Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, 4C6H8N4O3·3H2O, the pyrimidine mol­ecules all exhibit a polarized molecular electronic structure; the seven-component asymmetric unit can be selected as a closed cyclic aggregate and the linking of these aggregates can be analysed in terms of translational chain motifs running parallel to [110], [210] and [011], which combine to generate a single three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102017444/sk1591sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102017444/sk1591Isup2.hkl
Contains datablock I

CCDC reference: 199430

Comment top

In 2-amino-4,6-dimethoxypyrimidine, (I), both N—H bonds are involved in the formation of N—H···N hydrogen bonds, so forming a chain of edge-fused rings containing two distinct R22(8) motifs (Low et al., 2002). The benzyloxy analogue 2-amino-4,6-bis(benzyloxy)pyrimidine, (II), on the other hand, utilizes only one of the N—H bonds in forming an N—H···N hydrogen bond, again forming an R22(8) motif, while the other N—H bond forms an N—H···O hydrogen bond which generates a simple C(6) chain motif; the combination of the ring and chain motifs generates a molecular ladder (Quesada, Marchal et al., 2002). There are no R22(8) rings in 2-amino-4,6-bis(benzyloxy)-5-nitrosopyrimidine, (III), the nitrosated analogue of (II) (Quesada, Low et al., 2002). Instead, one N—H bond participates in a three-centre N—H···(N,O) hydrogen bond, while the other forms an N—H···π(arene) hydrogen bond; the overall supramolecular structure is again one-dimensional. Thus, the supramolecular structures of (I)-(III) involve two, one or zero distinct R22(8) rings, respectively, containing paired N—H···N hydrogen bonds. Intrigued by the differences in structural behaviour, not only between (I) and (II), but also between (II) and (III), we have now investigated the nitrosated analogue of (I), namely 2-amino-4,6-dimethoxy-5-nitrosopyrimidine, which upon crystallization from acetone, as used for (I) and (III), yields the stoichiometric hydrate 4C6H8N4O3·3H2O, (IV).

Compound (IV) (Fig. 1) crystallizes in the non-centrosymmetric triclinic space group P1 with four pyrimidine molecules and three water molecules in the asymmetric unit. Each of the pyrimidine molecules adopts a conformation in which the two methyl C atoms are essentially in the plane of the ring, but directed away from the nitroso substituent, just as in (III) (Quesada, Low et al., 2002). In each of the pyrimidine molecules in (IV), the Nn1—Cn6 and Nn3—Cn4 bonds (n = 1 - 4) are short for their type (Allen et al., 1987) and the Cn2—Nn2 bonds are much shorter than both the Nn1—Cn2 and Cn2—Nn3 bonds (Table 1); in addition, the Cn5—Nn5 bonds are shorter and the Nn5—On5 bonds longer than the corresponding bonds in simple unpolarized Ar—NO compounds. All of these distances point to the charge-separated form (IVa) as an important contributor to the overall molecular-electronic structure.

The seven independent molecular components in (IV) are linked into a three-dimensional framework by a combination of six three-centre hydrogen bonds, of which four are of O—H···(O)2 type and one each are of O—H···(N,O) and N—H···(O)2 types, and eight two-centre hydrogen bonds, one each of the O—H···O and N—H···N types and six of the N—H···O type (Table 2). The three-centre systems are, in general, distinctly asymmetric, but most are nearly planar; their angle sums at H range from 340 to 359°, with a mean value of 351°. The D—H···A angles in the two-centre hydrogen bonds range from 149 to 177°, with a mean of 168°, and all are reasonably short, and thus reasonably strong, for their types.

In supramolecular systems such as this, the selection of the asymmetric unit is, to a large extent, arbitrary; however, in (IV), it is possible to select a compact cyclic asymmetric unit bounded by an R77(38) motif (Fig. 1) which incorporates three of the three-centre hydrogen bonds and five of the two-centre hydrogen bonds, leaving just six hydrogen bonds to link these cyclic aggregates into the continuous framework. The interior of this cyclic unit is occupied by four methoxy groups, one from each of the pyrimidine molecules. Because translation is the only symmetry operation available in P1, the formation of the framework itself can be readily analyzed in terms of just three chain motifs linking the cyclic aggregates.

In the simplest of these chain motifs, the O1 water molecule in the aggregate at (x, y, z) acts as hydrogen-bond donor, via H11, to water atom O3 at (1 + x, 1 + y, z), so generating a chain parallel to the [110] direction (Fig. 2). The second chain motif utilizes two different three-centre hydrogen bonds with which to link the cyclic aggregates; the O2 water molecule acts as hydrogen-bond donor, via H21, to both methoxy atom O36 and nitroso atom O35 in the pyrimidine molecule at (x, 1 + y, 1 + z), while the N42 amino group acts as donor, via H42B, to methoxy atom O16 and nitroso atom O15 at (x, -1 + y, -1 + z), and these three-centre interactions combine to generate a chain running parallel to [011] (Fig. 3). Finally, in the most complex of the chains, the N12 amino group acts as donor, via H12A, to nitroso atom N25 at (2 + x, 1 + y, z), while the N32 amino group acts as donor, via H32A, to methoxy atom O44 at (-2 + x, -1 + y, z), each hydrogen bond thus forming a chain along [210]; additionally, the O3 water molecule acts as donor, via H32, to both N45 and O45 at (-2 + x, -1 + y, z), providing the final component of the [210] chain (Fig. 3). The combination of the [011] and [210] ladders generates a very elegant (122) sheet (Fig. 3), while the combination of [110], [011] and [210] chains suffices to generate a single three-dimensional framework.

Experimental top

A sample of (I) was purchased from Aldrich and converted into 2-amino-4,6-dimethoxy-5-nitrosopyrimidine according to the method of Marchal et al. (2002). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in acetone.

Refinement top

Compound (IV) is triclinic and space group P1 was assumed and confirmed by the analysis. H atoms were treated as riding atoms, with distances C—H 0.98 Å, N—H 0.88 Å and O—H 1.00 Å. In the absence of any significant anomalous scatterers, the Friedel equivalents were merged; the absolute structure could not be established.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent molecular components of (IV), showing the atom-labelling scheme and the linking of the independent components into the cyclic asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level. For the sake of clarity, only those hydrogen bonds which generate the outer R77(38) ring are shown.
[Figure 2] Fig. 2. Part of the crystal structure of (IV), showing the formation of a chain along [110]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (1 + x, 1 + y, z) and (-1 + x, -1 + y, z), respectively.
[Figure 3] Fig. 3. Part of the crystal structure of (IV), showing the formation of ladders along [011] and [210] combining to form a (122) sheet. Atoms marked with an asterisk (*), hash (#), dollar sign ($) or ampersand (&) are at the symmetry positions (x, -1 + y, -1 + z), (x, 1 + y, 1 + z), (-2 + x, -1 + y, z) and (2 + x, 1 + y, z), respectively.
2-Amino-4,6-dimethoxy-5-nitrosopyrimidine–water (4/3) top
Crystal data top
4C6H8N4O3·3H2OZ = 1
Mr = 790.70F(000) = 414
Triclinic, P1Dx = 1.563 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9588 (4) ÅCell parameters from 6738 reflections
b = 7.1984 (4) Åθ = 2.9–27.4°
c = 17.4239 (11) ŵ = 0.13 mm1
α = 101.181 (2)°T = 120 K
β = 98.559 (2)°Plate, blue
γ = 95.360 (4)°0.20 × 0.20 × 0.04 mm
V = 839.95 (9) Å3
Data collection top
Nonius KappaCCD
diffractometer
3638 independent reflections
Radiation source: fine-focus sealed X-ray tube2498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 2.9°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 88
Tmin = 0.964, Tmax = 0.992k = 99
10707 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0793P)2]
where P = (Fo2 + 2Fc2)/3
3638 reflections(Δ/σ)max < 0.001
504 parametersΔρmax = 0.32 e Å3
3 restraintsΔρmin = 0.38 e Å3
Crystal data top
4C6H8N4O3·3H2Oγ = 95.360 (4)°
Mr = 790.70V = 839.95 (9) Å3
Triclinic, P1Z = 1
a = 6.9588 (4) ÅMo Kα radiation
b = 7.1984 (4) ŵ = 0.13 mm1
c = 17.4239 (11) ÅT = 120 K
α = 101.181 (2)°0.20 × 0.20 × 0.04 mm
β = 98.559 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3638 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
2498 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.992Rint = 0.076
10707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0533 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
3638 reflectionsΔρmin = 0.38 e Å3
504 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N111.0461 (6)0.8843 (6)0.8538 (2)0.0208 (10)
C120.9963 (7)0.7835 (7)0.7781 (3)0.0195 (11)
N121.1247 (6)0.7907 (7)0.7309 (3)0.0257 (11)
N130.8217 (6)0.6718 (6)0.7459 (3)0.0218 (10)
C140.6949 (7)0.6648 (7)0.7939 (3)0.0191 (11)
O140.5197 (5)0.5605 (5)0.7671 (2)0.0240 (8)
C1410.4732 (8)0.4730 (8)0.6830 (3)0.0265 (12)
C150.7294 (8)0.7597 (7)0.8745 (3)0.0179 (11)
O150.6139 (5)0.8287 (5)0.9895 (2)0.0262 (9)
N150.5842 (6)0.7378 (6)0.9175 (3)0.0227 (10)
C160.9187 (8)0.8709 (8)0.9004 (3)0.0230 (12)
C1611.1548 (8)1.0770 (9)0.9991 (4)0.0331 (15)
O160.9622 (5)0.9659 (5)0.9762 (2)0.0244 (9)
N210.0168 (6)0.2605 (6)0.7490 (3)0.0201 (10)
C220.0231 (8)0.3416 (7)0.8264 (3)0.0204 (12)
N220.1855 (6)0.4547 (6)0.8634 (3)0.0248 (11)
N230.1189 (6)0.3222 (6)0.8711 (3)0.0212 (10)
C240.2801 (7)0.2114 (7)0.8338 (3)0.0184 (11)
C2410.3974 (8)0.2785 (8)0.9556 (3)0.0277 (13)
O240.4264 (5)0.1860 (5)0.8731 (2)0.0243 (9)
C250.3093 (7)0.1153 (7)0.7535 (3)0.0185 (11)
O250.5175 (5)0.0782 (5)0.6516 (2)0.0247 (9)
N250.4858 (6)0.0056 (6)0.7233 (3)0.0200 (10)
C260.1468 (8)0.1513 (7)0.7139 (3)0.0194 (11)
C2610.0020 (8)0.1045 (8)0.5987 (3)0.0249 (12)
O260.1656 (5)0.0698 (5)0.6371 (2)0.0227 (8)
N310.0981 (7)0.3167 (6)0.2526 (3)0.0212 (10)
N320.2559 (6)0.3078 (6)0.3586 (3)0.0239 (11)
C320.0962 (8)0.2551 (7)0.3313 (3)0.0194 (11)
N330.0519 (6)0.1488 (6)0.3860 (3)0.0215 (10)
C340.2110 (7)0.1007 (7)0.3581 (3)0.0193 (11)
O340.3660 (5)0.0008 (5)0.4081 (2)0.0230 (8)
C3410.3460 (8)0.0513 (9)0.4917 (3)0.0298 (13)
C350.2319 (8)0.1465 (8)0.2768 (3)0.0204 (12)
N350.4031 (7)0.0768 (7)0.2580 (3)0.0239 (10)
O350.4262 (5)0.1179 (5)0.1866 (2)0.0261 (9)
C360.0624 (7)0.2615 (8)0.2260 (3)0.0193 (12)
O360.0703 (5)0.3116 (5)0.1499 (2)0.0234 (9)
C3610.1002 (8)0.4246 (8)0.0976 (3)0.0270 (13)
N410.8734 (6)0.1885 (6)0.2813 (3)0.0197 (10)
C420.9329 (7)0.1611 (7)0.2100 (3)0.0182 (11)
N420.8068 (7)0.0500 (6)0.1504 (3)0.0243 (11)
N431.1060 (6)0.2345 (6)0.1939 (3)0.0205 (10)
C441.2283 (8)0.3395 (7)0.2559 (3)0.0172 (11)
C4411.4523 (9)0.3745 (9)0.1675 (3)0.0292 (13)
O441.4008 (5)0.4173 (5)0.2467 (2)0.0233 (9)
C451.1857 (8)0.3770 (8)0.3346 (3)0.0209 (12)
N451.3313 (6)0.4828 (6)0.3914 (3)0.0214 (10)
O451.3037 (5)0.5177 (6)0.4626 (2)0.0268 (9)
C460.9977 (7)0.2940 (7)0.3418 (3)0.0204 (12)
C4610.7494 (7)0.2398 (8)0.4176 (3)0.0241 (12)
O460.9452 (5)0.3241 (5)0.4129 (2)0.0221 (8)
O11.0196 (6)0.5837 (6)0.5724 (2)0.0323 (9)
O20.2974 (6)0.6369 (6)1.0270 (2)0.0329 (10)
O30.3319 (5)0.2749 (5)0.5232 (2)0.0289 (9)
H12A1.23960.85960.74860.031*
H12B1.09620.72660.68140.031*
H14A0.45850.57270.65210.040*
H14B0.35060.38640.67240.040*
H14C0.57920.40100.66770.040*
H16A1.25510.99370.98770.050*
H16B1.17691.13381.05600.050*
H16C1.16211.17850.96900.050*
H22A0.28250.47390.83750.030*
H22B0.19620.51050.91370.030*
H24A0.28850.23020.98490.042*
H24B0.51700.25170.97710.042*
H24C0.36710.41660.96090.042*
H26A0.02310.24000.59690.037*
H26B0.02300.02720.54450.037*
H26C0.11880.06970.62880.037*
H32A0.35610.37920.32600.029*
H32B0.26180.27140.40930.029*
H34A0.25350.14550.49840.045*
H34B0.47390.10560.52390.045*
H34C0.29710.06330.50890.045*
H36A0.12440.54740.11310.041*
H36B0.07650.44660.04270.041*
H36C0.21460.35590.10180.041*
H42A0.69360.00000.15890.029*
H42B0.83640.02630.10230.029*
H44A1.44550.23590.14950.044*
H44B1.58570.43440.16920.044*
H44C1.36040.42420.13060.044*
H46A0.65260.27880.37900.036*
H46B0.72150.28350.47120.036*
H46C0.74270.10030.40590.036*
H110.88840.61880.55280.039*
H121.08640.56110.52510.039*
H210.26540.72721.07330.039*
H220.42160.69861.01550.039*
H310.35270.17280.56790.035*
H320.45890.36040.50660.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.025 (3)0.020 (2)0.018 (2)0.004 (2)0.0068 (19)0.0021 (19)
C120.018 (3)0.019 (3)0.021 (3)0.003 (2)0.001 (2)0.005 (2)
N120.021 (3)0.034 (3)0.024 (3)0.003 (2)0.008 (2)0.008 (2)
N130.021 (2)0.024 (2)0.022 (3)0.008 (2)0.0034 (19)0.0051 (19)
C140.018 (3)0.015 (3)0.024 (3)0.000 (2)0.003 (2)0.005 (2)
O140.019 (2)0.029 (2)0.020 (2)0.0062 (16)0.0000 (15)0.0019 (16)
C1410.026 (3)0.032 (3)0.020 (3)0.002 (2)0.001 (2)0.004 (2)
C150.020 (3)0.015 (3)0.020 (3)0.001 (2)0.005 (2)0.007 (2)
O150.029 (2)0.031 (2)0.018 (2)0.0027 (17)0.0070 (15)0.0020 (17)
N150.026 (3)0.025 (2)0.017 (2)0.003 (2)0.0050 (18)0.005 (2)
C160.028 (3)0.023 (3)0.018 (3)0.013 (2)0.001 (2)0.003 (2)
C1610.023 (3)0.041 (4)0.025 (3)0.006 (3)0.007 (2)0.007 (3)
O160.0206 (19)0.028 (2)0.020 (2)0.0057 (16)0.0040 (15)0.0027 (16)
N210.025 (3)0.021 (2)0.015 (2)0.0064 (19)0.0032 (18)0.0028 (19)
C220.021 (3)0.016 (3)0.024 (3)0.005 (2)0.001 (2)0.005 (2)
N220.021 (3)0.031 (3)0.023 (3)0.005 (2)0.0053 (19)0.004 (2)
N230.020 (2)0.022 (2)0.022 (2)0.0047 (19)0.0038 (18)0.0050 (19)
C240.017 (3)0.018 (3)0.022 (3)0.008 (2)0.004 (2)0.004 (2)
C2410.029 (3)0.031 (3)0.020 (3)0.001 (2)0.007 (2)0.003 (2)
O240.0208 (19)0.032 (2)0.017 (2)0.0004 (17)0.0047 (15)0.0001 (16)
C250.020 (3)0.015 (3)0.021 (3)0.005 (2)0.000 (2)0.004 (2)
O250.024 (2)0.031 (2)0.017 (2)0.0001 (17)0.0009 (16)0.0030 (17)
N250.020 (2)0.020 (2)0.020 (3)0.0017 (19)0.0011 (18)0.0054 (19)
C260.025 (3)0.016 (3)0.019 (3)0.003 (2)0.004 (2)0.006 (2)
C2610.021 (3)0.030 (3)0.023 (3)0.002 (2)0.006 (2)0.004 (2)
O260.023 (2)0.026 (2)0.017 (2)0.0047 (16)0.0053 (15)0.0032 (16)
N310.027 (3)0.020 (2)0.019 (3)0.004 (2)0.0084 (19)0.0068 (19)
N320.023 (3)0.032 (3)0.017 (3)0.000 (2)0.0032 (19)0.008 (2)
C320.017 (3)0.017 (3)0.027 (3)0.008 (2)0.007 (2)0.007 (2)
N330.026 (2)0.018 (2)0.023 (3)0.0058 (19)0.0069 (19)0.0069 (19)
C340.018 (3)0.020 (3)0.022 (3)0.006 (2)0.001 (2)0.008 (2)
O340.024 (2)0.031 (2)0.0131 (19)0.0001 (17)0.0029 (14)0.0037 (16)
C3410.031 (3)0.038 (3)0.015 (3)0.000 (3)0.003 (2)0.002 (2)
C350.026 (3)0.022 (3)0.014 (3)0.006 (2)0.000 (2)0.005 (2)
N350.019 (2)0.034 (3)0.020 (3)0.004 (2)0.0053 (19)0.009 (2)
O350.026 (2)0.031 (2)0.019 (2)0.0016 (18)0.0064 (16)0.0000 (17)
C360.019 (3)0.024 (3)0.017 (3)0.008 (2)0.004 (2)0.007 (2)
O360.023 (2)0.032 (2)0.013 (2)0.0018 (16)0.0028 (15)0.0005 (16)
C3610.028 (3)0.030 (3)0.018 (3)0.005 (3)0.001 (2)0.002 (2)
N410.016 (2)0.021 (2)0.022 (3)0.0019 (19)0.0037 (18)0.0040 (19)
C420.020 (3)0.011 (2)0.025 (3)0.001 (2)0.004 (2)0.006 (2)
N420.020 (2)0.021 (2)0.028 (3)0.0078 (19)0.005 (2)0.001 (2)
N430.017 (2)0.018 (2)0.023 (3)0.0007 (19)0.0004 (18)0.0006 (19)
C440.019 (3)0.007 (2)0.025 (3)0.002 (2)0.001 (2)0.007 (2)
C4410.034 (3)0.035 (3)0.021 (3)0.005 (3)0.013 (3)0.004 (3)
O440.018 (2)0.027 (2)0.022 (2)0.0061 (16)0.0057 (15)0.0016 (16)
C450.018 (3)0.026 (3)0.020 (3)0.001 (2)0.006 (2)0.006 (2)
N450.021 (2)0.022 (2)0.020 (3)0.002 (2)0.0026 (18)0.0022 (19)
O450.026 (2)0.035 (2)0.018 (2)0.0022 (17)0.0038 (15)0.0026 (17)
C460.019 (3)0.018 (3)0.025 (3)0.002 (2)0.004 (2)0.006 (2)
C4610.013 (3)0.031 (3)0.028 (3)0.002 (2)0.010 (2)0.004 (3)
O460.0206 (19)0.030 (2)0.015 (2)0.0032 (16)0.0026 (14)0.0022 (16)
O10.030 (2)0.042 (2)0.023 (2)0.0067 (19)0.0048 (16)0.0012 (18)
O20.032 (2)0.041 (2)0.021 (2)0.0085 (18)0.0085 (16)0.0007 (18)
O30.026 (2)0.031 (2)0.026 (2)0.0043 (17)0.0068 (16)0.0012 (17)
Geometric parameters (Å, º) top
N11—C121.354 (7)C34—C351.424 (7)
C12—N131.370 (7)C35—C361.443 (7)
N13—C141.308 (7)C36—N311.328 (7)
C14—C151.411 (7)C32—N321.325 (7)
C15—C161.437 (8)C35—N351.360 (7)
C16—N111.296 (7)N35—O351.259 (6)
C12—N121.306 (7)N32—H32A0.88
C15—N151.360 (7)N32—H32B0.88
N15—O151.275 (6)C34—O341.335 (6)
N12—H12A0.88C341—O341.462 (6)
N12—H12B0.88C341—H34A0.98
C14—O141.339 (6)C341—H34B0.98
O14—C1411.453 (6)C341—H34C0.98
C141—H14A0.98C36—O361.315 (6)
C141—H14B0.98O36—C3611.453 (6)
C141—H14C0.98C361—H36A0.98
C16—O161.340 (6)C361—H36B0.98
C161—O161.453 (7)C361—H36C0.98
C161—H16A0.98N41—C421.353 (7)
C161—H16B0.98C42—N431.359 (7)
C161—H16C0.98N43—C441.323 (6)
N21—C221.354 (7)C44—C451.427 (7)
C22—N231.359 (7)C45—C461.420 (7)
N23—C241.315 (7)C46—N411.316 (7)
C24—C251.411 (7)C42—N421.328 (7)
C25—C261.439 (7)C45—N451.361 (7)
C26—N211.314 (7)N45—O451.263 (6)
C22—N221.328 (7)N42—H42A0.88
C25—N251.369 (7)N42—H42B0.88
N25—O251.255 (6)C44—O441.322 (6)
N22—H22A0.88C441—O441.460 (7)
N22—H22B0.88C441—H44A0.98
C24—O241.327 (6)C441—H44B0.98
C241—O241.437 (6)C441—H44C0.98
C241—H24A0.98C46—O461.326 (6)
C241—H24B0.98C461—O461.459 (6)
C241—H24C0.98C461—H46A0.98
C26—O261.335 (6)C461—H46B0.98
C261—O261.453 (6)C461—H46C0.98
C261—H26A0.98O1—H110.9981
C261—H26B0.98O1—H120.9992
C261—H26C0.98O2—H210.9992
N31—C321.353 (7)O2—H221.0001
C32—N331.355 (7)O3—H310.9994
N33—C341.317 (7)O3—H320.9983
C16—N11—C12117.1 (5)C32—N32—H32B120.0
N12—C12—N11118.1 (5)H32A—N32—H32B120.0
N12—C12—N13116.2 (5)N32—C32—N31116.6 (5)
N11—C12—N13125.8 (5)N32—C32—N33115.8 (5)
C12—N12—H12A120.0N31—C32—N33127.6 (5)
C12—N12—H12B120.0C34—N33—C32115.0 (5)
H12A—N12—H12B120.0N33—C34—O34119.2 (5)
C14—N13—C12115.6 (5)N33—C34—C35124.9 (5)
N13—C14—O14119.5 (5)O34—C34—C35115.9 (4)
N13—C14—C15124.4 (5)C34—O34—C341116.6 (4)
O14—C14—C15116.1 (4)O34—C341—H34A109.5
C14—O14—C141117.5 (4)O34—C341—H34B109.5
O14—C141—H14A109.5H34A—C341—H34B109.5
O14—C141—H14B109.5O34—C341—H34C109.5
H14A—C141—H14B109.5H34A—C341—H34C109.5
O14—C141—H14C109.5H34B—C341—H34C109.5
H14A—C141—H14C109.5N35—C35—C34117.0 (5)
H14B—C141—H14C109.5N35—C35—C36129.6 (5)
N15—C15—C14117.9 (4)C34—C35—C36113.4 (5)
N15—C15—C16128.1 (5)O35—N35—C35118.1 (4)
C14—C15—C16114.0 (4)O36—C36—N31119.6 (5)
O15—N15—C15117.6 (4)O36—C36—C35117.3 (5)
N11—C16—O16119.3 (5)N31—C36—C35123.1 (5)
N11—C16—C15123.1 (5)C36—O36—C361118.1 (4)
O16—C16—C15117.5 (5)O36—C361—H36A109.5
O16—C161—H16A109.5O36—C361—H36B109.5
O16—C161—H16B109.5H36A—C361—H36B109.5
H16A—C161—H16B109.5O36—C361—H36C109.5
O16—C161—H16C109.5H36A—C361—H36C109.5
H16A—C161—H16C109.5H36B—C361—H36C109.5
H16B—C161—H16C109.5C46—N41—C42116.6 (5)
C16—O16—C161115.3 (4)N42—C42—N41115.3 (5)
C26—N21—C22115.3 (4)N42—C42—N43117.9 (5)
N22—C22—N21116.8 (5)N41—C42—N43126.8 (5)
N22—C22—N23115.6 (5)C42—N42—H42A120.0
N21—C22—N23127.5 (5)C42—N42—H42B120.0
C22—N22—H22A120.0H42A—N42—H42B120.0
C22—N22—H22B120.0C44—N43—C42115.3 (5)
H22A—N22—H22B120.0O44—C44—N43120.1 (5)
C24—N23—C22115.3 (5)O44—C44—C45116.2 (4)
N23—C24—O24119.1 (5)N43—C44—C45123.7 (5)
N23—C24—C25124.2 (5)O44—C441—H44A109.5
O24—C24—C25116.7 (5)O44—C441—H44B109.5
O24—C241—H24A109.5H44A—C441—H44B109.5
O24—C241—H24B109.5O44—C441—H44C109.5
H24A—C241—H24B109.5H44A—C441—H44C109.5
O24—C241—H24C109.5H44B—C441—H44C109.5
H24A—C241—H24C109.5C44—O44—C441117.4 (4)
H24B—C241—H24C109.5N45—C45—C46129.8 (5)
C24—O24—C241117.6 (4)N45—C45—C44115.7 (5)
N25—C25—C24117.2 (5)C46—C45—C44114.5 (5)
N25—C25—C26128.8 (5)O45—N45—C45118.6 (4)
C24—C25—C26114.0 (5)N41—C46—O46118.5 (5)
O25—N25—C25118.6 (4)N41—C46—C45123.1 (5)
N21—C26—O26118.8 (4)O46—C46—C45118.4 (5)
N21—C26—C25123.6 (5)O46—C461—H46A109.5
O26—C26—C25117.6 (4)O46—C461—H46B109.5
O26—C261—H26A109.5H46A—C461—H46B109.5
O26—C261—H26B109.5O46—C461—H46C109.5
H26A—C261—H26B109.5H46A—C461—H46C109.5
O26—C261—H26C109.5H46B—C461—H46C109.5
H26A—C261—H26C109.5C46—O46—C461116.8 (4)
H26B—C261—H26C109.5H11—O1—H12105.6
C26—O26—C261116.7 (4)H21—O2—H22105.3
C36—N31—C32115.9 (4)H31—O3—H32105.5
C32—N32—H32A120.0
C16—N11—C12—N12178.1 (5)C36—N31—C32—N32179.5 (4)
C16—N11—C12—N131.4 (8)C36—N31—C32—N332.0 (7)
N12—C12—N13—C14179.6 (4)N32—C32—N33—C34178.8 (4)
N11—C12—N13—C140.1 (8)N31—C32—N33—C340.3 (7)
C12—N13—C14—O14179.3 (4)C32—N33—C34—O34178.6 (4)
C12—N13—C14—C151.4 (7)C32—N33—C34—C352.3 (7)
N13—C14—O14—C1415.4 (7)N33—C34—O34—C3410.1 (7)
C15—C14—O14—C141175.3 (4)C35—C34—O34—C341179.2 (4)
N13—C14—C15—N15179.4 (5)N33—C34—C35—N35176.6 (5)
O14—C14—C15—N150.1 (7)O34—C34—C35—N352.4 (7)
N13—C14—C15—C161.2 (7)N33—C34—C35—C362.8 (7)
O14—C14—C15—C16179.5 (4)O34—C34—C35—C36178.1 (4)
C14—C15—N15—O15177.8 (4)C34—C35—N35—O35178.9 (4)
C16—C15—N15—O151.6 (8)C36—C35—N35—O351.7 (8)
C12—N11—C16—O16179.1 (4)C32—N31—C36—O36178.4 (5)
C12—N11—C16—C151.6 (8)C32—N31—C36—C351.3 (7)
N15—C15—C16—N11179.0 (5)N35—C35—C36—O361.2 (8)
C14—C15—C16—N110.4 (8)C34—C35—C36—O36179.4 (4)
N15—C15—C16—O160.4 (8)N35—C35—C36—N31178.5 (5)
C14—C15—C16—O16179.8 (4)C34—C35—C36—N310.8 (7)
N11—C16—O16—C1610.3 (7)N31—C36—O36—C3610.8 (7)
C15—C16—O16—C161179.6 (5)C35—C36—O36—C361179.0 (5)
C26—N21—C22—N22179.2 (5)C46—N41—C42—N42178.3 (4)
C26—N21—C22—N230.2 (8)C46—N41—C42—N431.5 (7)
N22—C22—N23—C24179.4 (4)N42—C42—N43—C44178.1 (4)
N21—C22—N23—C240.0 (8)N41—C42—N43—C441.7 (7)
C22—N23—C24—O24179.5 (4)C42—N43—C44—O44179.9 (4)
C22—N23—C24—C250.5 (7)C42—N43—C44—C450.4 (7)
N23—C24—O24—C2411.6 (7)N43—C44—O44—C4413.0 (7)
C25—C24—O24—C241178.3 (4)C45—C44—O44—C441177.3 (5)
N23—C24—C25—N25179.8 (5)O44—C44—C45—N452.4 (6)
O24—C24—C25—N250.3 (7)N43—C44—C45—N45177.9 (5)
N23—C24—C25—C261.1 (7)O44—C44—C45—C46178.9 (4)
O24—C24—C25—C26178.9 (4)N43—C44—C45—C460.8 (7)
C24—C25—N25—O25178.5 (4)C46—C45—N45—O450.2 (8)
C26—C25—N25—O250.1 (8)C44—C45—N45—O45178.7 (4)
C22—N21—C26—O26178.5 (4)C42—N41—C46—O46179.9 (4)
C22—N21—C26—C250.9 (7)C42—N41—C46—C450.0 (7)
N25—C25—C26—N21179.7 (5)N45—C45—C46—N41177.5 (5)
C24—C25—C26—N211.3 (7)C44—C45—C46—N411.0 (7)
N25—C25—C26—O260.3 (8)N45—C45—C46—O462.4 (8)
C24—C25—C26—O26178.1 (4)C44—C45—C46—O46179.1 (4)
N21—C26—O26—C2611.9 (6)N41—C46—O46—C4611.3 (6)
C25—C26—O26—C261178.6 (4)C45—C46—O46—C461178.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H12···O451.002.002.957 (5)159
O1—H12···O461.002.352.977 (5)120
N42—H42A···O350.882.133.011 (6)177
N32—H32B···O30.882.122.962 (6)161
O3—H31···O251.002.042.941 (5)149
O3—H31···O261.002.122.882 (5)132
N22—H22A···O140.882.313.183 (6)172
N22—H22B···O20.882.002.855 (6)165
O2—H22···O151.001.732.719 (6)171
O2—H22···N151.002.233.090 (6)143
N12—H12B···O10.881.952.825 (6)177
O1—H11···O3i1.001.822.817 (5)170
O2—H21···O36ii1.002.082.834 (5)131
O2—H21···O35ii1.002.162.951 (5)135
N42—H42B···O15iii0.882.432.991 (6)122
N42—H42B···O16iii0.882.463.337 (6)173
N12—H12A···N25iv0.882.243.027 (6)149
O3—H32···O45v1.001.782.767 (5)168
O3—H32···N45v1.002.323.145 (6)139
N32—H32A···O44v0.882.233.108 (6)175
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y1, z1; (iv) x+2, y+1, z; (v) x2, y1, z.

Experimental details

Crystal data
Chemical formula4C6H8N4O3·3H2O
Mr790.70
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.9588 (4), 7.1984 (4), 17.4239 (11)
α, β, γ (°)101.181 (2), 98.559 (2), 95.360 (4)
V3)839.95 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.20 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.964, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
10707, 3638, 2498
Rint0.076
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.140, 1.00
No. of reflections3638
No. of parameters504
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.38

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N11—C121.354 (7)N31—C321.353 (7)
C12—N131.370 (7)C32—N331.355 (7)
N13—C141.308 (7)N33—C341.317 (7)
C14—C151.411 (7)C34—C351.424 (7)
C15—C161.437 (8)C35—C361.443 (7)
C16—N111.296 (7)C36—N311.328 (7)
C12—N121.306 (7)C32—N321.325 (7)
C15—N151.360 (7)C35—N351.360 (7)
N15—O151.275 (6)N35—O351.259 (6)
N21—C221.354 (7)N41—C421.353 (7)
C22—N231.359 (7)C42—N431.359 (7)
N23—C241.315 (7)N43—C441.323 (6)
C24—C251.411 (7)C44—C451.427 (7)
C25—C261.439 (7)C45—C461.420 (7)
C26—N211.314 (7)C46—N411.316 (7)
C22—N221.328 (7)C42—N421.328 (7)
C25—N251.369 (7)C45—N451.361 (7)
N25—O251.255 (6)N45—O451.263 (6)
N13—C14—O14—C1415.4 (7)N33—C34—O34—C3410.1 (7)
N11—C16—O16—C1610.3 (7)N31—C36—O36—C3610.8 (7)
N23—C24—O24—C2411.6 (7)N43—C44—O44—C4413.0 (7)
N21—C26—O26—C2611.9 (6)N41—C46—O46—C4611.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H12···O451.002.002.957 (5)159
O1—H12···O461.002.352.977 (5)120
N42—H42A···O350.882.133.011 (6)177
N32—H32B···O30.882.122.962 (6)161
O3—H31···O251.002.042.941 (5)149
O3—H31···O261.002.122.882 (5)132
N22—H22A···O140.882.313.183 (6)172
N22—H22B···O20.882.002.855 (6)165
O2—H22···O151.001.732.719 (6)171
O2—H22···N151.002.233.090 (6)143
N12—H12B···O10.881.952.825 (6)177
O1—H11···O3i1.001.822.817 (5)170
O2—H21···O36ii1.002.082.834 (5)131
O2—H21···O35ii1.002.162.951 (5)135
N42—H42B···O15iii0.882.432.991 (6)122
N42—H42B···O16iii0.882.463.337 (6)173
N12—H12A···N25iv0.882.243.027 (6)149
O3—H32···O45v1.001.782.767 (5)168
O3—H32···N45v1.002.323.145 (6)139
N32—H32A···O44v0.882.233.108 (6)175
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y1, z1; (iv) x+2, y+1, z; (v) x2, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds