Download citation
Download citation
link to html
The structures of four bis­(tri­chloro­phosphine)­iminium {[Cl3P=N=PCl3]+; systematic name: tri­chloro­[(tri­chloro­phos­phor­an­yl­idene)im­in­io]phos­phor­us(V)} salts, namely bis(tri­chloro­phosphine)­iminium hexa­chloro­niobate, (Cl6NP2)[NbCl6], (I), bis­(tri­chloro­phosphine)­iminium hexa­chloro­tantalate, (Cl6NP2)[TaCl6], (II), bis­(tri­chloro­phosphine)­iminium tri-[mu]-chloro-bis­[tri­chloro­titanium(IV)], (Cl6NP2)[Ti2Cl9], (III), and bis­[bis­(tri­chloro­phosphine)­iminium] di-[mu]-chloro-bis­[tetrachloro­zirconium(IV)], (Cl6NP2)2[Zr2Cl10], (IV), have been determined. The P=N distances in the discrete [Cl3P=N=PCl3]+ moieties in structures (I), (II) and (IV) range from 1.5460 (14) to 1.5554 (16) Å, and the P=N=P angles range from 136.8 (3) to 143.4 (4)°. The [Cl3P=N=PCl3]+ cation in (III) is disordered and the calculated geometries for the cation are therefore less reliable. Compounds (I) and (II) are isostructural and the metal anions have slightly distorted octahedral geometries. The anion in compound (III) consists of two distorted octahedral Ti centres linked by three [mu]2-Cl atoms, while in compound (IV), the dianion is derived from two distorted edge-shared ZrCl6 octahedra.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102012532/sk1570sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012532/sk1570Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012532/sk1570IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012532/sk1570IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012532/sk1570IVsup5.hkl
Contains datablock IV

Comment top

Bis(trichlorophosphino)iminium salts are commonly used precursors for the synthesis of inorganic heterocycles (Becke-Goehring & Muller, 1968; Dodge et al., 1990). In addition, [Cl3PN PCl3][PCl6] is proposed as an intermediate in the formation of poly(dichlorophosphazene) via the living cationic polymerization of Cl3PNSiMe3 with PCl5 (Honeyman et al., 1995). As part of our studies involving the chemistry of boron-containing heterophosphazene ring systems (Gates et al., 1998; McWilliams et al., 2002), we discovered that the tetrachloroborate salt [Cl3PN PCl3][BCl4] reacted quickly with early metal halides in chlorinated solvents to produce BCl3 gas and a series of new bis(trichlorophosphino)iminium salts with transition-metal-containing counter-ions, (I)–(IV).

Analysis of the resulting products was consistent with the absence of the [BCl4]- anion, as no signal was detected in the 11B NMR spectra. In addition, a signal at 22.2 p.p.m. was observed in the 31P NMR spectra of salts (I)–(IV), indicative of the [Cl3PN PCl3] cation. (Faggiani et al., 1980).

Salts (I)–(IV) crystallize as discrete cations and metal anions. The cation in (III) is disordered over two sites (see Experimental) and therefore its intramolecular geometry is not dicussed in detail. In the crystal structures of (I), (II) and (IV), the [Cl3PN PCl3]+ moieties lie on crystallographic twofold axes. The twofold axes pass through the central N atom and bisect the PN P angle. In (I), (II) and (IV), the [Cl3PN PCl3] cations have P—N distances in the range 1.5460 (14)–1.5554 (16) Å. These values compare well with the P—N distances in the recently redetermined structure of [Cl3PN PCl3][PCl6] (Belaj, 1998), which vary from 1.556 (3) to 1.562 (3) Å. The P—N—P bond angles within the cations of (I), (II) and (IV) are in the range 136.8 (3)–143.4 (4)° and are slightly larger than the angles observed in [Cl3PN PCl3][PCl6] [133.3 (2) and 135.8 (2)°]. The size of the P—N—P angle appears to depend on the nature of the anion and reflects the low energy required to deform the PNP unit (Faggiani et al., 1980). Using the `W' form of the Cl—P—N—P—Cl groupings for [Cl3PN PCl3]+ [previously described by Belaj (1998)], the Cl—P—N—P torsion angles Cl—P—N1—P for (I) and (II) are -145.96 (6) and -146.05 (8)°, respectively. This is in contrast with the equivalent Cl—P—N—P torsion angles in [Cl3PN PCl3][PCl6], which are closer to 180°. The values in [Cl3PN PCl3][PCl6], however, are close to those found in (IV), which has a `W'-form Cl—P—N—P torsion angle of -178.31 (6)°. In 1980, Belaj also found that the Cl—P—N angles in the cation were significantly smaller for the angle containing a Cl atom from the `W' fragment [Cl6 for (I), (II) and (IV)] than the other Cl—P—N angles. This feature is also observed in each of (I), (II) and (IV) (see Tables 1, 2 and 4), despite the variation of the Cl—P—N—P torsion angle in (IV) from both (I) and (II).

Compounds (I) and (II) are isostructural in space group C2/c with Z = 4. A Ta atom in (II) replaces the Nb atom in (I). In these two structures, the NbCl6- or TaCl6- ion has a slightly distorted octahedral geometry, with the metal atom located on a crystallographic inversion center. Due to the similar size of the Nb and Ta atoms, the M—Cl (M = Nb or Ta) distances within these anions are also similar [2.3457 (7)–2.3613 (7) Å in NbCl6- and 2.3428 (11)–2.3559 (9) Å in TaCl6-]. The inversion symmetry in the anions of (I) and (II) restricts the trans Cl—M—Cl angles to exactly 180°, while the cis angles are in the range 89.36 (3)–90.64 (3)° for (I) and 89.37 (4)–90.63 (4)° for (II). Fig. 5 shows a polyhedral representation of the crystal packing in structures (I) and (II), viewed perpendicular to the xy plane. The figure shows alternate layers (superimposed in the xy plane) of anion octahedra and cations packing in the z direction.

In compound (III), both the cation and the anion are on gerneral positions, but the cation is disordered over two sites (see Experimental). The Ti2Cl9- anion within (III) consists of two psuedo-distorted octahedral Ti centres linked by three µ2-Cl atoms. The Ti—Cl(bridging)—Ti angles range from 86.39 (3) to 87.45 (3)° and consequently the bridging Ti—Cl bond lengths [2.4548 (9)–2.5127 (8) Å] are longer than the terminal Ti—Cl bond lengths [2.2036 (10)–2.2319 (10) Å]. The trans Cl—Ti—Cl angles in (III) vary from 164.15 (4) to 166.69 (4)°, while the cis angles have values in the range 76.94 (3)–99.91 (4)°. The crystal structue of (III) as viewed in Fig. 6 shows layers of anions (face-shared octahedra) alternating with cations in the x direction.

The remaining compound, (IV), crystallized as the 2:1 salt [Cl3PN PCl3]2[Zr2Cl10], containing the unusual decachlorodizirconiate dianion (derived from two edge-shared ZrCl6 octahedra). The Cl10Zr2 dianion has crystallographic 2/m symmetry, with a mirror plane running through the two Zr atoms and the six equatorial Cl atoms, while a twofold axis (perpendicular to the mirror plane) is located at the centre of the four-membered ring formed by the two Zr atoms and the two bridging Cl atoms. Again, a distorted octahedral geometry is observed about the transition metal with a symmetry-unique bridging Zr—Cl—Zr angle of 101.92 (4)° and two elongated bridging Zr—Cl bonds of 2.6106 (11) and 2.6354 (12) Å. The shortened terminal Zr—Cl bonds are in the range 2.3640 (12)–2.4266 (9) Å. The trans Cl—Zr—Cl angles range from 167.20 (4) to 174.74 (5)°, while the cis angles have values ranging from 78.08 (4) to 100.04 (5)°. Fig. 7 illustrates the packing in the crystal structure of (IV), which consists of alternating layers of Zr2Cl10- anions (edge-shared octahedra) and cations in the x direction.

In the structures of (I)–(IV), there are intermolecular Cl···Cl distances which are shorter than the sum of the van der Waals radii of 3.50 Å (Bondi, 1964). The shortest Cl···Cl distance, for each compound, ranges from 3.184 (6) Å for Cl17···Cl1A(x, -1 + y, z) in (III) to 3.3908 (13) Å for Cl7···Cl3(-x + 1/2, -y + 1/2, -z + 1) in (I). In all four title structures, the closest intermolecular Cl···Cl distances are between a Cl atom of a cation and a Cl atom of an anion. In the structure of [Cl3PN PCl3][PCl6], the shortest intermolecluar Cl···Cl distances [3.182 (2) and 3.194 (2) Å] are between two Cl atoms each of which are bonded to anions and these close contacts have been explained (Belaj, 1998). This anion–anion close contact is not present, however, in structure (I)–(IV).

Experimental top

All manipulations of reagents and products were conducted under strictly anhydrous and anaerobic conditions. The metal-containing salts were prepared by the reaction of [Cl3PNPCl3][BCl4] (Binder & Fluck, 1971) with one or two equivalents of metal halide at room temperature for 12 h in dichloromethane. Gas evolution (BCl3) was observed during the reaction, and removal of the volatiles in vacuo afforded white solids (80–95% yields). Recrystallization from dichloromethane (243 K, 12 h) gave yellow (I) or colourless (II)–(IV) crystals suitable for single-crystal X-ray diffraction studies. Data for (I)–(IV), 31P NMR (CDCl3): 22.1 (s) p.p.m.. 11B NMR (CDCl3): no signal detected. IR (ν, cm-1): 1378 (s), 1267 (w), 835 (m), 665 (m) and 632 (s). Analysis calculated for (II) (Cl12NP2Ta, Mr = 682.3): N 2.05%; found: N 2.19%.

Refinement top

During the refinement of (III), the anisotropic displacement parameter of the central N atom of the [Cl3PNPCl3]+ cation refined to an unusually large value, compared to the values for the atoms in the anion. In addition to this feature, difference Fourier maps showed several residual electron-density peaks, of approximately 1 e %A-3, close to the anisotropic Cl atoms in the cation. This suggested that the [Cl3PNPCl3]+ moiety was disordered over two sites. In the final cycles of refinement, the cation was refined with two disorder components of equal geometry [using the SAME command in SHELXL97 (Sheldrick, 1997)], with all atoms occupying two independent sites. The minor-occupany disorder component is an equivalent [Cl3PNPCl3]+ moiety in which the central N atom is shifted by about 0.7 Å and the rest of the molecule is, in turn, displaced by this shift. The final value for the occupancy was 0.852 (6) for the major component and 0.148 (2) for the minor component. The N, P and Cl atoms with major occupancy and the Cl atoms with minor occupancy were refined with anistropic displacement parameters, while the minor-occupany P and N atoms were refined with isotropic displacement parameters. The final R[I > 2σ(I)] value improved from 0.0422 for the ordered anisotropic model to 0.0363 for the refinement using a disordered model. The final model of the cation gave values for the P—N distances and P—N—P angles that were unusual (see Table 3) compared to compounds (I), (II) and (IV), and the values in other previously determined salts containing Cl3PNPCl3 cations (Belaj, 1998; Muller et al., 1998). Although the values in (III) appear unusual, least-squares refinements performed using geometric restraints (using previously determined geometries for [Cl3PNPCl3] cations) caused the refinement to become unstable.

Computing details top

For all compounds, data collection: COLLECT (Nonius BV, 2001); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXTL (Sheldrick, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, y, 3/2 - z; (ii) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. View of (II), with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, y, 3/2 - z; (ii) 1 - x, 1 - y, 1 - z.]
[Figure 3] Fig. 3. View of (III), with displacement ellipsoids drawn at the 50% probability level. The disorder component has been omitted for clarity.
[Figure 4] Fig. 4. View of (IV), with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) -x, -y, 1 - z; (ii) -x, y, z; (iii) 1/2 - x, y, 3/2 - z.]
[Figure 5] Fig. 5. Polyhedral representation of the crystal packing of structures (I) and (II).
[Figure 6] Fig. 6. Polyhedral representation of the crystal packing of structure (III).
[Figure 7] Fig. 7. Polyhedral representation of the crystal packing of structure (IV).
(I) Bis(trichlorophosphino)iminium hexachloroniobate top
Crystal data top
(Cl6NP2)[NbCl6]F(000) = 1128
Mr = 594.26Dx = 2.364 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 17033 reflections
a = 13.4095 (7) Åθ = 2.5–27.5°
b = 8.5268 (6) ŵ = 2.81 mm1
c = 15.0432 (9) ÅT = 150 K
β = 103.928 (4)°Block, yellow
V = 1669.47 (18) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1908 independent reflections
Radiation source: fine-focus sealed tube1676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ scans and ω scans with κ offsetsh = 1717
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.531, Tmax = 0.568l = 1918
6672 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0358P)2 + 2.7251P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.003
S = 1.08Δρmax = 0.95 e Å3
1908 reflectionsΔρmin = 0.78 e Å3
76 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0010 (2)
Crystal data top
(Cl6NP2)[NbCl6]V = 1669.47 (18) Å3
Mr = 594.26Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.4095 (7) ŵ = 2.81 mm1
b = 8.5268 (6) ÅT = 150 K
c = 15.0432 (9) Å0.23 × 0.20 × 0.20 mm
β = 103.928 (4)°
Data collection top
Nonius KappaCCD
diffractometer
1908 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
1676 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.568Rint = 0.029
6672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03176 parameters
wR(F2) = 0.0820 restraints
S = 1.08Δρmax = 0.95 e Å3
1908 reflectionsΔρmin = 0.78 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nb10.50000.50000.50000.01987 (14)
Cl10.43029 (6)0.52104 (10)0.34174 (5)0.03082 (19)
Cl20.33755 (5)0.55809 (10)0.52679 (5)0.0305 (2)
Cl30.46019 (6)0.23098 (9)0.49137 (5)0.02995 (19)
Cl40.36747 (6)0.13810 (10)0.67486 (7)0.0428 (2)
Cl50.33281 (6)0.06664 (10)0.83832 (5)0.0349 (2)
Cl60.29883 (6)0.21551 (10)0.64448 (5)0.0327 (2)
P10.38737 (5)0.07236 (9)0.72896 (5)0.02275 (19)
N10.50000.1297 (5)0.75000.0342 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.0221 (2)0.0193 (2)0.0186 (2)0.00044 (12)0.00564 (14)0.00037 (12)
Cl10.0373 (4)0.0343 (4)0.0195 (3)0.0025 (3)0.0042 (3)0.0018 (3)
Cl20.0254 (4)0.0340 (4)0.0343 (4)0.0006 (3)0.0113 (3)0.0056 (3)
Cl30.0349 (4)0.0202 (4)0.0339 (4)0.0027 (3)0.0067 (3)0.0010 (3)
Cl40.0375 (4)0.0274 (5)0.0617 (6)0.0019 (3)0.0087 (4)0.0169 (4)
Cl50.0379 (4)0.0387 (5)0.0306 (4)0.0030 (3)0.0128 (3)0.0059 (3)
Cl60.0306 (4)0.0351 (5)0.0307 (4)0.0041 (3)0.0039 (3)0.0072 (3)
P10.0183 (3)0.0197 (4)0.0305 (4)0.0002 (3)0.0065 (3)0.0008 (3)
N10.0221 (17)0.025 (2)0.056 (2)0.0000.0105 (16)0.000
Geometric parameters (Å, º) top
Nb1—Cl12.3457 (7)Cl5—P11.9554 (11)
Nb1—Cl32.3517 (7)Cl6—P11.9464 (10)
Nb1—Cl22.3613 (7)P1—N11.5460 (14)
Cl4—P11.9620 (11)
Cl1—Nb1—Cl1i180.000 (1)Cl1i—Nb1—Cl2i89.92 (3)
Cl1—Nb1—Cl3i90.64 (3)Cl3i—Nb1—Cl2i90.43 (3)
Cl1i—Nb1—Cl3i89.36 (3)Cl3—Nb1—Cl2i89.57 (3)
Cl1—Nb1—Cl389.36 (3)Cl2—Nb1—Cl2i180.0
Cl1i—Nb1—Cl390.64 (3)N1—P1—Cl6110.34 (12)
Cl3i—Nb1—Cl3180.0N1—P1—Cl5112.37 (5)
Cl1—Nb1—Cl289.92 (3)Cl6—P1—Cl5105.78 (5)
Cl1i—Nb1—Cl290.08 (3)N1—P1—Cl4113.76 (13)
Cl3i—Nb1—Cl289.57 (3)Cl6—P1—Cl4107.58 (5)
Cl3—Nb1—Cl290.43 (3)Cl5—P1—Cl4106.57 (5)
Cl1—Nb1—Cl2i90.08 (3)P1—N1—P1ii143.1 (3)
Cl6—P1—N1—P1ii145.96 (6)Cl4—P1—N1—P1ii24.95 (5)
Cl5—P1—N1—P1ii96.25 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2.
(II) Bis(trichlorophosphino)iminium hexachlorotantalate top
Crystal data top
(Cl6NP2)[TaCl6]F(000) = 1256
Mr = 682.30Dx = 2.711 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10506 reflections
a = 13.3957 (5) Åθ = 2.5–27.5°
b = 8.5165 (4) ŵ = 8.66 mm1
c = 15.0937 (5) ÅT = 150 K
β = 103.855 (3)°Needle, colourless
V = 1671.86 (11) Å30.21 × 0.17 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1917 independent reflections
Radiation source: fine-focus sealed tube1675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ scans and ω scans with κ offsetsh = 1717
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.200, Tmax = 0.271l = 1919
6759 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.5713P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.29 e Å3
1917 reflectionsΔρmin = 1.35 e Å3
76 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00092 (12)
Crystal data top
(Cl6NP2)[TaCl6]V = 1671.86 (11) Å3
Mr = 682.30Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.3957 (5) ŵ = 8.66 mm1
b = 8.5165 (4) ÅT = 150 K
c = 15.0937 (5) Å0.21 × 0.17 × 0.15 mm
β = 103.855 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1917 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
1675 reflections with I > 2σ(I)
Tmin = 0.200, Tmax = 0.271Rint = 0.043
6759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02776 parameters
wR(F2) = 0.0690 restraints
S = 1.08Δρmax = 1.29 e Å3
1917 reflectionsΔρmin = 1.35 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ta10.50000.50000.50000.01880 (11)
Cl10.43104 (9)0.52079 (12)0.34243 (7)0.0296 (2)
Cl20.33754 (7)0.55757 (14)0.52638 (7)0.0298 (2)
Cl30.46034 (8)0.23099 (12)0.49147 (7)0.0295 (2)
Cl40.36758 (8)0.13868 (14)0.67504 (9)0.0427 (3)
Cl50.33272 (8)0.06577 (15)0.83807 (7)0.0348 (3)
Cl60.29916 (8)0.21558 (13)0.64515 (7)0.0321 (2)
P10.38721 (7)0.07149 (12)0.72910 (7)0.0225 (2)
N10.50000.1287 (6)0.75000.0370 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.02090 (15)0.01762 (16)0.01829 (16)0.00047 (7)0.00553 (10)0.00070 (7)
Cl10.0359 (6)0.0331 (6)0.0183 (5)0.0020 (4)0.0038 (4)0.0012 (4)
Cl20.0248 (5)0.0325 (6)0.0340 (5)0.0014 (4)0.0111 (4)0.0050 (5)
Cl30.0342 (5)0.0196 (5)0.0342 (5)0.0025 (4)0.0070 (4)0.0014 (4)
Cl40.0365 (6)0.0271 (6)0.0625 (8)0.0012 (5)0.0079 (5)0.0178 (5)
Cl50.0380 (6)0.0379 (7)0.0311 (5)0.0031 (5)0.0134 (4)0.0057 (5)
Cl60.0295 (5)0.0343 (6)0.0312 (5)0.0045 (4)0.0044 (4)0.0079 (4)
P10.0185 (4)0.0185 (6)0.0311 (5)0.0004 (4)0.0070 (4)0.0000 (4)
N10.020 (2)0.026 (3)0.064 (4)0.0000.009 (2)0.000
Geometric parameters (Å, º) top
Ta1—Cl12.3428 (11)Cl5—P11.9532 (14)
Ta1—Cl32.3484 (10)Cl6—P11.9460 (14)
Ta1—Cl22.3559 (9)P1—N11.546 (2)
Cl4—P11.9586 (15)
Cl1—Ta1—Cl1i180.0Cl1i—Ta1—Cl2i90.01 (4)
Cl1—Ta1—Cl389.37 (4)Cl3—Ta1—Cl2i89.64 (4)
Cl1i—Ta1—Cl390.63 (4)Cl3i—Ta1—Cl2i90.36 (4)
Cl1—Ta1—Cl3i90.63 (4)Cl2—Ta1—Cl2i180.0
Cl1i—Ta1—Cl3i89.37 (4)N1—P1—Cl6110.14 (17)
Cl3—Ta1—Cl3i180.0N1—P1—Cl5112.33 (7)
Cl1—Ta1—Cl290.01 (4)Cl6—P1—Cl5105.88 (6)
Cl1i—Ta1—Cl289.99 (4)N1—P1—Cl4113.59 (18)
Cl3—Ta1—Cl290.36 (4)Cl6—P1—Cl4107.76 (7)
Cl3i—Ta1—Cl289.64 (4)Cl5—P1—Cl4106.74 (7)
Cl1—Ta1—Cl2i89.99 (4)P1—N1—P1ii143.3 (4)
Cl6—P1—N1—P1ii146.05 (8)Cl4—P1—N1—P1ii25.08 (7)
Cl5—P1—N1—P1ii96.20 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2.
(III) Bis(trichlorophosphino)iminium tri-µ-chloro-bis[trichlorotitanium(IV)] top
Crystal data top
(Cl6NP2)[Ti2Cl9]Z = 2
Mr = 703.50F(000) = 672
Triclinic, P1Dx = 2.213 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9436 (4) ÅCell parameters from 12979 reflections
b = 9.0892 (4) Åθ = 4.3–26.3°
c = 14.2963 (6) ŵ = 2.79 mm1
α = 91.770 (2)°T = 250 K
β = 105.714 (3)°Needle, colourless
γ = 107.973 (2)°0.25 × 0.15 × 0.15 mm
V = 1055.78 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
4258 independent reflections
Radiation source: fine-focus sealed tube3346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 9 pixels mm-1θmax = 26.3°, θmin = 4.3°
ϕ scans and ω scans with κ offsetsh = 011
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
k = 1110
Tmin = 0.526, Tmax = 0.660l = 1717
12979 measured reflections
Refinement top
Refinement on F257 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.036Secondary atom site location: difference Fourier map
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0575P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4258 reflectionsΔρmax = 0.51 e Å3
248 parametersΔρmin = 0.54 e Å3
Crystal data top
(Cl6NP2)[Ti2Cl9]γ = 107.973 (2)°
Mr = 703.50V = 1055.78 (8) Å3
Triclinic, P1Z = 2
a = 8.9436 (4) ÅMo Kα radiation
b = 9.0892 (4) ŵ = 2.79 mm1
c = 14.2963 (6) ÅT = 250 K
α = 91.770 (2)°0.25 × 0.15 × 0.15 mm
β = 105.714 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4258 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
3346 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.660Rint = 0.039
12979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036248 parameters
wR(F2) = 0.09957 restraints
S = 1.02Δρmax = 0.51 e Å3
4258 reflectionsΔρmin = 0.54 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.35977 (6)0.20032 (6)0.07903 (4)0.03053 (15)
Ti20.54436 (7)0.18594 (6)0.32013 (4)0.03525 (16)
Cl100.81739 (11)0.27859 (12)0.37889 (7)0.0575 (3)
Cl110.50611 (12)0.04308 (10)0.37568 (6)0.0486 (2)
Cl120.48944 (12)0.30989 (11)0.43719 (6)0.0507 (2)
Cl130.51682 (10)0.29241 (10)0.01527 (6)0.0430 (2)
Cl140.19919 (10)0.02184 (9)0.01198 (6)0.0435 (2)
Cl150.19202 (10)0.33726 (10)0.03959 (6)0.0469 (2)
Cl160.25198 (9)0.11061 (9)0.21983 (5)0.03626 (19)
Cl170.55712 (10)0.07112 (9)0.16598 (6)0.03882 (19)
Cl180.54615 (9)0.40449 (8)0.21881 (5)0.03630 (18)
N11.0190 (5)0.6578 (5)0.3119 (3)0.0703 (13)0.852 (6)
P10.9470 (2)0.77731 (19)0.34034 (16)0.0394 (10)0.852 (6)
P21.0800 (2)0.57493 (19)0.24280 (18)0.0396 (8)0.852 (6)
Cl10.8195 (2)0.8451 (3)0.22815 (15)0.0813 (6)0.852 (6)
Cl21.1151 (3)0.9636 (3)0.41932 (16)0.0594 (6)0.852 (6)
Cl30.8014 (3)0.6936 (3)0.4199 (2)0.0558 (5)0.852 (6)
Cl41.2374 (2)0.4844 (3)0.31688 (14)0.0664 (5)0.852 (6)
Cl51.1869 (4)0.7110 (3)0.16047 (19)0.0633 (6)0.852 (6)
Cl60.9013 (3)0.4073 (3)0.15365 (16)0.0582 (5)0.852 (6)
N1A0.9703 (14)0.6649 (14)0.2651 (9)0.072 (9)*0.148 (6)
P1A0.9404 (9)0.7795 (8)0.3313 (6)0.032 (5)*0.148 (6)
P2A1.0706 (10)0.5770 (9)0.2309 (6)0.029 (4)*0.148 (6)
Cl1A0.8152 (12)0.9016 (13)0.2593 (8)0.0716 (18)0.148 (6)
Cl2A1.1438 (12)0.9262 (14)0.4175 (8)0.051 (2)0.148 (6)
Cl3A0.8185 (18)0.6721 (19)0.4178 (11)0.058 (2)0.148 (6)
Cl4A1.2195 (11)0.5296 (14)0.3422 (7)0.0622 (19)0.148 (6)
Cl5A1.203 (2)0.691 (2)0.1519 (10)0.059 (2)0.148 (6)
Cl6A0.9304 (13)0.3808 (14)0.1511 (9)0.0488 (19)0.148 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0302 (3)0.0306 (3)0.0295 (3)0.0084 (2)0.0087 (2)0.0032 (2)
Ti20.0362 (3)0.0358 (3)0.0313 (3)0.0102 (3)0.0080 (2)0.0047 (2)
Cl100.0377 (5)0.0667 (6)0.0557 (6)0.0091 (4)0.0021 (4)0.0170 (5)
Cl110.0585 (5)0.0413 (5)0.0448 (5)0.0162 (4)0.0127 (4)0.0138 (4)
Cl120.0669 (6)0.0525 (5)0.0342 (4)0.0229 (5)0.0143 (4)0.0007 (4)
Cl130.0401 (4)0.0469 (5)0.0395 (4)0.0061 (4)0.0171 (4)0.0068 (3)
Cl140.0446 (5)0.0372 (4)0.0391 (4)0.0025 (4)0.0107 (4)0.0035 (3)
Cl150.0422 (5)0.0474 (5)0.0541 (5)0.0213 (4)0.0112 (4)0.0100 (4)
Cl160.0333 (4)0.0391 (4)0.0356 (4)0.0073 (3)0.0141 (3)0.0051 (3)
Cl170.0438 (4)0.0426 (4)0.0378 (4)0.0235 (4)0.0137 (3)0.0055 (3)
Cl180.0379 (4)0.0295 (4)0.0353 (4)0.0057 (3)0.0074 (3)0.0020 (3)
N10.104 (4)0.073 (3)0.065 (3)0.057 (3)0.041 (3)0.007 (2)
P10.0444 (13)0.0440 (13)0.0328 (9)0.0211 (7)0.0096 (5)0.0018 (4)
P20.0429 (10)0.0391 (10)0.0404 (9)0.0188 (6)0.0124 (6)0.0005 (5)
Cl10.0887 (10)0.1117 (16)0.0548 (10)0.0615 (10)0.0052 (8)0.0223 (10)
Cl20.0570 (9)0.0571 (11)0.0530 (7)0.0029 (7)0.0253 (7)0.0092 (7)
Cl30.0517 (8)0.0523 (10)0.0591 (8)0.0039 (6)0.0262 (6)0.0057 (7)
Cl40.0672 (8)0.0838 (12)0.0605 (9)0.0504 (8)0.0089 (7)0.0105 (8)
Cl50.0782 (11)0.0428 (10)0.0620 (9)0.0034 (7)0.0291 (7)0.0056 (8)
Cl60.0384 (9)0.0654 (11)0.0591 (7)0.0003 (7)0.0178 (7)0.0099 (7)
Cl1A0.086 (3)0.104 (4)0.052 (3)0.075 (3)0.013 (3)0.013 (3)
Cl2A0.044 (3)0.055 (4)0.048 (3)0.004 (3)0.021 (3)0.005 (3)
Cl3A0.058 (4)0.051 (4)0.052 (3)0.002 (3)0.020 (3)0.005 (3)
Cl4A0.059 (3)0.080 (4)0.058 (3)0.043 (3)0.009 (3)0.014 (3)
Cl5A0.073 (3)0.041 (3)0.064 (3)0.005 (3)0.040 (3)0.002 (3)
Cl6A0.034 (3)0.045 (3)0.069 (3)0.010 (2)0.025 (3)0.025 (2)
Geometric parameters (Å, º) top
Ti1—Cl152.2036 (10)P1—Cl11.938 (2)
Ti1—Cl132.2047 (9)P1—Cl21.9477 (16)
Ti1—Cl142.2065 (9)P1—Cl31.9531 (16)
Ti1—Cl172.4941 (9)P2—Cl41.934 (2)
Ti1—Cl182.5047 (9)P2—Cl61.9426 (16)
Ti1—Cl162.5127 (8)P2—Cl51.9488 (18)
Ti2—Cl112.2115 (10)N1A—P1A1.517 (3)
Ti2—Cl102.2256 (11)N1A—P2A1.528 (3)
Ti2—Cl122.2319 (10)P1A—Cl1A1.938 (2)
Ti2—Cl172.4548 (9)P1A—Cl2A1.9477 (18)
Ti2—Cl162.4832 (9)P1A—Cl3A1.9532 (18)
Ti2—Cl182.4930 (9)P2A—Cl4A1.934 (2)
N1—P11.519 (3)P2A—Cl6A1.9429 (18)
N1—P21.530 (3)P2A—Cl5A1.949 (2)
Cl15—Ti1—Cl1398.57 (4)Ti2—Cl16—Ti186.43 (3)
Cl15—Ti1—Cl1498.77 (4)Ti2—Cl17—Ti187.45 (3)
Cl13—Ti1—Cl1499.31 (4)Ti2—Cl18—Ti186.39 (3)
Cl15—Ti1—Cl17165.71 (4)P1—N1—P2154.3 (3)
Cl13—Ti1—Cl1790.38 (3)N1—P1—Cl1113.0 (2)
Cl14—Ti1—Cl1790.69 (4)N1—P1—Cl2112.55 (19)
Cl15—Ti1—Cl1890.80 (3)Cl1—P1—Cl2107.08 (10)
Cl13—Ti1—Cl1891.66 (3)N1—P1—Cl3111.23 (19)
Cl14—Ti1—Cl18164.15 (4)Cl1—P1—Cl3106.92 (9)
Cl17—Ti1—Cl1877.75 (3)Cl2—P1—Cl3105.66 (9)
Cl15—Ti1—Cl1691.36 (3)N1—P2—Cl4110.3 (2)
Cl13—Ti1—Cl16165.03 (4)N1—P2—Cl6111.82 (18)
Cl14—Ti1—Cl1690.15 (3)Cl4—P2—Cl6107.47 (8)
Cl17—Ti1—Cl1677.84 (3)N1—P2—Cl5113.88 (18)
Cl18—Ti1—Cl1676.94 (3)Cl4—P2—Cl5107.10 (8)
Cl11—Ti2—Cl1097.92 (4)Cl6—P2—Cl5105.92 (10)
Cl11—Ti2—Cl1298.20 (4)P1A—N1A—P2A155.8 (4)
Cl10—Ti2—Cl1297.33 (4)N1A—P1A—Cl1A112.9 (2)
Cl11—Ti2—Cl1789.98 (3)N1A—P1A—Cl2A112.7 (2)
Cl10—Ti2—Cl1791.88 (4)Cl1A—P1A—Cl2A107.03 (14)
Cl12—Ti2—Cl17166.69 (4)N1A—P1A—Cl3A111.2 (2)
Cl11—Ti2—Cl1692.26 (4)Cl1A—P1A—Cl3A106.91 (13)
Cl10—Ti2—Cl16166.44 (4)Cl2A—P1A—Cl3A105.62 (12)
Cl12—Ti2—Cl1690.02 (4)N1A—P2A—Cl4A110.4 (2)
Cl17—Ti2—Cl1679.14 (3)N1A—P2A—Cl6A111.7 (2)
Cl11—Ti2—Cl18166.04 (4)Cl4A—P2A—Cl6A107.45 (13)
Cl10—Ti2—Cl1890.67 (4)N1A—P2A—Cl5A113.9 (2)
Cl12—Ti2—Cl1891.55 (3)Cl4A—P2A—Cl5A107.09 (12)
Cl17—Ti2—Cl1878.70 (3)Cl6A—P2A—Cl5A105.92 (13)
Cl16—Ti2—Cl1877.70 (3)
Cl11—Ti2—Cl16—Ti1128.87 (3)Cl10—Ti2—Cl18—Ti1131.46 (4)
Cl10—Ti2—Cl16—Ti19.87 (18)Cl12—Ti2—Cl18—Ti1131.18 (4)
Cl12—Ti2—Cl16—Ti1132.93 (3)Cl17—Ti2—Cl18—Ti139.68 (3)
Cl17—Ti2—Cl16—Ti139.32 (3)Cl16—Ti2—Cl18—Ti141.51 (3)
Cl18—Ti2—Cl16—Ti141.34 (3)Cl15—Ti1—Cl18—Ti2132.27 (3)
Cl15—Ti1—Cl16—Ti2131.76 (3)Cl13—Ti1—Cl18—Ti2129.13 (3)
Cl13—Ti1—Cl16—Ti20.01 (15)Cl14—Ti1—Cl18—Ti24.88 (14)
Cl14—Ti1—Cl16—Ti2129.47 (3)Cl17—Ti1—Cl18—Ti239.10 (3)
Cl17—Ti1—Cl16—Ti238.79 (3)Cl16—Ti1—Cl18—Ti241.06 (3)
Cl18—Ti1—Cl16—Ti241.26 (3)P2—N1—P1—Cl123.6 (8)
Cl11—Ti2—Cl17—Ti1131.93 (4)P2—N1—P1—Cl297.9 (7)
Cl10—Ti2—Cl17—Ti1130.15 (4)P2—N1—P1—Cl3143.8 (7)
Cl12—Ti2—Cl17—Ti13.73 (18)P1—N1—P2—Cl4155.0 (7)
Cl16—Ti2—Cl17—Ti139.62 (3)P1—N1—P2—Cl685.5 (7)
Cl18—Ti2—Cl17—Ti139.84 (3)P1—N1—P2—Cl534.5 (8)
Cl15—Ti1—Cl17—Ti22.38 (16)P2A—N1A—P1A—Cl1A138 (2)
Cl13—Ti1—Cl17—Ti2131.40 (3)P2A—N1A—P1A—Cl2A16 (2)
Cl14—Ti1—Cl17—Ti2129.28 (3)P2A—N1A—P1A—Cl3A102 (2)
Cl18—Ti1—Cl17—Ti239.78 (3)P1A—N1A—P2A—Cl4A36 (2)
Cl16—Ti1—Cl17—Ti239.28 (3)P1A—N1A—P2A—Cl6A156 (2)
Cl11—Ti2—Cl18—Ti13.27 (17)P1A—N1A—P2A—Cl5A84 (2)
(IV) Bis[bis(trichlorophosphino)iminium] di-µ-chloro-bis[tetrachlorozirconium(IV)] top
Crystal data top
(Cl6NP2)2[Zr2Cl10]F(000) = 2112
Mr = 1114.24Dx = 2.285 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 7047 reflections
a = 18.0456 (4) Åθ = 3.3–26.5°
b = 11.4295 (6) ŵ = 2.66 mm1
c = 15.7039 (5) ÅT = 250 K
V = 3239.0 (2) Å3Needle, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1725 independent reflections
Radiation source: fine-focus sealed tube1386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9 pixels mm-1θmax = 26.5°, θmin = 3.3°
ϕ scans and ω scans with κ offsetsh = 2222
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
k = 1414
Tmin = 0.498, Tmax = 0.769l = 190
7407 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0297P)2 + 3.226P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.40 e Å3
1725 reflectionsΔρmin = 0.40 e Å3
76 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00067 (9)
Crystal data top
(Cl6NP2)2[Zr2Cl10]V = 3239.0 (2) Å3
Mr = 1114.24Z = 4
Orthorhombic, CmcaMo Kα radiation
a = 18.0456 (4) ŵ = 2.66 mm1
b = 11.4295 (6) ÅT = 250 K
c = 15.7039 (5) Å0.30 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1725 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
1386 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.769Rint = 0.051
7407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03076 parameters
wR(F2) = 0.0740 restraints
S = 1.06Δρmax = 0.40 e Å3
1725 reflectionsΔρmin = 0.40 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.00000.15039 (3)0.56964 (2)0.03063 (15)
Cl10.00000.07877 (9)0.41179 (7)0.0422 (3)
Cl20.00000.17037 (11)0.72136 (7)0.0470 (3)
Cl30.13433 (5)0.14417 (8)0.56419 (6)0.0552 (3)
Cl40.00000.34968 (10)0.52937 (9)0.0537 (3)
Cl50.11584 (6)0.40936 (9)0.73073 (7)0.0635 (3)
Cl60.14964 (6)0.63068 (9)0.61942 (6)0.0614 (3)
Cl70.24468 (6)0.40472 (8)0.59714 (6)0.0588 (3)
P10.19578 (5)0.50311 (8)0.68220 (5)0.0385 (2)
N10.25000.5532 (3)0.75000.0401 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0313 (3)0.0286 (2)0.0319 (2)0.0000.0000.00253 (16)
Cl10.0650 (8)0.0310 (5)0.0306 (5)0.0000.0000.0006 (4)
Cl20.0627 (8)0.0454 (7)0.0329 (6)0.0000.0000.0031 (5)
Cl30.0321 (5)0.0592 (6)0.0743 (6)0.0003 (4)0.0017 (4)0.0189 (5)
Cl40.0711 (9)0.0328 (6)0.0570 (7)0.0000.0000.0092 (5)
Cl50.0547 (6)0.0701 (7)0.0656 (6)0.0202 (5)0.0057 (5)0.0059 (5)
Cl60.0643 (6)0.0631 (6)0.0567 (5)0.0129 (5)0.0102 (5)0.0139 (5)
Cl70.0741 (7)0.0578 (6)0.0446 (5)0.0040 (5)0.0047 (4)0.0150 (4)
P10.0428 (5)0.0395 (5)0.0332 (4)0.0012 (4)0.0001 (3)0.0004 (3)
N10.047 (2)0.040 (2)0.0335 (19)0.0000.0014 (16)0.000
Geometric parameters (Å, º) top
Zr1—Cl42.3640 (12)Cl5—P11.9520 (12)
Zr1—Cl22.3935 (11)Cl6—P11.9471 (12)
Zr1—Cl32.4266 (9)Cl7—P11.9565 (12)
Zr1—Cl12.6106 (11)P1—N11.5554 (16)
Zr1—Cl1i2.6354 (12)
Cl4—Zr1—Cl2100.04 (5)Cl3—Zr1—Cl1i88.55 (2)
Cl4—Zr1—Cl391.08 (3)Cl3ii—Zr1—Cl1i88.55 (2)
Cl2—Zr1—Cl392.17 (2)Cl1—Zr1—Cl1i78.08 (4)
Cl4—Zr1—Cl3ii91.08 (3)Zr1—Cl1—Zr1i101.92 (4)
Cl2—Zr1—Cl3ii92.17 (2)N1—P1—Cl6109.86 (14)
Cl3—Zr1—Cl3ii174.74 (5)N1—P1—Cl5113.57 (8)
Cl4—Zr1—Cl192.76 (4)Cl6—P1—Cl5107.02 (6)
Cl2—Zr1—Cl1167.20 (4)N1—P1—Cl7113.29 (9)
Cl3—Zr1—Cl187.55 (2)Cl6—P1—Cl7106.12 (6)
Cl3ii—Zr1—Cl187.55 (2)Cl5—P1—Cl7106.52 (6)
Cl4—Zr1—Cl1i170.84 (4)P1—N1—P1iii136.8 (3)
Cl2—Zr1—Cl1i89.12 (4)
Cl4—Zr1—Cl1—Zr1i180.0Cl1i—Zr1—Cl1—Zr1i0.0
Cl2—Zr1—Cl1—Zr1i0.0Cl6—P1—N1—P1iii178.31 (6)
Cl3—Zr1—Cl1—Zr1i89.04 (3)Cl5—P1—N1—P1iii61.88 (7)
Cl3ii—Zr1—Cl1—Zr1i89.04 (3)Cl7—P1—N1—P1iii59.83 (7)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x+1/2, y, z+3/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula(Cl6NP2)[NbCl6](Cl6NP2)[TaCl6](Cl6NP2)[Ti2Cl9](Cl6NP2)2[Zr2Cl10]
Mr594.26682.30703.501114.24
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/cTriclinic, P1Orthorhombic, Cmca
Temperature (K)150150250250
a, b, c (Å)13.4095 (7), 8.5268 (6), 15.0432 (9)13.3957 (5), 8.5165 (4), 15.0937 (5)8.9436 (4), 9.0892 (4), 14.2963 (6)18.0456 (4), 11.4295 (6), 15.7039 (5)
α, β, γ (°)90, 103.928 (4), 9090, 103.855 (3), 9091.770 (2), 105.714 (3), 107.973 (2)90, 90, 90
V3)1669.47 (18)1671.86 (11)1055.78 (8)3239.0 (2)
Z4424
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)2.818.662.792.66
Crystal size (mm)0.23 × 0.20 × 0.200.21 × 0.17 × 0.150.25 × 0.15 × 0.150.30 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.531, 0.5680.200, 0.2710.526, 0.6600.498, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
6672, 1908, 1676 6759, 1917, 1675 12979, 4258, 3346 7407, 1725, 1386
Rint0.0290.0430.0390.051
(sin θ/λ)max1)0.6490.6490.6240.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.08 0.027, 0.069, 1.08 0.036, 0.099, 1.02 0.030, 0.074, 1.06
No. of reflections1908191742581725
No. of parameters767624876
No. of restraints00570
Δρmax, Δρmin (e Å3)0.95, 0.781.29, 1.350.51, 0.540.40, 0.40

Computer programs: COLLECT (Nonius BV, 2001), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXTL (Sheldrick, 1999), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
Nb1—Cl12.3457 (7)Nb1—Cl22.3613 (7)
Nb1—Cl32.3517 (7)P1—N11.5460 (14)
Cl1—Nb1—Cl3i90.64 (3)N1—P1—Cl4113.76 (13)
Cl1—Nb1—Cl389.36 (3)Cl6—P1—Cl4107.58 (5)
N1—P1—Cl6110.34 (12)Cl5—P1—Cl4106.57 (5)
N1—P1—Cl5112.37 (5)P1—N1—P1ii143.1 (3)
Cl6—P1—Cl5105.78 (5)
Cl6—P1—N1—P1ii145.96 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2.
Selected geometric parameters (Å, º) for (II) top
Ta1—Cl12.3428 (11)Ta1—Cl22.3559 (9)
Ta1—Cl32.3484 (10)P1—N11.546 (2)
Cl1—Ta1—Cl389.37 (4)N1—P1—Cl4113.59 (18)
Cl1i—Ta1—Cl390.63 (4)Cl6—P1—Cl4107.76 (7)
N1—P1—Cl6110.14 (17)Cl5—P1—Cl4106.74 (7)
N1—P1—Cl5112.33 (7)P1—N1—P1ii143.3 (4)
Cl6—P1—Cl5105.88 (6)
Cl6—P1—N1—P1ii146.05 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2.
Selected geometric parameters (Å, º) for (III) top
Ti1—Cl152.2036 (10)Ti2—Cl172.4548 (9)
Ti1—Cl172.4941 (9)Ti2—Cl162.4832 (9)
Ti1—Cl182.5047 (9)Ti2—Cl182.4930 (9)
Ti1—Cl162.5127 (8)N1—P11.519 (3)
Ti2—Cl122.2319 (10)N1—P21.530 (3)
Cl13—Ti1—Cl1499.31 (4)N1—P1—Cl2112.55 (19)
Cl15—Ti1—Cl17165.71 (4)Cl1—P1—Cl2107.08 (10)
Cl14—Ti1—Cl18164.15 (4)N1—P1—Cl3111.23 (19)
Cl13—Ti1—Cl16165.03 (4)Cl1—P1—Cl3106.92 (9)
Cl18—Ti1—Cl1676.94 (3)Cl2—P1—Cl3105.66 (9)
Cl12—Ti2—Cl17166.69 (4)N1—P2—Cl4110.3 (2)
Cl11—Ti2—Cl18166.04 (4)N1—P2—Cl6111.82 (18)
Ti2—Cl16—Ti186.43 (3)Cl4—P2—Cl6107.47 (8)
Ti2—Cl17—Ti187.45 (3)N1—P2—Cl5113.88 (18)
Ti2—Cl18—Ti186.39 (3)Cl4—P2—Cl5107.10 (8)
P1—N1—P2154.3 (3)Cl6—P2—Cl5105.92 (10)
N1—P1—Cl1113.0 (2)
P2—N1—P1—Cl3143.8 (7)P1—N1—P2—Cl4155.0 (7)
Selected geometric parameters (Å, º) for (IV) top
Zr1—Cl42.3640 (12)Zr1—Cl1i2.6354 (12)
Zr1—Cl32.4266 (9)P1—N11.5554 (16)
Zr1—Cl12.6106 (11)
Cl4—Zr1—Cl2100.04 (5)Zr1—Cl1—Zr1i101.92 (4)
Cl3—Zr1—Cl3ii174.74 (5)N1—P1—Cl6109.86 (14)
Cl2—Zr1—Cl1167.20 (4)N1—P1—Cl5113.57 (8)
Cl4—Zr1—Cl1i170.84 (4)N1—P1—Cl7113.29 (9)
Cl1—Zr1—Cl1i78.08 (4)P1—N1—P1iii136.8 (3)
Cl6—P1—N1—P1iii178.31 (6)Cl7—P1—N1—P1iii59.83 (7)
Cl5—P1—N1—P1iii61.88 (7)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x+1/2, y, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds