2.7474 (4)
Sr—O1xiv2.6855 (4)O2—Srxv2.7474 (4)
O1i—Ru—O190.0O1xiii—Sr—O2vi123.74 (5)
O1i—Ru—O1ii180.0O1xiv—Sr—O2vi123.74 (5)
O1—Ru—O1ii90.0O2viii—Sr—O2vi172.35 (13)
O1i—Ru—O1iii90.0O2—Sr—O2xv86.18 (7)
O1—Ru—O1iii180.0O1xi—Sr—O2xv123.74 (5)
O1ii—Ru—O1iii90.0O1xii—Sr—O2xv62.41 (5)
O1i—Ru—O2iv90.0O1xiii—Sr—O2xv62.41 (5)
O1—Ru—O2iv90.0O1xiv—Sr—O2xv123.74 (5)
O1ii—Ru—O2iv90.0O2viii—Sr—O2xv89.745 (9)
O1iii—Ru—O2iv90.0O2vi—Sr—O2xv89.745 (9)
O1i—Ru—O290.0O2—Sr—O2xvi86.18 (7)
O1—Ru—O290.0O1xi—Sr—O2xvi62.41 (5)
O1ii—Ru—O290.0O1xii—Sr—O2xvi123.74 (5)
O1iii—Ru—O290.0O1xiii—Sr—O2xvi123.74 (5)
O2iv—Ru—O2180.0O1xiv—Sr—O2xvi62.41 (5)
O1i—Ru—Srv125.821 (4)O2viii—Sr—O2xvi89.745 (9)
O1—Ru—Srv125.821 (4)O2vi—Sr—O2xvi89.745 (9)
O1ii—Ru—Srv54.179 (4)O2xv—Sr—O2xvi172.35 (13)
O1iii—Ru—Srv54.179 (4)O2—Sr—Tixvii124.140 (9)
O2iv—Ru—Srv55.860 (9)O1xi—Sr—Tixvii35.821 (4)
O2—Ru—Srv124.140 (9)O1xii—Sr—Tixvii35.821 (4)
O1i—Ru—Srvi54.179 (4)O1xiii—Sr—Tixvii91.948 (16)
O1—Ru—Srvi54.179 (4)O1xiv—Sr—Tixvii91.948 (16)
O1ii—Ru—Srvi125.821 (4)O2viii—Sr—Tixvii149.68 (7)
O1iii—Ru—Srvi125.821 (4)O2vi—Sr—Tixvii37.96 (7)
O2iv—Ru—Srvi124.140 (9)O2xv—Sr—Tixvii92.14 (4)
O2—Ru—Srvi55.860 (9)O2xvi—Sr—Tixvii92.14 (4)
Srv—Ru—Srvi180.000 (10)O2—Sr—Ruxvii124.140 (9)
O1i—Ru—Srvii54.179 (4)O1xi—Sr—Ruxvii35.821 (4)
O1—Ru—Srvii54.179 (4)O1xii—Sr—Ruxvii35.821 (4)
O1ii—Ru—Srvii125.821 (4)O1xiii—Sr—Ruxvii91.948 (16)
O1iii—Ru—Srvii125.821 (4)O1xiv—Sr—Ruxvii91.948 (16)
O2iv—Ru—Srvii55.861 (9)O2viii—Sr—Ruxvii149.68 (7)
O2—Ru—Srvii124.140 (9)O2vi—Sr—Ruxvii37.96 (7)
Srv—Ru—Srvii111.721 (18)O2xv—Sr—Ruxvii92.14 (4)
Srvi—Ru—Srvii68.279 (18)O2xvi—Sr—Ruxvii92.14 (4)
O1i—Ru—Srviii125.821 (4)Tixvii—Sr—Ruxvii0.0
O1—Ru—Srviii125.821 (4)O2—Sr—Tixiv124.140 (9)
O1ii—Ru—Srviii54.179 (4)O1xi—Sr—Tixiv91.948 (16)
O1iii—Ru—Srviii54.179 (4)O1xii—Sr—Tixiv91.948 (16)
O2iv—Ru—Srviii124.140 (9)O1xiii—Sr—Tixiv35.821 (4)
O2—Ru—Srviii55.861 (9)O1xiv—Sr—Tixiv35.821 (4)
Srv—Ru—Srviii68.279 (18)O2viii—Sr—Tixiv37.96 (7)
Srvi—Ru—Srviii111.721 (18)O2vi—Sr—Tixiv149.68 (7)
Srvii—Ru—Srviii180.000 (10)O2xv—Sr—Tixiv92.14 (4)
O1i—Ru—Srix54.179 (4)O2xvi—Sr—Tixiv92.14 (4)
O1—Ru—Srix125.821 (4)Tixvii—Sr—Tixiv111.721 (18)
O1ii—Ru—Srix125.821 (4)Ruxvii—Sr—Tixiv111.721 (18)
O1iii—Ru—Srix54.179 (4)Tixviii—O1—Ru180.0
O2iv—Ru—Srix55.860 (9)Ru—O1—Ruxviii180.0
O2—Ru—Srix124.140 (9)Tixviii—O1—Srvi90.0
Srv—Ru—Srix71.642 (9)Ru—O1—Srvi90.0
Srvi—Ru—Srix108.358 (9)Ruxviii—O1—Srvi90.0
Srvii—Ru—Srix71.642 (9)Tixviii—O1—Srx90.0
Srviii—Ru—Srix108.358 (9)Ru—O1—Srx90.0
O1i—Ru—Srx125.821 (4)Ruxviii—O1—Srx90.0
O1—Ru—Srx54.179 (4)Srvi—O1—Srx180.000 (10)
O1ii—Ru—Srx54.179 (4)Tixviii—O1—Srvii90.0
O1iii—Ru—Srx125.821 (4)Ru—O1—Srvii90.0
O2iv—Ru—Srx55.860 (9)Ruxviii—O1—Srvii90.0
O2—Ru—Srx124.140 (9)Srvi—O1—Srvii87.597 (19)
Srv—Ru—Srx71.642 (9)Srx—O1—Srvii92.40 (2)
Srvi—Ru—Srx108.358 (9)Tixviii—O1—Srxvi90.0
Srvii—Ru—Srx71.642 (9)Ru—O1—Srxvi90.0
Srviii—Ru—Srx108.358 (9)Ruxviii—O1—Srxvi90.0
Srix—Ru—Srx111.721 (18)Srvi—O1—Srxvi92.40 (2)
O2—Sr—O1xi133.799 (10)Srx—O1—Srxvi87.597 (19)
O2—Sr—O1xii133.799 (10)Srvii—O1—Srxvi180.000 (10)
O1xi—Sr—O1xii61.377 (11)Ru—O2—Sr180.0
O2—Sr—O1xiii133.799 (10)Ru—O2—Srviii86.18 (7)
O1xi—Sr—O1xiii92.403 (19)Sr—O2—Srviii93.82 (7)
O1xii—Sr—O1xiii61.377 (11)Ru—O2—Srvi86.18 (7)
O2—Sr—O1xiv133.799 (10)Sr—O2—Srvi93.82 (7)
O1xi—Sr—O1xiv61.377 (11)Srviii—O2—Srvi172.35 (13)
O1xii—Sr—O1xiv92.403 (19)Ru—O2—Srxvi86.18 (7)
O1xiii—Sr—O1xiv61.377 (11)Sr—O2—Srxvi93.82 (7)
O2—Sr—O2viii86.18 (7)Srviii—O2—Srxvi89.745 (9)
O1xi—Sr—O2viii123.74 (5)Srvi—O2—Srxvi89.745 (9)
O1xii—Sr—O2viii123.74 (5)Ru—O2—Srxv86.18 (7)
O1xiii—Sr—O2viii62.41 (5)Sr—O2—Srxv93.82 (7)
O1xiv—Sr—O2viii62.41 (5)Srviii—O2—Srxv89.745 (9)
O2—Sr—O2vi86.18 (7)Srvi—O2—Srxv89.745 (9)
O1xi—Sr—O2vi62.41 (5)Srxvi—O2—Srxv172.35 (13)
O1xii—Sr—O2vi62.41 (5)
Symmetry codes: (i) y, x, z; (ii) y, x1, z; (iii) x1, y, z; (iv) x, y, z; (v) x1/2, y1/2, z1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z1/2; (viii) x1/2, y1/2, z+1/2; (ix) x1/2, y+1/2, z1/2; (x) x+1/2, y1/2, z1/2; (xi) y+1/2, x1/2, z+1/2; (xii) x1/2, y+1/2, z+1/2; (xiii) y1/2, x1/2, z+1/2; (xiv) x1/2, y1/2, z+1/2; (xv) x1/2, y+1/2, z+1/2; (xvi) x+1/2, y1/2, z+1/2; (xvii) x+1/2, y+1/2, z+1/2; (xviii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaSr2Ru0.93Ti0.07O4Sr2Ru0.81Ti0.19O4
Mr334.99330.21
Crystal system, space groupTetragonal, I4/mmmTetragonal, I4/mmm
Temperature (K)293293
a, c (Å)3.8736 (3), 12.720 (7)3.8767 (5), 12.698 (3)
V3)190.87 (10)190.83 (6)
Z22
Radiation typeMo KαMo Kα
µ (mm1)31.4331.27
Crystal size (mm)0.20 × 0.09 × 0.030.15 × 0.09 × 0.02
Data collection
DiffractometerSiemens Syntex P21
diffractometer
Siemens Syntex P21
diffractometer
Absorption correctionAnalytical
de Meulenaer & Tompa (1965)
Analytical
de Meulenaer & Tompa (1965)
Tmin, Tmax0.077, 0.4530.074, 0.529
No. of measured, independent and
observed [I > 2σ(I)] reflections
2882, 247, 247 2882, 247, 246
Rint0.0310.038
(sin θ/λ)max1)0.9500.951
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.033, 1.31 0.019, 0.045, 1.41
No. of reflections247247
No. of parameters1414
Δρmax, Δρmin (e Å3)1.62, 1.431.40, 2.97

Computer programs: SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

Selected bond lengths (Å) for (I) top
Ru/Ti—O11.9368 (2)Sr—O22.443 (3)
Ru/Ti—O22.052 (3)Sr—O1ii2.6894 (7)
Ru/Ti—Sri3.3142 (6)Sr—O2i2.7453 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2.
Selected bond lengths (Å) for (II) top
Ru/Ti—O11.9383 (2)Sr—O22.448 (3)
Ru/Ti—O22.042 (3)Sr—O1ii2.6855 (4)
Ru/Ti—Sri3.3120 (4)Sr—O2iii2.7474 (4)
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds