Download citation
Download citation
link to html
The title complex, [Sr2(C5H5N4O3)4(H2O)6], forms centrosymmetric dimers in which one water ligand bridges two Sr centres and in which one of the anionic ligands is bidentate and bonded to just one Sr atom, and the other is tridentate and bridges the two Sr centres within the dimer. The dimeric units are linked by an extensive series of O-H...O, O-H...N and N-H...O hydrogen bonds to form a complex three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102021492/sk1602sup1.cif
Contains datablocks global, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102021492/sk1602IIIsup2.hkl
Contains datablock III

CCDC reference: 204030

Comment top

We recently reported the structure, at 150 K, of the dihydrated sodium salt derived from 6-amino-3-methyl-5-nitrosopyrimidine, (I) (Cuesta et al., 2001). In that salt, the Na cations and (C5H4N4O3) anions, L, (II), form a one-dimensional coordination polymer in the form of a molecular ladder, and the ladders are linked into a continuous three-dimensional framework by a combination of O—H···O and O—H···N hydrogen bonds. Within the ladder, the anion utilizes one amidic O atom and the nitroso N atom to coordinate to a single Na atom, while the other amidic O atom bridges a pair of cations, forming a centrosymmetric Na2O2 ring. \sch

Extending our earlier study to a salt of a dication, we have now investigated the title strontium salt, (III). While the stoichiometry of (III) is apparently simple, Sr(L)2·3H2O, the two anionic ligands adopt entirely different coordination modes and, while one water molecule acts as a bridging ligand between two metal centres, the other two are bonded simply to one metal.

The structures of the two anionic components in (III) are similar, but not identical. Each adopts the usual planar conformation, with the nitroso group trans to the amidic atoms On4 (n = 1 or 2 throughout), and each forms an intramolecular N—H···O hydrogen bond with the nitroso On5 atom as acceptor (Fig. 1). The bond distances (Table 1) show a number of metrical features characteristic of 5-nitrosopyrimidines. In particular, the Cn4—Cn5 and Cn5—Cn6 distances are similar, the difference between the Cn5—Nn5 and Nn5—On5 distances does not exceed 0.05 Å, and the Cn6—Nn6 bonds are very short for a single C—N bond between triply connected atoms of these types (Allen et al., 1987). The C—O distances are all typical of those in neutral amides (Allen et al., 1987) and these observations, taken all together, indicate that the delocalized polarized form (IIa) is a significantly better representation of the anions than the localized form, (II).

The coordination complex of (III) (Fig. 1) takes the form of a centrosymmetric dimer, located for the sake of convenience across the inversion centre at (1/2,1/2,1/2). The anion of type 1 (with n = 1 in the atom labels) at (x, y, z) forms a bridge between the two Sr centres at (x, y, z) and (1 − x, 1 − y, 1 − z), with the amidic O14 and nitroso N15 atoms coordinated to the Sr atom at (x, y, z) and the nitroso O15 atom bonded to the Sr atom at (1 − x, 1 − y, 1 − z). By contrast, the type 2 anion (with n = 2 in the atom labels) is bonded to a single Sr atom, via the amidic O22 and N21 atoms of the pyrimidine ring.

Effectively orthogonal to the (SrNO)2 ring is an Sr2O2 ring, in which water atom O1 acts as a bridging ligand between two Sr centres. The irregular nine-coordination around the Sr is completed by two water molecules, each bonded to just one Sr atom. We have previously observed examples of metal complexes of substituted 5-nitrosopyrimidines in which the nitroso group acts as an η1 ligand, via O, to Na (Low, Moreno Sánchez et al., 2001), K (Low, Arranz et al., 2001) and Sr (Glidewell et al., 2002), as an η1 ligand, via N, to Na (Cuesta et al., 2001), and as an η2 ligand binding to a single K centre via both N and O (Low, Moreno Sánchez et al., 2001), but no previous examples of this ligand adopting a µ bridging action have been observed. In contrast to the metal-bridging action of the nitroso group of the type 1 ligand, the nitroso group in the type 2 ligand plays no role in the metal-ligand bonding, although both atoms N25 and O25 act as acceptors of hydrogen bonds (Table 2).

In addition to the N—H···O hydrogen bonds within each anionic ligand of (III), there is a third N—H···O hydrogen bond within the dimeric complex (Fig. 1, Table 2). Amino atom N26 in the type 2 anion acts as a hydrogen-bond donor, via atom H26A, to amidic atom O14 in the type 1 anion. This then leaves within the dimer one amino N—H bond and six distinct water O—H bonds, each duplicated by inversion, all of which act as hydrogen-bond donors to acceptors in other dimer units, so linking these units into a single three-dimensional framework. The number of distinct hydrogen bonds leads to some complexity in the framework structure, but the formation of the framework is readily described in terms of a small number of one-dimensional substructures, each in the form of a chain of rings, such that the combination of these substructures necessarily leads to a single framework structure.

The simplest of the hydrogen-bonded substructures in (III) is that running parallel to the [001] direction. Water atom O3 at (x, y, z), which forms part of the complex centred at (1/2,1/2,1/2), acts as a hydrogen-bond donor, via atom H3A, to nitroso atom N25 at (1 − x, 1 − y, 2 − z), which lies in the dimer centred at (1/2,1/2, 3/2), so forming an R22(14) ring centred at (1/2,1/2,1) (Fig. 2). Propagation of this hydrogen bond by inversion thus generates a chain of spiro-fused rings along [001].

Three hydrogen bonds are involved in chain formation along [010]. Water atoms O1 and O2 at (x, y, z) both act as hydrogen-bond donors, via atoms H1B and H2A, respectively, to amidic atom O12 at (x, y − 1, z), which lies in the dimer centred at (1/2,-1/2,1/2). At the same time, the water atom O3 at (x, y, z) acts as a hydrogen-bond donor, via atom H3A, to pyrimidine atom N11 at (1 − x, 3 − y, 1 − z), which lies in the dimer centred at (1/2,3/2,1/2). Together, these interactions generate a complex chain along [010] (Fig. 3), which consists, in effect, of cages fused along the Sr···Sr vector. The combination of the [010] and [001] chains generates a (100) sheet and this is reinforced by the single inter-dimer N—H···O hydrogen bond.

Amino atom N16 at (x, y, z) acts as a hydrogen-bond donor, via atom H16A, to amidic atom O24 at (x, 1 + y, z − 1), so generating by translation a C(11) chain running parallel to the [011] direction. Propagation of this hydrogen bond by translation and inversion generates a chain of edge-fused rings, in which the (SrNO)2 rings alternate with hydrogen-bonded R22(24) rings (Fig. 4). Alternatively, this substructure can be regarded as a molecular ladder, in which a pair of antiparallel C(11) chains form the uprights, while the (SrNO)2 rings form the rungs.

Two further O—H···O hydrogen bonds generate chains running parallel to the [110] and [101] directions. Water atom O1 at (x, y, z), part of the dimer centred at (1/2,1/2,1/2), acts as a hydrogen-bond donor, via atom H1A, to amidic atom O12 at (-x, 2 − y, 1 − z), which lies in the dimer centred at (−1/2,3/2,1/2). Propagation of this hydrogen bond generates a chain of edge-fused rings along [110], in which Sr2O2 rings alternate with hydrogen-bonded R22(16) rings (Fig. 5). Finally, water atom O2 at (x, y, z) acts as a donor, via atom H2B, to nitroso atom O25 at (-x, 1 − y, 2 − z), which lies in the dimer centred at (−1/2,1/2,3/2), and propagation of this hydrogen bond generates a chain of spiro-fused rings along [101], in which Sr2O2 rings alternate with hydrogen-bonded R22(16) rings (Fig. 6). The combination of the [010] and [001] chains with either of the [110] or [101] chains is itself sufficient to generate a single three-dimensional framework.

Experimental top

Potassium 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dionate was prepared by the addition of water (20 mmol) to a suspension of 6-amino-3,4-dihydro-3-methyl-2-methoxy-5-nitroso-4-oxopyrimidine (20 mmol) and potassium hydroxide (20 mmol) in methanol (50 ml). The product was filtered off and recrystallized once from water. Analysis, found: C 28.6, H 2.5, N 26.6%; C5H5KN4O3 requires: C 28.8, H 2.4, N 26.9%. The title strontium complex, (III), was obtained by adding strontium chloride hexahydrate (1 mmol) to a solution of the potassium salt (2 mmol) in water (40 ml). The orange product was filtered off, and washed with cold water and then ethanol. Analysis, found: C 24.3, H 3.4, N 21.9%; C20H32N16O18Sr2 requires: C 25.0, H 3.4, N 23.4%. Crystals of (III) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a dilute solution in water.

Refinement top

Compound (III) is triclinic; space group P1 was assumed and confirmed by the analysis. H atoms were treated as riding atoms, with C—H distances of 0.98 Å, N—H distances of 0.88 Å and O—H distances in the range 0.84–0.88 Å.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The centrosymmetric dimer complex in (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms labelled with the suffix A are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (III), showing the formation of a chain of spiro-fused rings along [001]. For the sake of clarity, the anions of type 1 and the water ligand containing atom O2 have been omitted, as have H atoms bonded to C atoms.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (III), showing the formation of a chain along [010]. For the sake of clarity, the anions of type 2 have been omitted, as have H atoms bonded to C atoms.
[Figure 4] Fig. 4. Part of the crystal structure of (III), showing the formation of a chain of edge-fused rings along [011]. For the sake of clarity, the unit-cell box and the water molecules have been omitted, as have H atoms bonded to C atoms. The atoms marked with an asterisk (*), hash (#), dollar sign (add), ampersand (add) or plus sign (+) are at the symmetry positions (1 − x, 1 − y, 1 − z), (1 − x, 2 − y, −z), (x, 1 + x, z − 1), (x, y − 1, 1 + z) and (1 − x, −y, 2 − z), respectively.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (III), showing the formation of a chain of edge-fused rings along [110]. For the sake of clarity, the anions of type 2 and the water ligands containing atoms O2 and O3 have been omitted, as have H atoms bonded to C atoms.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (III), showing the formation of a chain of spiro-fused rings along [101]. For the sake of clarity, the anions of type 1 and the water ligands containing atom O3 have been omitted, as have H atoms bonded to C atoms.
Di-µ-aqua-bis[µ-6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dionato- κ3O4,N5:O5]bis{diaqua[6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)- dionato-κ2N1,O2]strontium(II)} top
Crystal data top
[Sr2(C5H5N4O3)4(H2O)6]Z = 1
Mr = 959.86F(000) = 484
Triclinic, P1Dx = 1.843 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9388 (2) ÅCell parameters from 3883 reflections
b = 9.8852 (2) Åθ = 3.1–27.5°
c = 14.1962 (4) ŵ = 3.19 mm1
α = 69.965 (2)°T = 120 K
β = 77.518 (2)°Block, orange
γ = 72.361 (2)°0.30 × 0.28 × 0.25 mm
V = 864.91 (4) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
3883 independent reflections
Radiation source: rotating anode3540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 88
Tmin = 0.391, Tmax = 0.449k = 1212
12233 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0297P)2 + 0.7547P]
where P = (Fo2 + 2Fc2)/3
3883 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Sr2(C5H5N4O3)4(H2O)6]γ = 72.361 (2)°
Mr = 959.86V = 864.91 (4) Å3
Triclinic, P1Z = 1
a = 6.9388 (2) ÅMo Kα radiation
b = 9.8852 (2) ŵ = 3.19 mm1
c = 14.1962 (4) ÅT = 120 K
α = 69.965 (2)°0.30 × 0.28 × 0.25 mm
β = 77.518 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3883 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
3540 reflections with I > 2σ(I)
Tmin = 0.391, Tmax = 0.449Rint = 0.031
12233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.00Δρmax = 0.55 e Å3
3883 reflectionsΔρmin = 0.68 e Å3
255 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.43236 (3)0.49004 (2)0.653983 (13)0.01341 (7)
N110.2042 (3)1.15434 (19)0.46487 (13)0.0156 (4)
C120.1240 (3)1.1452 (2)0.56136 (16)0.0140 (4)
O120.0509 (2)1.26071 (16)0.58784 (11)0.0180 (3)
C130.0286 (4)1.0049 (3)0.73956 (16)0.0207 (5)
N130.1185 (3)1.00806 (19)0.63491 (13)0.0139 (4)
C140.2039 (3)0.8740 (2)0.61425 (16)0.0139 (4)
O140.2000 (2)0.75540 (16)0.68092 (11)0.0179 (3)
C150.2947 (3)0.8840 (2)0.51022 (15)0.0137 (4)
N150.3788 (3)0.7529 (2)0.49340 (13)0.0154 (4)
O150.4562 (2)0.75189 (17)0.40238 (11)0.0188 (3)
C160.2895 (3)1.0292 (2)0.43806 (16)0.0138 (4)
N160.3733 (3)1.0400 (2)0.34377 (13)0.0196 (4)
N210.3883 (3)0.4442 (2)0.85286 (13)0.0160 (4)
C220.5225 (3)0.3079 (2)0.87216 (16)0.0156 (4)
O220.6188 (2)0.25973 (17)0.80200 (11)0.0205 (3)
N230.5503 (3)0.2212 (2)0.97231 (13)0.0176 (4)
C230.7056 (4)0.0792 (3)0.98704 (19)0.0288 (6)
C240.4477 (3)0.2668 (3)1.05545 (16)0.0183 (4)
O240.4756 (3)0.18474 (19)1.14169 (12)0.0267 (4)
C250.3096 (3)0.4159 (2)1.03339 (15)0.0160 (4)
N250.2204 (3)0.4634 (2)1.11311 (14)0.0194 (4)
O250.0970 (2)0.59502 (18)1.09777 (12)0.0227 (4)
C260.2885 (3)0.4987 (2)0.92849 (16)0.0141 (4)
N260.1678 (3)0.6350 (2)0.90426 (14)0.0181 (4)
O10.2560 (2)0.50204 (16)0.49907 (11)0.0166 (3)
O20.1462 (3)0.3612 (2)0.73356 (12)0.0259 (4)
O30.6852 (3)0.60167 (19)0.68631 (12)0.0256 (4)
H13A0.04810.92830.76760.031*
H13B0.06341.10210.73980.031*
H13C0.13750.98220.78070.031*
H16A0.37261.12810.29970.024*
H16B0.42980.95920.32500.024*
H23A0.69170.02670.94250.043*
H23B0.68710.01811.05750.043*
H23C0.84150.09800.97090.043*
H26A0.15640.68540.84040.022*
H26B0.09920.67510.95210.022*
H1A0.16060.57540.47680.020*
H1B0.20390.42920.51770.020*
H2A0.08120.33410.69910.031*
H2B0.05930.37330.78700.031*
H3A0.72980.59450.74180.031*
H3B0.75910.65490.63790.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01849 (11)0.01170 (11)0.00886 (11)0.00230 (7)0.00038 (7)0.00369 (7)
N110.0197 (9)0.0122 (9)0.0135 (9)0.0037 (7)0.0005 (7)0.0030 (7)
C120.0155 (10)0.0115 (10)0.0148 (10)0.0017 (8)0.0044 (8)0.0036 (8)
O120.0236 (8)0.0126 (7)0.0171 (8)0.0011 (6)0.0027 (6)0.0065 (6)
C130.0270 (12)0.0199 (11)0.0118 (10)0.0014 (9)0.0027 (9)0.0075 (8)
N130.0175 (9)0.0101 (8)0.0117 (8)0.0005 (7)0.0005 (7)0.0039 (7)
C140.0148 (10)0.0122 (10)0.0148 (10)0.0012 (8)0.0034 (8)0.0050 (8)
O140.0262 (8)0.0118 (7)0.0118 (7)0.0024 (6)0.0000 (6)0.0022 (6)
C150.0165 (10)0.0123 (10)0.0115 (10)0.0028 (8)0.0020 (8)0.0032 (8)
N150.0186 (9)0.0153 (9)0.0115 (9)0.0029 (7)0.0002 (7)0.0052 (7)
O150.0265 (8)0.0159 (8)0.0116 (7)0.0024 (6)0.0016 (6)0.0060 (6)
C160.0139 (9)0.0129 (10)0.0142 (10)0.0035 (8)0.0017 (8)0.0035 (8)
N160.0284 (10)0.0124 (9)0.0131 (9)0.0029 (8)0.0017 (8)0.0023 (7)
N210.0194 (9)0.0150 (9)0.0128 (9)0.0032 (7)0.0023 (7)0.0042 (7)
C220.0178 (10)0.0158 (10)0.0127 (10)0.0043 (8)0.0023 (8)0.0033 (8)
O220.0234 (8)0.0205 (8)0.0139 (8)0.0010 (6)0.0006 (6)0.0071 (6)
N230.0213 (9)0.0156 (9)0.0112 (9)0.0010 (7)0.0034 (7)0.0005 (7)
C230.0315 (13)0.0209 (12)0.0242 (13)0.0039 (10)0.0064 (11)0.0021 (10)
C240.0216 (11)0.0208 (11)0.0129 (10)0.0087 (9)0.0018 (9)0.0029 (8)
O240.0351 (10)0.0264 (9)0.0121 (8)0.0062 (8)0.0029 (7)0.0009 (7)
C250.0174 (10)0.0203 (11)0.0099 (10)0.0083 (9)0.0010 (8)0.0027 (8)
N250.0224 (9)0.0231 (10)0.0148 (9)0.0104 (8)0.0015 (8)0.0066 (8)
O250.0259 (8)0.0259 (9)0.0176 (8)0.0078 (7)0.0029 (7)0.0102 (7)
C260.0114 (9)0.0174 (10)0.0176 (10)0.0073 (8)0.0012 (8)0.0087 (8)
N260.0236 (9)0.0174 (9)0.0110 (9)0.0016 (8)0.0004 (7)0.0056 (7)
O10.0189 (7)0.0130 (7)0.0163 (8)0.0024 (6)0.0028 (6)0.0033 (6)
O20.0284 (9)0.0418 (11)0.0172 (8)0.0193 (8)0.0081 (7)0.0181 (7)
O30.0384 (10)0.0300 (9)0.0131 (8)0.0210 (8)0.0033 (7)0.0012 (7)
Geometric parameters (Å, º) top
N11—C121.345 (3)C24—C251.465 (3)
C12—N131.405 (3)C25—C261.447 (3)
N13—C141.382 (3)C26—N211.331 (3)
C14—C151.457 (3)C22—O221.229 (3)
C15—C161.445 (3)N23—C231.468 (3)
C16—N111.344 (3)C24—O241.233 (3)
C12—O121.250 (2)C25—N251.330 (3)
C13—N131.475 (3)N25—O251.298 (2)
C14—O141.232 (3)C26—N261.326 (3)
C15—N151.330 (3)C23—H23A0.98
N15—O151.290 (2)C23—H23B0.98
C16—N161.321 (3)C23—H23C0.98
C13—H13A0.98N26—H26A0.88
C13—H13B0.98N26—H26B0.88
C13—H13C0.98Sr1—O12.6916 (15)
N16—H16A0.88Sr1—O1i2.7127 (15)
N16—H16B0.88Sr1—O22.5331 (16)
Sr1—O142.7357 (15)Sr1—O32.5250 (16)
Sr1—N152.7946 (18)Sr1—Sr1i4.2169 (4)
Sr1—O15i2.6231 (15)O1—H1A0.84
Sr1—N212.6654 (17)O1—H1B0.84
Sr1—O222.7175 (15)O2—H2A0.88
N21—C221.362 (3)O2—H2B0.88
C22—N231.406 (3)O3—H3A0.88
N23—C241.382 (3)O3—H3B0.88
O3—Sr1—O2145.21 (5)N15—C15—C16127.06 (19)
O3—Sr1—O15i122.60 (5)N15—C15—C14114.06 (18)
O2—Sr1—O15i75.15 (5)C16—C15—C14118.87 (18)
O3—Sr1—N2173.13 (5)O15—N15—C15118.02 (17)
O2—Sr1—N2172.14 (5)O15—N15—Sr1120.69 (12)
O15i—Sr1—N21115.05 (5)C15—N15—Sr1120.79 (13)
O3—Sr1—O1139.14 (5)N15—O15—Sr1i122.83 (12)
O2—Sr1—O174.30 (5)O15i—Sr1—N15113.82 (5)
O15i—Sr1—O164.33 (5)O1—Sr1—O1i77.43 (5)
N21—Sr1—O1145.00 (5)N16—C16—N11118.87 (19)
O3—Sr1—O1i71.00 (5)N16—C16—C15119.54 (19)
O2—Sr1—O1i140.35 (5)N11—C16—C15121.58 (19)
O15i—Sr1—O1i67.74 (5)C16—N16—H16A120.0
N21—Sr1—O1i136.66 (5)C16—N16—H16B120.0
O3—Sr1—O2279.02 (5)H16A—N16—H16B120.0
O2—Sr1—O2280.04 (5)C26—N21—C22120.20 (18)
O15i—Sr1—O2270.98 (5)C26—N21—Sr1144.98 (14)
N21—Sr1—O2249.29 (5)C22—N21—Sr194.75 (12)
O1—Sr1—O22132.63 (5)O22—C22—N21120.05 (19)
O1i—Sr1—O22100.01 (4)O22—C22—N23119.72 (19)
O3—Sr1—O1476.27 (5)N21—C22—N23120.22 (18)
O2—Sr1—O1493.09 (5)O22—C22—Sr160.99 (11)
O15i—Sr1—O14159.75 (5)N21—C22—Sr159.21 (10)
N21—Sr1—O1475.46 (5)N23—C22—Sr1175.70 (15)
O1—Sr1—O1496.89 (4)C22—O22—Sr195.72 (13)
O1i—Sr1—O14117.60 (4)C24—N23—C22123.39 (18)
O22—Sr1—O14123.92 (4)C24—N23—C23119.40 (18)
O3—Sr1—N1581.26 (5)C22—N23—C23117.12 (18)
O2—Sr1—N15121.31 (6)N23—C23—H23A109.5
N21—Sr1—N15131.12 (5)N23—C23—H23B109.5
O1—Sr1—N1562.02 (5)H23A—C23—H23B109.5
O1i—Sr1—N1565.36 (5)N23—C23—H23C109.5
O22—Sr1—N15158.57 (5)H23A—C23—H23C109.5
O14—Sr1—N1558.15 (5)H23B—C23—H23C109.5
O3—Sr1—Sr1i105.86 (4)O24—C24—N23120.5 (2)
O2—Sr1—Sr1i108.82 (4)O24—C24—C25123.8 (2)
O15i—Sr1—Sr1i58.65 (3)N23—C24—C25115.75 (18)
N21—Sr1—Sr1i172.21 (4)N25—C25—C26126.5 (2)
O1—Sr1—Sr1i38.89 (3)N25—C25—C24115.74 (18)
O1i—Sr1—Sr1i38.53 (3)C26—C25—C24117.76 (18)
O22—Sr1—Sr1i122.96 (3)O25—N25—C25118.26 (18)
O14—Sr1—Sr1i112.00 (3)N26—C26—N21117.18 (19)
N15—Sr1—Sr1i55.42 (4)N26—C26—C25120.22 (19)
C16—N11—C12119.65 (18)N21—C26—C25122.59 (19)
O12—C12—N11120.14 (19)C26—N26—H26A120.0
O12—C12—N13118.00 (18)C26—N26—H26B120.0
N11—C12—N13121.86 (18)H26A—N26—H26B120.0
N13—C13—H13A109.5Sr1—O1—Sr1i102.57 (5)
N13—C13—H13B109.5Sr1—O1—H1A120.2
H13A—C13—H13B109.5Sr1i—O1—H1A105.6
N13—C13—H13C109.5Sr1—O1—H1B107.7
H13A—C13—H13C109.5Sr1i—O1—H1B117.6
H13B—C13—H13C109.5H1A—O1—H1B104.0
C14—N13—C12122.33 (17)Sr1—O2—H2A123.5
C14—N13—C13118.11 (17)Sr1—O2—H2B125.9
C12—N13—C13119.48 (17)H2A—O2—H2B104.8
O14—C14—N13120.77 (19)Sr1—O3—H3A132.7
O14—C14—C15123.58 (19)Sr1—O3—H3B123.6
N13—C14—C15115.64 (18)H3A—O3—H3B103.5
C14—O14—Sr1121.33 (13)
C16—N11—C12—O12177.46 (19)O15i—Sr1—N21—C2226.43 (14)
C16—N11—C12—N132.9 (3)O1—Sr1—N21—C22106.88 (14)
O12—C12—N13—C14176.89 (18)O1i—Sr1—N21—C2257.02 (15)
N11—C12—N13—C143.4 (3)O22—Sr1—N21—C222.32 (11)
O12—C12—N13—C130.3 (3)O14—Sr1—N21—C22172.00 (13)
N11—C12—N13—C13179.96 (19)N15—Sr1—N21—C22153.85 (12)
C12—N13—C14—O14178.57 (19)C26—N21—C22—O22177.85 (19)
C13—N13—C14—O141.9 (3)Sr1—N21—C22—O224.5 (2)
C12—N13—C14—C151.9 (3)C26—N21—C22—N232.6 (3)
C13—N13—C14—C15178.56 (18)Sr1—N21—C22—N23175.05 (17)
N13—C14—O14—Sr1167.30 (14)C26—N21—C22—Sr1177.6 (2)
C15—C14—O14—Sr113.2 (3)O3—Sr1—C22—O2295.09 (13)
O3—Sr1—O14—C1475.99 (16)O2—Sr1—C22—O22102.35 (14)
O2—Sr1—O14—C14137.55 (16)O15i—Sr1—C22—O2228.24 (13)
O15i—Sr1—O14—C1484.1 (2)N21—Sr1—C22—O22175.5 (2)
N21—Sr1—O14—C14151.80 (17)O1—Sr1—C22—O2273.52 (16)
O1—Sr1—O14—C1463.00 (16)O1i—Sr1—C22—O2236.86 (15)
O1i—Sr1—O14—C1416.38 (17)O14—Sr1—C22—O22167.66 (13)
O22—Sr1—O14—C14142.38 (15)N15—Sr1—C22—O22129.39 (14)
N15—Sr1—O14—C1412.16 (15)Sr1i—Sr1—C22—O222.39 (17)
C22—Sr1—O14—C14148.23 (16)O3—Sr1—C22—N2180.45 (13)
Sr1i—Sr1—O14—C1425.82 (16)O2—Sr1—C22—N2182.10 (13)
O14—C14—C15—N151.6 (3)O15i—Sr1—C22—N21156.21 (13)
N13—C14—C15—N15178.84 (17)O1—Sr1—C22—N21110.94 (13)
O14—C14—C15—C16179.61 (19)O1i—Sr1—C22—N21138.68 (12)
N13—C14—C15—C160.1 (3)O22—Sr1—C22—N21175.5 (2)
C16—C15—N15—O153.8 (3)O14—Sr1—C22—N217.89 (13)
C14—C15—N15—O15177.59 (17)N15—Sr1—C22—N2146.16 (19)
C16—C15—N15—Sr1168.21 (16)Sr1i—Sr1—C22—N21177.93 (9)
C14—C15—N15—Sr110.4 (2)N21—C22—O22—Sr14.4 (2)
O3—Sr1—N15—O15103.93 (15)N23—C22—O22—Sr1175.13 (17)
O2—Sr1—N15—O15104.54 (14)O3—Sr1—O22—C2279.69 (13)
O15i—Sr1—N15—O1517.94 (18)O2—Sr1—O22—C2272.37 (13)
N21—Sr1—N15—O15162.34 (13)O15i—Sr1—O22—C22149.98 (14)
O1—Sr1—N15—O1557.52 (14)N21—Sr1—O22—C222.58 (12)
O1i—Sr1—N15—O1530.90 (13)O1—Sr1—O22—C22130.02 (13)
O22—Sr1—N15—O1580.7 (2)O1i—Sr1—O22—C22147.91 (13)
O14—Sr1—N15—O15176.86 (16)O14—Sr1—O22—C2214.63 (15)
C22—Sr1—N15—O15137.49 (14)N15—Sr1—O22—C22103.08 (17)
Sr1i—Sr1—N15—O1512.29 (12)Sr1i—Sr1—O22—C22178.42 (12)
O3—Sr1—N15—C1567.86 (15)O22—C22—N23—C24179.8 (2)
O2—Sr1—N15—C1583.68 (16)N21—C22—N23—C240.3 (3)
O15i—Sr1—N15—C15170.28 (14)O22—C22—N23—C233.7 (3)
N21—Sr1—N15—C159.45 (18)N21—C22—N23—C23176.7 (2)
O1—Sr1—N15—C15130.69 (16)C22—N23—C24—O24178.6 (2)
O1i—Sr1—N15—C15140.89 (17)C23—N23—C24—O245.0 (3)
O22—Sr1—N15—C1591.08 (19)C22—N23—C24—C251.9 (3)
O14—Sr1—N15—C1511.35 (14)C23—N23—C24—C25174.4 (2)
C22—Sr1—N15—C1534.3 (2)O24—C24—C25—N253.4 (3)
Sr1i—Sr1—N15—C15175.92 (17)N23—C24—C25—N25176.05 (19)
C15—N15—O15—Sr1i168.40 (14)O24—C24—C25—C26178.7 (2)
Sr1—N15—O15—Sr1i19.59 (19)N23—C24—C25—C261.9 (3)
C12—N11—C16—N16177.85 (19)C26—C25—N25—O252.1 (3)
C12—N11—C16—C151.0 (3)C24—C25—N25—O25179.80 (18)
N15—C15—C16—N160.6 (3)C22—N21—C26—N26176.74 (19)
C14—C15—C16—N16179.21 (19)Sr1—N21—C26—N267.4 (3)
N15—C15—C16—N11178.2 (2)C22—N21—C26—C252.6 (3)
C14—C15—C16—N110.4 (3)Sr1—N21—C26—C25173.33 (17)
O3—Sr1—N21—C2691.3 (2)N25—C25—C26—N261.3 (3)
O2—Sr1—N21—C2686.6 (2)C24—C25—C26—N26179.02 (19)
O15i—Sr1—N21—C26150.0 (2)N25—C25—C26—N21178.0 (2)
O1—Sr1—N21—C2669.6 (3)C24—C25—C26—N210.3 (3)
O1i—Sr1—N21—C26126.5 (2)O3—Sr1—O1—Sr1i39.85 (9)
O22—Sr1—N21—C26178.8 (3)O2—Sr1—O1—Sr1i151.90 (6)
O14—Sr1—N21—C2611.5 (2)O15i—Sr1—O1—Sr1i71.12 (5)
N15—Sr1—N21—C2629.7 (3)N21—Sr1—O1—Sr1i168.75 (7)
C22—Sr1—N21—C26176.5 (3)O22—Sr1—O1—Sr1i92.10 (7)
O3—Sr1—N21—C2292.23 (13)O14—Sr1—O1—Sr1i116.81 (5)
O2—Sr1—N21—C2289.83 (13)N15—Sr1—O1—Sr1i68.58 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16A···O24ii0.882.132.776 (3)129
N16—H16B···O150.881.942.594 (3)130
N26—H26A···O140.882.112.964 (3)164
N26—H26B···O250.881.942.595 (3)130
O1—H1A···O12iii0.841.942.772 (2)174
O1—H1B···O12iv0.842.092.920 (2)169
O2—H2A···O12iv0.882.022.846 (2)156
O2—H2B···O25v0.881.822.700 (2)173
O3—H3A···N25vi0.882.022.871 (3)163
O3—H3B···N11vii0.882.002.806 (3)152
Symmetry codes: (ii) x, y+1, z1; (iii) x, y+2, z+1; (iv) x, y1, z; (v) x, y+1, z+2; (vi) x+1, y+1, z+2; (vii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Sr2(C5H5N4O3)4(H2O)6]
Mr959.86
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.9388 (2), 9.8852 (2), 14.1962 (4)
α, β, γ (°)69.965 (2), 77.518 (2), 72.361 (2)
V3)864.91 (4)
Z1
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.30 × 0.28 × 0.25
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.391, 0.449
No. of measured, independent and
observed [I > 2σ(I)] reflections
12233, 3883, 3540
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.00
No. of reflections3883
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.68

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N11—C121.345 (3)N21—C221.362 (3)
C12—N131.405 (3)C22—N231.406 (3)
N13—C141.382 (3)N23—C241.382 (3)
C14—C151.457 (3)C24—C251.465 (3)
C15—C161.445 (3)C25—C261.447 (3)
C16—N111.344 (3)C26—N211.331 (3)
C12—O121.250 (2)C22—O221.229 (3)
C13—N131.475 (3)N23—C231.468 (3)
C14—O141.232 (3)C24—O241.233 (3)
C15—N151.330 (3)C25—N251.330 (3)
N15—O151.290 (2)N25—O251.298 (2)
C16—N161.321 (3)C26—N261.326 (3)
Sr1—O142.7357 (15)Sr1—O12.6916 (15)
Sr1—N152.7946 (18)Sr1—O1i2.7127 (15)
Sr1—O15i2.6231 (15)Sr1—O22.5331 (16)
Sr1—N212.6654 (17)Sr1—O32.5250 (16)
Sr1—O222.7175 (15)Sr1—Sr1i4.2169 (4)
O15—N15—Sr1120.69 (12)O1—Sr1—O1i77.43 (5)
N15—O15—Sr1i122.83 (12)Sr1—O1—Sr1i102.57 (5)
O15i—Sr1—N15113.82 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16A···O24ii0.882.132.776 (3)129
N16—H16B···O150.881.942.594 (3)130
N26—H26A···O140.882.112.964 (3)164
N26—H26B···O250.881.942.595 (3)130
O1—H1A···O12iii0.841.942.772 (2)174
O1—H1B···O12iv0.842.092.920 (2)169
O2—H2A···O12iv0.882.022.846 (2)156
O2—H2B···O25v0.881.822.700 (2)173
O3—H3A···N25vi0.882.022.871 (3)163
O3—H3B···N11vii0.882.002.806 (3)152
Symmetry codes: (ii) x, y+1, z1; (iii) x, y+2, z+1; (iv) x, y1, z; (v) x, y+1, z+2; (vi) x+1, y+1, z+2; (vii) x+1, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds