Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
N,N'-Di­thio­bisphthal­imide crystallizes from nitro­benzene solution as a solvate, 2C16H8N2O4S2·C6H5NO2, having space group Pn. The bisphthal­imide mol­ecules are linked by C-H...O hydrogen bonds and by aromatic [pi]-[pi]-stacking interactions, forming a framework enclosing continuous channels running along the [100] direction and accounting for ca 20% of the unit-cell volume. The nitro­benzene mol­ecules lie in these channels, ordered in a head-to-tail fashion and linked to the bis­phthal­imide framework by C-H...O and C-H...[pi](arene) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102012830/sk1574sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012830/sk1574Isup2.hkl
Contains datablock I

CCDC reference: 195619

Comment top

We have recently described a number of solvates of N,N'-dithiobisphthalimide, as well as some solvent-free polymorphs (Skakle et al., 2001; Bowes et al., 2002; Farrell et al., 2002). In some of the solvates, the bisphthalimide molecules and the solvent are linked by C—H···O hydrogen bonds, while in other solvates the bisphthalimide molecules form structures containing either isolated cavities or continuous channels in which the solvent molecules reside without being hydrogen bonded to the bisphthalimide frameworks. Thus, for example, nitromethane forms a monosolvate, C16H8N2O4S2·CH3NO2, in which the solvent molecules are linked to the bisphthalimide molecules not only via a conventional C—H···O hydrogen bond but also via a polarized multi-centre interaction involving all three C—H bonds of the solvent molecule (Farrell et al., 2002). On the other hand, in the chlorobenzene solvate, 2C16H8N2O4S2·C6H5Cl, the solvent molecules lie in isolated cavities, while in the toluene solvate, 2C16H8N2O4S2·C7H8, the solvent molecules lie within continuous channels (Farrell et al., 2002).

Seeking to combine the specific hydrogen-bonding capacity manifest in nitromethane with the steric requirements of aromatic solvent molecules, such as chlorobenzene and toluene, we have now prepared and structurally characterized the nitrobenzene solvate, 2C16H8N2O4S2·C6H5NO2, (I), which turns out to exhibit a channel structure containing fully ordered and bound solvent molecules.

Compound (I) (Fig. 1) crystallizes in space group Pn with four molecules of the bisphthalimide per unit cell, and these molecules, whose internal dimensions do not differ significantly from those observed in other polymorphs and solvates (Skakle et al., 2001; Bowes et al., 2002; Farrell et al., 2002), are linked by a combination of C—H···O hydrogen bonds (Table 1) and aromatic ππ-stacking interactions. The substructure formed by the bisphthalimide molecules alone is effectively centrosymmetric (100% fit to P21/n), but the presence of the nitrobenzene component precludes the higher symmetry. Each type of bisphthalimide molecule (type 1 contains S1 and S2; type 2 contains S3 and S4) forms chains by means of C—H···O hydrogen bonds reinforced by aromatic ππ-stacking interactions, but only one type of chain needs to be described, because of the pseudosymmetry.

Atom C15 in the type 1 molecule at (x, y, z) acts as hydrogen-bond donor to O11 in the type 1 molecule at (-0.5 + x, 1 - y, 0.5 + z), and propagation of this hydrogen bond produces a C(7) chain running parallel to the [101] direction, and generated by the n-glide plane at y = 0.5 (Fig. 2). At the same time, the C13–C18 aryl ring at (x, y, z) forms a ππ-stacking interaction with the C23–C28 ring at (-0.5 + x, 1 - y, 0.5 + z), so reinforcing the action of the C—H···O hydrogen bond (Fig. 2); the interplanar angle is only 0.6 (2)°, with a centroid separation of 3.598 (2) Å and an interplanar spacing of 3.361 (2) Å, giving a centroid offset of 1.284 (2) Å. The antiparallel [101] chains formed individually by the two types of bisphthalimide molecule are linked by further C—H···O hydrogen bonds involving both types. Atom C26 in the type 1 molecule at (x, y, z) acts as hydrogen-bond donor to O42 in the type 2 molecule at (0.5 + x, 1 - y, -0.5 + z), while C46 at (0.5 + x, 1 - y, -0.5 + z) acts as donor to O22 at (x, 1 + y, z), so forming a C22(14) chain running parallel to [010] (Fig. 3).

The bisphthalimide molecules occupy only ca 80% of the unit-cell volume [i.e. 20% solvent-accessible volume as estimated using PLATON (Spek, 2002)]; the remaining volume takes the form of continuous channels running along [100] (Fig. 4). There are two such channels passing through each unit cell, along the lines (x, 1/4, 0) and (x, 3/4, 1/2), and having mean diameter ca 5.4 Å, and it is in these channels that the nitrobenzene molecules lie, arranged in an ordered head-to-tail fashion.

The ordering of the nitrobenzene molecules contrasts with the disorder of the chlorobenzene and toluene molecules across centres of inversion in their respective solvates. The ordering in (I) is due to specific multi-point recognition between the bisphthalimide framework and the nitrobenzene solvate molecules, involving both C—H···O and C—H···π(arene) hydrogen bonds (Table 1). The nitrobenzene molecule at (x, y, z) accepts via O1 a rather weak hydrogen bond from C24 in the type 1 molecule at (x, y, z), while nitrobenzene C6 acts as donor to O42 in the type 2 molecule at (1 + x, y, -1 + z). In addition to these two C—H···O hydrogen bonds, there are two C—H···π(arene) hydrogen bonds, in which the C1–C6 nitrobenzene ring at (x, y, z), centroid Cg1, accepts C—H···π hydrogen bonds from C14 at (1 + x, y, -1 + z) and from C34 at (1 + x, y, z), with one such hydrogen bond on each face of the ring (Fig. 5).

In a recent study based on the Cambridge Structural Database (CSD: Allen & Kennard, 1993), Nangia & Desiraju (1999) analysed both the relative frequency of occurrence of the common organic solvents in solvated organic crystals, and the specific supramolecular synthons linking the solvent molecules to the host molecules. When normalized for the frequency of usage in crystal growth, 13 solvents were found to have a significantly higher than average tendency to be included in solvates. It is interesting to note that of the N,N'-bisphthalimide solvates so far analysed, the two solvents found to exhibit specific multi-point interactions (nitromethane and nitrobenzene) do not appear in the top 20 solvents in the normalized CSD-based list; indeed neither solvent is mentioned in Nangia & Desiraju's (1999) analysis.

Experimental top

A sample of N,N'-dithiobisphthalimide was purchased from Aldrich. Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in nitrobenzene.

Refinement top

Compound (I) is monoclinic and the systematic absences permitted Pn and P2/n as possible space groups; Pn was selected and confirmed by the analysis. H atoms were treated as riding, with a C—H distance of 0.95 Å. The value of the Flack (1983) parameter [0.32 (9)] indicated racemic twinning and this was handled via the TWIN and BASF instructions in SHELXL97 (Sheldrick, 1997). Although PLATON (Spek, 2002) reports a 94% fit to P21/n (and indeed a 100% fit when the nitrobenzene component is omitted), careful inspection of the reflection file indicated several strong (0k0) reflections with k odd, which preclude the presence of a 21 screw axis. In addition to the structure for (I) discussed above, we had earlier located another solution, which refined to R = 0.0457, wR2 = 0.1087 and gave effectively the same supramolecular structure as that described above, but approximately related to it by the transformation (x, y, 1 - z). Our attention was drawn to the unsatisfactory nature of this initial solution by the PLATON (Spek, 2002) checking routines which flagged, in particular, the consistently low average C—C distance (ca 1.34 Å) in the phthalimide arene rings and the very large range (ca 0.16 Å) of the nitrobenzene C—C bond lengths; a detailed examination of the bond distances and angles then led to the decisive rejection of this solution. The lessons to be drawn from this are that, despite a satisfactory R and a satisfactory supramolecular arrangement, the warnings of the data-validation process must be heeded and investigated, and that all of the derived geometric parameters must be scrutinized critically.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent molecular components in (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Stereoview of part of the crystal structure of (I), showing the formation of a [101] chain of type 1 molecules built from C—H···O hydrogen bonds and aromatic ππ-stacking interactions.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a C22(14) chain along [010]. Atoms marked with an asterisk (*), hash (#) or dollar sign ($) are at the symmetry positions (0.5 + x, 1 - y, -0.5 + z), (x, 1 + y, z) and (0.5 + x, -1 - y, -0.5 + z), respectively.
[Figure 4] Fig. 4. Space-filling representation of the bisphthalimide framework, showing the continuous channels along [100].
[Figure 5] Fig. 5. Part of the crystal structure of (I), showing the linking of the nitrobenzene to the bisphthalimide framework by C—H···π(arene) hydrogen bonds. For the sake of clarity, the unit-cell box has been omitted. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (1 + x, y, -1 + z) and (1 + x, y, z) respectively.
N,N'-Dithiobisphthalimide–nitrobenzene (2/1) top
Crystal data top
2C16H8N2O4S2·C6H5NO2F(000) = 856
Mr = 835.88Dx = 1.570 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 7660 reflections
a = 7.7070 (2) Åθ = 2.9–27.5°
b = 16.1001 (3) ŵ = 0.34 mm1
c = 14.3067 (4) ÅT = 120 K
β = 95.077 (1)°Block, colourless
V = 1768.26 (8) Å30.22 × 0.10 × 0.08 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
7660 independent reflections
Radiation source: fine-focus sealed tube5681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 910
Tmin = 0.927, Tmax = 0.972k = 2020
19021 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0406P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 0.97Δρmax = 0.37 e Å3
7660 reflectionsΔρmin = 0.31 e Å3
516 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0057 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983); 3603 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.32 (9)
Crystal data top
2C16H8N2O4S2·C6H5NO2V = 1768.26 (8) Å3
Mr = 835.88Z = 2
Monoclinic, PnMo Kα radiation
a = 7.7070 (2) ŵ = 0.34 mm1
b = 16.1001 (3) ÅT = 120 K
c = 14.3067 (4) Å0.22 × 0.10 × 0.08 mm
β = 95.077 (1)°
Data collection top
Nonius KappaCCD
diffractometer
7660 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
5681 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.972Rint = 0.056
19021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.37 e Å3
S = 0.97Δρmin = 0.31 e Å3
7660 reflectionsAbsolute structure: Flack (1983); 3603 Friedel pairs
516 parametersAbsolute structure parameter: 0.32 (9)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84531 (12)0.31916 (6)0.55294 (7)0.0220 (3)
S20.63911 (12)0.32151 (6)0.45398 (7)0.0221 (2)
N110.7851 (4)0.3782 (2)0.6424 (2)0.0195 (8)
C110.8211 (5)0.4645 (2)0.6525 (3)0.0191 (9)
O110.8929 (4)0.50588 (18)0.5985 (2)0.0243 (7)
C120.7030 (5)0.3456 (3)0.7193 (3)0.0181 (9)
O120.6573 (4)0.27387 (19)0.7262 (2)0.0285 (7)
C130.6877 (5)0.4167 (3)0.7837 (3)0.0196 (9)
C140.6161 (5)0.4200 (3)0.8689 (3)0.0219 (9)
H140.57040.37170.89590.026*
C150.6132 (5)0.4963 (3)0.9136 (3)0.0242 (10)
H150.56620.50040.97260.029*
C160.6786 (5)0.5669 (3)0.8729 (3)0.0225 (9)
H160.67360.61860.90460.027*
C170.7509 (5)0.5642 (3)0.7875 (3)0.0212 (9)
H170.79600.61250.76030.025*
C180.7539 (5)0.4869 (3)0.7437 (3)0.0182 (9)
N210.6825 (4)0.3974 (2)0.3787 (2)0.0196 (8)
C210.6360 (5)0.4837 (3)0.3887 (3)0.0219 (9)
O210.5710 (3)0.51074 (18)0.4545 (2)0.0267 (7)
C220.7657 (5)0.3841 (3)0.2952 (3)0.0201 (9)
O220.8218 (4)0.31761 (17)0.2724 (2)0.0259 (7)
C230.7650 (5)0.4648 (3)0.2475 (3)0.0191 (9)
C240.8289 (5)0.4857 (3)0.1635 (3)0.0192 (9)
H240.88060.44520.12640.023*
C250.8150 (5)0.5684 (3)0.1350 (3)0.0210 (9)
H250.85610.58480.07710.025*
C260.7408 (5)0.6277 (3)0.1911 (3)0.0231 (10)
H260.73560.68400.17110.028*
C270.6746 (5)0.6066 (3)0.2752 (3)0.0232 (10)
H270.62210.64680.31230.028*
C280.6891 (5)0.5240 (3)0.3024 (3)0.0186 (9)
S30.15417 (12)0.18431 (6)0.44754 (7)0.0224 (2)
S40.36143 (12)0.17751 (6)0.54561 (7)0.0229 (2)
N310.2072 (4)0.1232 (2)0.3593 (2)0.0193 (8)
C310.1715 (5)0.0366 (3)0.3522 (3)0.0188 (9)
O310.1042 (4)0.00328 (18)0.4107 (2)0.0252 (7)
C320.2895 (5)0.1522 (3)0.2793 (3)0.0210 (9)
O320.3377 (4)0.22228 (18)0.2702 (2)0.0273 (7)
C330.3016 (5)0.0781 (2)0.2183 (3)0.0172 (9)
C340.3685 (5)0.0709 (3)0.1330 (3)0.0227 (9)
H340.41290.11780.10250.027*
C350.3687 (5)0.0082 (3)0.0929 (3)0.0221 (9)
H350.41350.01510.03360.027*
C360.3055 (5)0.0765 (3)0.1369 (3)0.0231 (9)
H360.30840.12940.10770.028*
C370.2370 (5)0.0692 (3)0.2240 (3)0.0197 (9)
H370.19420.11600.25520.024*
C380.2347 (5)0.0096 (3)0.2624 (3)0.0176 (9)
N410.3136 (4)0.1005 (2)0.6187 (2)0.0215 (8)
C410.3618 (5)0.0155 (3)0.6101 (3)0.0201 (9)
O410.4331 (3)0.01309 (18)0.54575 (19)0.0251 (7)
C420.2254 (5)0.1149 (3)0.7010 (3)0.0192 (9)
O420.1635 (4)0.17961 (17)0.7215 (2)0.0246 (7)
C430.2271 (5)0.0326 (3)0.7497 (3)0.0180 (9)
C440.1626 (5)0.0131 (3)0.8339 (3)0.0209 (9)
H440.11120.05390.87080.025*
C450.1769 (5)0.0699 (3)0.8620 (3)0.0247 (10)
H450.13300.08620.91920.030*
C460.2534 (5)0.1288 (3)0.8087 (3)0.0261 (10)
H460.26280.18460.83010.031*
C470.3171 (5)0.1071 (3)0.7236 (3)0.0217 (10)
H470.36810.14770.68630.026*
C480.3040 (5)0.0258 (3)0.6953 (3)0.0188 (9)
N11.1273 (3)0.30387 (16)0.0296 (2)0.0259 (6)
O11.1111 (3)0.33860 (16)0.10471 (18)0.0411 (6)
O21.0053 (3)0.29256 (15)0.03039 (18)0.0381 (6)
C11.3017 (4)0.2744 (2)0.0111 (2)0.0199 (8)
C21.4444 (5)0.2961 (2)0.0712 (3)0.0243 (8)
H21.43230.33170.12310.029*
C31.6058 (5)0.2645 (2)0.0540 (3)0.0250 (8)
H31.70650.27990.09330.030*
C41.6206 (5)0.2108 (2)0.0199 (3)0.0267 (8)
H41.73060.18740.02980.032*
C51.4751 (5)0.1909 (2)0.0798 (3)0.0269 (8)
H51.48690.15500.13160.032*
C61.3150 (4)0.2222 (2)0.0650 (2)0.0215 (7)
H61.21520.20850.10590.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0287 (6)0.0188 (6)0.0188 (6)0.0050 (4)0.0045 (4)0.0013 (4)
S20.0291 (6)0.0196 (6)0.0182 (6)0.0050 (4)0.0048 (4)0.0018 (4)
N110.0238 (18)0.0184 (19)0.0173 (19)0.0016 (15)0.0078 (14)0.0039 (15)
C110.019 (2)0.015 (2)0.022 (2)0.0035 (17)0.0004 (16)0.0010 (18)
O110.0302 (16)0.0237 (17)0.0207 (16)0.0026 (13)0.0110 (12)0.0019 (12)
C120.020 (2)0.018 (2)0.016 (2)0.0017 (17)0.0014 (15)0.0000 (18)
O120.0391 (17)0.0221 (17)0.0253 (17)0.0015 (14)0.0084 (12)0.0026 (14)
C130.018 (2)0.021 (2)0.020 (2)0.0001 (16)0.0018 (16)0.0057 (18)
C140.023 (2)0.024 (2)0.019 (2)0.0018 (16)0.0042 (16)0.0034 (17)
C150.021 (2)0.035 (2)0.017 (2)0.0027 (16)0.0061 (15)0.0047 (17)
C160.022 (2)0.026 (2)0.019 (2)0.0058 (16)0.0011 (16)0.0078 (17)
C170.0175 (19)0.023 (2)0.023 (2)0.0010 (16)0.0026 (15)0.0007 (17)
C180.0137 (19)0.024 (2)0.016 (2)0.0066 (16)0.0010 (16)0.0047 (17)
N210.0268 (18)0.0147 (18)0.018 (2)0.0013 (14)0.0056 (14)0.0017 (15)
C210.017 (2)0.024 (2)0.024 (3)0.0024 (18)0.0009 (17)0.001 (2)
O210.0287 (16)0.0243 (17)0.0279 (19)0.0001 (13)0.0068 (14)0.0053 (13)
C220.021 (2)0.019 (3)0.020 (2)0.0003 (18)0.0015 (16)0.0010 (19)
O220.0364 (16)0.0182 (18)0.0238 (17)0.0005 (12)0.0069 (13)0.0031 (12)
C230.019 (2)0.020 (2)0.019 (2)0.0001 (16)0.0031 (17)0.0050 (18)
C240.021 (2)0.022 (2)0.015 (2)0.0016 (17)0.0023 (16)0.0021 (18)
C250.026 (2)0.018 (2)0.019 (2)0.0030 (18)0.0018 (18)0.0016 (18)
C260.027 (2)0.013 (2)0.028 (3)0.0011 (17)0.0029 (17)0.004 (2)
C270.022 (2)0.024 (2)0.024 (3)0.0000 (18)0.0007 (18)0.0001 (19)
C280.019 (2)0.015 (2)0.021 (2)0.0042 (17)0.0008 (16)0.0028 (17)
S30.0291 (6)0.0208 (6)0.0178 (6)0.0039 (4)0.0053 (4)0.0022 (4)
S40.0295 (5)0.0204 (6)0.0188 (6)0.0075 (4)0.0033 (4)0.0013 (4)
N310.0258 (19)0.019 (2)0.0139 (19)0.0012 (15)0.0033 (14)0.0008 (15)
C310.018 (2)0.020 (2)0.019 (2)0.0021 (17)0.0045 (16)0.0015 (18)
O310.0302 (17)0.0240 (17)0.0225 (17)0.0033 (13)0.0082 (12)0.0007 (12)
C320.018 (2)0.025 (3)0.020 (2)0.0014 (18)0.0025 (15)0.0059 (19)
O320.0373 (16)0.0164 (16)0.0289 (17)0.0026 (14)0.0069 (12)0.0024 (13)
C330.019 (2)0.018 (2)0.015 (2)0.0008 (16)0.0026 (15)0.0031 (17)
C340.0183 (19)0.030 (2)0.020 (2)0.0003 (16)0.0035 (15)0.0026 (18)
C350.0212 (19)0.028 (2)0.018 (2)0.0023 (16)0.0084 (15)0.0049 (17)
C360.018 (2)0.024 (2)0.027 (2)0.0013 (15)0.0011 (16)0.0053 (17)
C370.0206 (19)0.020 (2)0.018 (2)0.0006 (16)0.0011 (15)0.0016 (16)
C380.017 (2)0.020 (2)0.017 (2)0.0029 (16)0.0037 (15)0.0056 (16)
N410.0277 (19)0.020 (2)0.017 (2)0.0007 (15)0.0040 (15)0.0001 (15)
C410.021 (2)0.020 (2)0.018 (2)0.0049 (18)0.0033 (16)0.0059 (19)
O410.0273 (16)0.0307 (18)0.0181 (18)0.0019 (13)0.0057 (13)0.0057 (13)
C420.020 (2)0.019 (3)0.018 (2)0.0059 (17)0.0008 (16)0.0045 (18)
O420.0302 (15)0.0194 (18)0.0246 (18)0.0000 (12)0.0053 (12)0.0006 (12)
C430.017 (2)0.017 (2)0.020 (2)0.0030 (16)0.0024 (16)0.0053 (18)
C440.022 (2)0.017 (2)0.023 (2)0.0011 (17)0.0013 (17)0.0039 (19)
C450.022 (2)0.030 (3)0.023 (3)0.0064 (19)0.0010 (18)0.0056 (19)
C460.026 (2)0.022 (3)0.030 (3)0.0029 (19)0.0007 (18)0.008 (2)
C470.020 (2)0.016 (2)0.029 (3)0.0014 (17)0.0024 (18)0.0024 (19)
C480.0132 (19)0.024 (2)0.018 (2)0.0007 (17)0.0021 (16)0.0041 (19)
N10.0268 (15)0.0240 (14)0.0280 (16)0.0023 (12)0.0088 (12)0.0028 (13)
O10.0436 (14)0.0472 (15)0.0341 (15)0.0174 (12)0.0123 (11)0.0042 (12)
O20.0257 (14)0.0406 (14)0.0484 (16)0.0007 (11)0.0065 (12)0.0052 (12)
C10.0269 (18)0.0176 (17)0.0169 (17)0.0017 (14)0.0107 (14)0.0030 (13)
C20.036 (2)0.0157 (17)0.022 (2)0.0023 (16)0.0102 (16)0.0007 (15)
C30.0285 (19)0.0201 (19)0.0259 (19)0.0037 (15)0.0002 (15)0.0017 (15)
C40.025 (2)0.0226 (19)0.033 (2)0.0050 (16)0.0081 (16)0.0044 (17)
C50.036 (2)0.023 (2)0.0235 (19)0.0013 (16)0.0112 (16)0.0004 (15)
C60.0318 (19)0.0166 (17)0.0159 (17)0.0022 (14)0.0012 (14)0.0002 (13)
Geometric parameters (Å, º) top
S1—N111.692 (4)C32—O321.198 (5)
S1—S22.0330 (13)C32—C331.486 (6)
S2—N211.682 (3)C33—C341.372 (6)
N11—C121.418 (5)C33—C381.392 (6)
N11—C111.422 (5)C34—C351.398 (6)
C11—O111.193 (5)C34—H340.9500
C11—C181.490 (6)C35—C361.377 (6)
C12—O121.214 (5)C35—H350.9500
C12—C131.480 (6)C36—C371.401 (6)
C13—C141.382 (6)C36—H360.9500
C13—C181.385 (6)C37—C381.383 (6)
C14—C151.385 (6)C37—H370.9500
C14—H140.9500N41—C411.427 (5)
C15—C161.392 (6)N41—C421.429 (5)
C15—H150.9500C41—O411.204 (5)
C16—C171.388 (6)C41—C481.490 (6)
C16—H160.9500C42—O421.193 (5)
C17—C181.394 (6)C42—C431.497 (6)
C17—H170.9500C43—C441.379 (6)
N21—C221.421 (5)C43—C481.387 (6)
N21—C211.445 (5)C44—C451.397 (6)
C21—O211.188 (5)C44—H440.9500
C21—C281.484 (6)C45—C461.382 (6)
C22—O221.210 (5)C45—H450.9500
C22—C231.468 (6)C46—C471.396 (6)
C23—C241.382 (6)C46—H460.9500
C23—C281.395 (5)C47—C481.373 (6)
C24—C251.394 (6)C47—H470.9500
C24—H240.9500N1—O11.228 (3)
C25—C261.401 (6)N1—O21.229 (3)
C25—H250.9500N1—C11.471 (4)
C26—C271.390 (6)C1—C21.379 (5)
C26—H260.9500C1—C61.387 (5)
C27—C281.388 (6)C2—C31.386 (5)
C27—H270.9500C2—H20.9500
S3—N311.679 (4)C3—C41.378 (5)
S3—S42.0335 (13)C3—H30.9500
S4—N411.684 (4)C4—C51.388 (5)
N31—C311.423 (5)C4—H40.9500
N31—C321.435 (5)C5—C61.366 (5)
C31—O311.207 (5)C5—H50.9500
C31—C381.480 (6)C6—H60.9500
N11—S1—S2105.47 (13)C34—C33—C38121.3 (4)
N21—S2—S1105.79 (13)C34—C33—C32129.7 (4)
C12—N11—C11112.3 (3)C38—C33—C32109.0 (4)
C12—N11—S1123.4 (3)C33—C34—C35117.2 (4)
C11—N11—S1124.2 (3)C33—C34—H34121.4
O11—C11—N11125.2 (4)C35—C34—H34121.4
O11—C11—C18130.5 (4)C36—C35—C34121.8 (4)
N11—C11—C18104.2 (3)C36—C35—H35119.1
O12—C12—N11124.6 (4)C34—C35—H35119.1
O12—C12—C13130.2 (4)C35—C36—C37121.1 (4)
N11—C12—C13105.2 (3)C35—C36—H36119.5
C14—C13—C18121.5 (4)C37—C36—H36119.5
C14—C13—C12129.7 (4)C38—C37—C36116.7 (4)
C18—C13—C12108.8 (4)C38—C37—H37121.7
C13—C14—C15117.7 (4)C36—C37—H37121.7
C13—C14—H14121.1C37—C38—C33122.0 (4)
C15—C14—H14121.1C37—C38—C31129.1 (4)
C14—C15—C16120.7 (4)C33—C38—C31108.9 (4)
C14—C15—H15119.7C41—N41—C42112.0 (3)
C16—C15—H15119.7C41—N41—S4125.4 (3)
C17—C16—C15122.0 (4)C42—N41—S4122.6 (3)
C17—C16—H16119.0O41—C41—N41125.0 (4)
C15—C16—H16119.0O41—C41—C48130.2 (4)
C16—C17—C18116.6 (4)N41—C41—C48104.9 (3)
C16—C17—H17121.7O42—C42—N41125.1 (4)
C18—C17—H17121.7O42—C42—C43130.1 (4)
C13—C18—C17121.4 (4)N41—C42—C43104.8 (3)
C13—C18—C11109.5 (4)C44—C43—C48122.8 (4)
C17—C18—C11129.1 (4)C44—C43—C42128.3 (4)
C22—N21—C21111.3 (3)C48—C43—C42109.0 (3)
C22—N21—S2124.0 (3)C43—C44—C45116.4 (4)
C21—N21—S2124.8 (3)C43—C44—H44121.8
O21—C21—N21123.8 (4)C45—C44—H44121.8
O21—C21—C28131.7 (4)C46—C45—C44121.6 (4)
N21—C21—C28104.4 (3)C46—C45—H45119.2
O22—C22—N21124.0 (4)C44—C45—H45119.2
O22—C22—C23130.1 (4)C45—C46—C47120.7 (4)
N21—C22—C23105.9 (3)C45—C46—H46119.6
C24—C23—C28121.5 (4)C47—C46—H46119.6
C24—C23—C22129.3 (4)C48—C47—C46118.2 (4)
C28—C23—C22109.1 (3)C48—C47—H47120.9
C23—C24—C25117.6 (4)C46—C47—H47120.9
C23—C24—H24121.2C47—C48—C43120.3 (4)
C25—C24—H24121.2C47—C48—C41130.3 (4)
C24—C25—C26120.5 (4)C43—C48—C41109.3 (4)
C24—C25—H25119.7O1—N1—O2123.2 (3)
C26—C25—H25119.7O1—N1—C1118.0 (3)
C27—C26—C25122.0 (4)O2—N1—C1118.8 (3)
C27—C26—H26119.0C2—C1—C6122.2 (3)
C25—C26—H26119.0C2—C1—N1119.8 (3)
C28—C27—C26116.7 (4)C6—C1—N1118.0 (3)
C28—C27—H27121.6C1—C2—C3118.4 (3)
C26—C27—H27121.6C1—C2—H2120.8
C27—C28—C23121.6 (4)C3—C2—H2120.8
C27—C28—C21129.1 (4)C4—C3—C2120.2 (3)
C23—C28—C21109.2 (4)C4—C3—H3119.9
N31—S3—S4104.97 (13)C2—C3—H3119.9
N41—S4—S3105.46 (13)C3—C4—C5120.1 (3)
C31—N31—C32111.0 (3)C3—C4—H4119.9
C31—N31—S3124.7 (3)C5—C4—H4119.9
C32—N31—S3124.2 (3)C6—C5—C4120.7 (3)
O31—C31—N31124.3 (4)C6—C5—H5119.6
O31—C31—C38129.8 (4)C4—C5—H5119.6
N31—C31—C38105.9 (3)C5—C6—C1118.4 (3)
O32—C32—N31123.8 (4)C5—C6—H6120.8
O32—C32—C33131.0 (4)C1—C6—H6120.8
N31—C32—C33105.2 (3)
N11—S1—S2—N2195.37 (19)S3—N31—C31—C38177.9 (3)
S2—S1—N11—C1291.8 (3)C31—N31—C32—O32177.5 (4)
S2—S1—N11—C1192.6 (3)S3—N31—C32—O324.5 (6)
C12—N11—C11—O11178.2 (4)C31—N31—C32—C331.1 (4)
S1—N11—C11—O112.2 (6)S3—N31—C32—C33176.9 (3)
C12—N11—C11—C180.3 (4)O32—C32—C33—C341.7 (8)
S1—N11—C11—C18176.4 (3)N31—C32—C33—C34179.7 (4)
C11—N11—C12—O12178.9 (4)O32—C32—C33—C38176.7 (4)
S1—N11—C12—O125.1 (6)N31—C32—C33—C381.8 (4)
C11—N11—C12—C130.7 (4)C38—C33—C34—C350.8 (6)
S1—N11—C12—C13175.3 (3)C32—C33—C34—C35177.5 (4)
O12—C12—C13—C140.3 (7)C33—C34—C35—C360.4 (6)
N11—C12—C13—C14179.2 (4)C34—C35—C36—C370.5 (6)
O12—C12—C13—C18178.0 (4)C35—C36—C37—C380.6 (6)
N11—C12—C13—C181.6 (4)C36—C37—C38—C331.8 (6)
C18—C13—C14—C150.3 (6)C36—C37—C38—C31179.9 (4)
C12—C13—C14—C15177.7 (4)C34—C33—C38—C371.9 (6)
C13—C14—C15—C160.8 (6)C32—C33—C38—C37176.7 (4)
C14—C15—C16—C170.9 (6)C34—C33—C38—C31179.6 (3)
C15—C16—C17—C180.4 (6)C32—C33—C38—C311.8 (5)
C14—C13—C18—C170.1 (6)O31—C31—C38—C372.1 (7)
C12—C13—C18—C17177.8 (4)N31—C31—C38—C37177.3 (4)
C14—C13—C18—C11179.7 (4)O31—C31—C38—C33179.6 (4)
C12—C13—C18—C111.8 (4)N31—C31—C38—C331.0 (4)
C16—C17—C18—C130.1 (6)S3—S4—N41—C4192.3 (3)
C16—C17—C18—C11179.6 (4)S3—S4—N41—C4291.0 (3)
O11—C11—C18—C13177.1 (4)C42—N41—C41—O41177.8 (4)
N11—C11—C18—C131.4 (4)S4—N41—C41—O415.2 (6)
O11—C11—C18—C173.4 (7)C42—N41—C41—C481.9 (4)
N11—C11—C18—C17178.2 (4)S4—N41—C41—C48175.1 (3)
S1—S2—N21—C2293.4 (3)C41—N41—C42—O42175.7 (4)
S1—S2—N21—C2188.5 (3)S4—N41—C42—O427.2 (6)
C22—N21—C21—O21177.1 (4)C41—N41—C42—C433.0 (4)
S2—N21—C21—O214.6 (6)S4—N41—C42—C43174.1 (3)
C22—N21—C21—C282.5 (4)O42—C42—C43—C443.3 (7)
S2—N21—C21—C28175.8 (3)N41—C42—C43—C44178.1 (4)
C21—N21—C22—O22177.6 (4)O42—C42—C43—C48175.6 (4)
S2—N21—C22—O224.0 (6)N41—C42—C43—C482.9 (4)
C21—N21—C22—C232.7 (4)C48—C43—C44—C450.6 (6)
S2—N21—C22—C23175.6 (3)C42—C43—C44—C45178.2 (4)
O22—C22—C23—C240.0 (7)C43—C44—C45—C460.7 (6)
N21—C22—C23—C24179.6 (4)C44—C45—C46—C470.9 (7)
O22—C22—C23—C28178.6 (4)C45—C46—C47—C481.0 (6)
N21—C22—C23—C281.8 (4)C46—C47—C48—C430.9 (6)
C28—C23—C24—C250.1 (6)C46—C47—C48—C41178.9 (4)
C22—C23—C24—C25178.5 (4)C44—C43—C48—C470.7 (6)
C23—C24—C25—C261.0 (6)C42—C43—C48—C47178.3 (4)
C24—C25—C26—C271.7 (6)C44—C43—C48—C41179.1 (4)
C25—C26—C27—C281.5 (6)C42—C43—C48—C411.9 (4)
C26—C27—C28—C230.5 (6)O41—C41—C48—C470.4 (8)
C26—C27—C28—C21178.0 (4)N41—C41—C48—C47179.9 (4)
C24—C23—C28—C270.1 (6)O41—C41—C48—C43179.8 (4)
C22—C23—C28—C27178.6 (4)N41—C41—C48—C430.1 (4)
C24—C23—C28—C21179.0 (4)O1—N1—C1—C28.8 (4)
C22—C23—C28—C210.3 (5)O2—N1—C1—C2171.3 (3)
O21—C21—C28—C270.5 (8)O1—N1—C1—C6168.3 (3)
N21—C21—C28—C27180.0 (4)O2—N1—C1—C611.6 (4)
O21—C21—C28—C23178.2 (4)C6—C1—C2—C30.3 (5)
N21—C21—C28—C231.3 (4)N1—C1—C2—C3177.4 (3)
N31—S3—S4—N4192.93 (18)C1—C2—C3—C42.0 (5)
S4—S3—N31—C3188.9 (3)C2—C3—C4—C52.7 (5)
S4—S3—N31—C3293.4 (3)C3—C4—C5—C61.8 (5)
C32—N31—C31—O31179.3 (4)C4—C5—C6—C10.1 (5)
S3—N31—C31—O312.7 (6)C2—C1—C6—C50.6 (5)
C32—N31—C31—C380.1 (4)N1—C1—C6—C5176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O11i0.952.343.267 (5)166
C26—H26···O42ii0.952.393.196 (6)142
C35—H35···O31iii0.952.413.311 (5)159
C46—H46···O22iv0.952.353.136 (6)139
C6—H6···O42v0.952.513.245 (4)134
C24—H24···O10.952.513.372 (5)151
C14—H14···Cg1vi0.952.693.633 (5)172
C34—H34···Cg1vii0.952.583.510 (5)166
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y, z1/2; (iv) x1/2, y, z+1/2; (v) x+1, y, z1; (vi) x1, y, z+1; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula2C16H8N2O4S2·C6H5NO2
Mr835.88
Crystal system, space groupMonoclinic, Pn
Temperature (K)120
a, b, c (Å)7.7070 (2), 16.1001 (3), 14.3067 (4)
β (°) 95.077 (1)
V3)1768.26 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.22 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.927, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
19021, 7660, 5681
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.096, 0.97
No. of reflections7660
No. of parameters516
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.31
Absolute structureFlack (1983); 3603 Friedel pairs
Absolute structure parameter0.32 (9)

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O11i0.952.343.267 (5)166
C26—H26···O42ii0.952.393.196 (6)142
C35—H35···O31iii0.952.413.311 (5)159
C46—H46···O22iv0.952.353.136 (6)139
C6—H6···O42v0.952.513.245 (4)134
C24—H24···O10.952.513.372 (5)151
C14—H14···Cg1vi0.952.693.633 (5)172
C34—H34···Cg1vii0.952.583.510 (5)166
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y, z1/2; (iv) x1/2, y, z+1/2; (v) x+1, y, z1; (vi) x1, y, z+1; (vii) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds