Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structures of (4-nitro­phenyl­sulfanyl­methyl)­tri­phenyl­stannane, [Sn(C6H5)3(C7H6NO2S)], (I), and (4-nitro­phenyl­sulfonyl­methyl)­tri­phenyl­stannane, [Sn(C6H5)3­(C7H6NO4S)], (II), the mol­ecules are linked by paired C-H...O hydrogen bonds into centrosymmetric dimers which combine to form sheets. In (I), two such dimers form to give R{_2^2}(10) and R{_2^2}(24) rings. In (II), similar dimers form, here with R{_2^2}(10) and R{_2^2}(18) rings, but with an additional dimer due to the presence of the sulfone group, giving R{_2^2}(10) rings. In both structures, C-H...[pi] interactions lead to a doubling of the width of the sheets.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102010375/sk1559sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102010375/sk1559Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102010375/sk1559IIsup3.hkl
Contains datablock II

CCDC references: 192953; 192954

Comment top

The intermolecular non-bonded interactions in a number of nitro, sulfido and sulfonyl aromatic derivatives have been investigated in the solid state (Kelly et al., 2002; Cannon et al., 2000, 2001; Glidewell et al., 2001; Wardell et al., 2000a,b). Continuating our studies, the structures of (4-nitrophenylsulfanylmethyl)triphenylstannane, (I), and (4-nitrophenylsulfonylmethyl)triphenylstannane, (II), have now been investigated and the results are presented here. \sch

Both (I) (Fig. 1) and (II) (Fig. 2) crystallize in the triclinic spacegroup P1 and form sheets via similar soft interactions. Molecules of (I) are linked by two different C—H···O hydrogen bonds (Table 1) into centrosymmetric dimers, where nitro O atoms act as acceptors. The phenyl atom C5 at (x,y,z) acts as a hydrogen-bond donor to nitro atom O1 at (3 - x, 2 - y, -z), thus forming a dimer characterized by an R22(10) motif with an inversion centre at (3/2,1,0). Similarly, atom C36 at (x,y,z) acts as a donor to nitro atom O2 at (2 - x, 1 - y, -z), giving an R22(24) ring with inversion centre at (1,1/2,0). These two dimers combine to form a sheet which propagates along [110] (Fig. 3). In addition, the phenyl rings of neighbouring molecules are weakly linked by C—H···π interactions. One of these interactions extends the sheet along the z direction; atom C15 at (x,y,z) donates to the C21—C26 phenyl ring at (1 - x, 2 - y, 1 - z), with a distance of 3.661 (3) Å between atom C15 and the ring centroid. Such dimers are shown in Fig. 4, and they have the effect of doubling the width of the sheets shown in Fig. 3.

Molecules of (II) are also linked via intermolecular C—H···O interactions. In this case, the sulfone group leads to one further bond (Table 2). Considering the nitro acceptor interactions first, phenyl atom C5 at (x,y,z) acts as a hydrogen-bond donor to nitro atom O1 at (-x, 1 - y, -z), to give an R22(10) motif centred at (0,1/2,0). Similarly, atom C7 at (x,y,z) donates to the nitro atom O2 at (-x, 2 - y, -z), giving an R22(18) ring centred at (0,1,0), forming a chain along [010] (Fig. 5). Thus, the effect of the sulfone group is to alter the local conformation and thus the C—H···O bonding to the second nitro O atom. In (I), a phenyl H atom from the Ph3Sn group acts as the donor, whereas in (II) the CH2 is the donor, effectively contracting the size of the R22(X) ring.

An extra hydrogen bond occurs due to the presence of the sulfone group. The phenyl atom C2 at (x,y,z) acts as a hydrogen-bond donor to the sulfone atom O4 at (1 - x, 2 - y, -z), forming an R22(10) motif with an inversion centre at (1/2,1,0). These three dimers thus combine to form a sheet which propagates along [110] (Fig. 6), as in the structure of (I).

As with (I), phenyl groups in (II) form C—H···π interactions with neighbouring molecules within the sheet. In addition, atom C33 at (x,y,z) donates a hydrogen bond to the C21—C26 phenyl ring at (2 - x, 1 - y, 1 - z), with a distance of 3.361 Å between the H atom and the centroid (Fig. 7), which, as in (I), has the effect of doubling the width of the sheet.

The Sn centre in (I) is four-coordinate; the bond angles, between 106.27 (10) and 114.64 (8)°, indicate a slightly distorted tetrahedral geometry. The Sn—C bond lengths are in the expected region and cover a narrow range, 2.138 (2)–2.172 (2) Å. The bond lengths in (II) show a greater range, with those involving the phenyl groups being between 2.1275 (15) and 2.1371 (15) Å, and the Sn—C-alkyl length being longer at 2.1815 (14) Å. The bond angles subtended at Sn in (II) range from 101.15 (5) to 111.76 (6)°, again indicative of a slightly distorted tetrahedral geometry. The closest Sn—Osulfone separation is Sn—O4 3.5906 (12) Å, a little within the sum of the van der Waals radii of 3.70 Å.

A number of related triphenyl-Sn and –Ge structures have been reported, along with one related iododiphenyltin compound (CSD database, Release?; Allen & Kennard, 1993). These are Ph3GeCH2SO2C6H5 (CSD refcode GESYIM; Howie & Wardell, 1997), Ph3Sn(CH2)2CH(SC6H4NO2-2)CH2Cl (ZIKHOQ; Aupers & Wardell, 1995), Ph3Sn(CH2)2SO2C6H4Me-4 [(III), n = 2, YEZVEE; Cox & Wardell, 1994), Ph3Sn(CH2)4SO2C6H4Me-4 [(III), n = 4, YEZVII; Cox & Wardell, 1994), Ph3Sn(CH2)3SO2C6H4Me-4 [(III), n = 3, ZAVHIN, Howie & Wardell, 1994), IPh2Sn(CH2)3SO2C6H4Me-4 (ZAVHOT; Howie & Wardell, 1994), Ph3SnCHClCH2SC6H3NO2-2-Me-4 (PAGHEK; Howie et al., 1992), Ph3SnCH(SCN)CH2SC6H4NO2-2 (PAGHIO; Howie et al., 1992), cyclohexyl3SnCH2SC6H4tBu-4 (JERMIC; Cox et al., 1990), Ph3Ge(CH2)SO2C6H5 (NOJXEP; Wardell & Cox, 1996), Ph3SnC(SMe) CHC6H5 (GODLOA and GODLUG; Bruhn et al., 1999), Ph3SnC(SCH2Ph)CHCHC(SCH2Ph)SnPh3 (POMXUK; Block et al., 1994) and Ph3SnCH2CH2SC6H4Me-4 (ZUWQIR; Cox et al., 1995).

Of these, the first four (GESYIM, ZIKHOQ, YEZVEE and YEZVII) have C—H···O bonds which can be considered in relation to (I) and (II). The latter four compounds (GODLOA, GODLUG, POMXUK and ZUWQIR) display C—H···S interactions, while the rest do not form hydrogen bonds as detected by PLATON (Spek, 2002).

Ph3GeCH2SO2C6H5 (GESYIM), a Ge analogue to (II), forms hydrogen bonds via the CH2 as donor to a sulfone O atom, thus forming simple C(4) chains along [001]. No rings are formed. Ph3Sn(CH2)2CH(SC6H4NO2-2)CH2Cl (ZIKHOQ), in which the nitro group is ortho to S, again has CH2 as the donor with one nitro O atom as acceptor, forming R22(16) dimers. The other H atom of the CH2 donates to the other nitro O atom, to form a chain of dimers along [001]. Ph3Sn(CH2)2SO2C6H4Me-4 (YEZVEE) again donates a hydrogen bond via the CH2 adjacent to S to a sulfone O atom; in addition, a phenyl H atom acts as a donor to the same O atom, forming R32(13) groups which link to give C(8) chains along [100]. In the related compound Ph3Sn(CH2)4SO2C6H4Me-4 (YEZVII), similar hydrogen bonding occurs, although here via the third CH2 group from S, to give an R32(16) motif, linking to give C(12) chains along [010]. Both motifs are enlarged by the extra CH2 groups in the latter compound.

The products of the reactions of ω-sulfidoalkylstannanes, R3Sn(CH2)nSR', with oxidants depend greatly on n and on the oxidant. For example, (II) was obtained by H2O2 oxidation of (I), whereas the reaction of the related compound, Ph3Sn(CH2)nSC6H4Me-4 [(IV), n = 1] with NaIO4 led to the cleavage of the molecule with formation of Ph3SnCH2I and 4-MeC6H4SO3H (Taylor & Wardell, 1976; see also Peterson, 1971). The use of 3-ClC6H4CO3H with (IV) with n = 1 also resulted in cleavage (Wardell, unpublished observation). In contrast, oxidations of (IV) with n = 3 or 4 proceeded readily to the sulfones (III) with n = 3 or 4, or the corresponding sulfoxides, depending on the molar ratios of the reagents (Wardell & Wigzell, 1983). Particularly sensitive to oxidants is (IV) with n = 2. The reaction of (IV) with n = 2 with either NaIO4 or 3-ClC6H4CO3H led to ethylene loss (Wardell & Wigzell, 1983). Compound (IV) with n = 2 was, however, obtained by the addition of Ph3SnH to H2CCHSO2C6H4Me-4 (Wardell & Wigzell, 1983). A contrast between Ge and Sn compounds is clear from the reactions of Ph3MCH2SR' (M is Ge or Sn) with 3-ClC6H4CO3H or Br2. The Br2R3SnCH2SR' reactions invariably result in Sn—C bond cleavage, while the Ge compounds can be oxidized to Ph3GeCH2SOmR (m = 1 or 2) by either Br2 in MeOH or 3-ClC6H4CO3H (Taylor & Wardell, 1976; Wardell & Cox, 1996).

Experimental top

Compound (I) was prepared from Ph3SnCH2I, HSC6H4NO2 and NaOEt (2 mmol scale) in EtOH (20 ml). After refluxing for 2 h, the mixture was cooled, all volatiles removed and the residue recrystallized from EtOH (m.p. 416–418 K). Analysis found: C 58.4, H 5.5, S 6.3, N 3.1%; calculated for C24H21NO2SSn: C 58.0, H 4.1, S 6.2, N 2.7%. Spectroscopic analysis: 1H NMR (250 Hz, CDCl3, δ, p.p.m.): 2.88 [s, 2H, J(119,117Sn-1H) = 48.8 Hz, CH2], 7.41 (m, 11H, m-H + p-H of Ph3Sn + 2H from C6H4), 7.60 [m, 6H, J(119,117Sn-1H) ~57 Hz, o-H of Ph3Sn], 8.10 (d, 2H, J = 8.8 Hz, C6H4); 13C NMR (63.3 Hz, CDCl3, δ, p.p.m.): 5.2 (CH2), 123.8 (C3), 124.6 (C2), 128.9 (m-C of Ph3Sn), 129.7 (p-C of Ph3Sn), 136.7 (i-C of Ph3Sn), 137.0 (o-C of Ph3Sn), 144.0 (C1), 152.7 (C4); 119Sn NMR (93.3 Hz, CD2Cl2, δ, p.p.m.): -118; IR (KBr, cm-1): 1578 and 1339 (NO2); Raman (cm-1): 1587, 1331.

Compound (II) was obtained by H2O2 oxidation (30% solution in water) of (I) in a mixed H2O—CH2Cl2 medium. After stirring the reaction mixture overnight at room temperature, all volatiles were removed and the residue was recrystallized from EtOH (m.p. 472–475 K). Spectroscopic analysis: 1H NMR (250 Hz, CDCl3, δ, p.p.m.): 3.44 [s, 2H, J(119,117Sn-1H) = 41.2 Hz, CH2], 7.43 (m, 9H, p-H + m-H of Ph3Sn), 7.63 [m, 6H, J(119,117Sn-1H) ~60 Hz, o-H of Ph3Sn], 8.06 (d, 2H, J = 8.6 Hz, C6H4), 8.28 (m, 2H, J = 8.6 Hz, C6H4); 13C NMR (63.3 Hz, CDCl3, δ, p.p.m.): 44.5 (CH2), 124.4 (C3), 128.2 (C2), 129.0 (m-C of Ph3Sn), 129.9 (p-C of Ph3Sn), 135.8 (i-C of Ph3Sn), 137.0 (o-C of Ph3Sn), C4 and C1 not observed; IR (nujol mull, cm-1): 1527 and 1304 (NO2), 1377 and 1145 (SO2).

Refinement top

Structure (I) was solved using Patterson methods (SHELXS86; Sheldrick, 1990) in P1, and then the coordinates were converted to P1. A l l H atoms were placed in geometrical positions, with C—H distances of 0.95–0.99 Å, and refined using a riding model. Are these the correct constraints?

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (I); SMART (Bruker, 1999) for (II). Cell refinement: DENZO and COLLECT for (I); SAINT (Bruker, 1999) for (II). Data reduction: DENZO and COLLECT for (I); SAINT for (II). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990) for (I); SHELXS97 (Sheldrick, 1990) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX in OSCAIL (McArdle, 1994, 2000) and ORTEPIII for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the molecule of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing dimers containing R22(10) and R22(24) rings. Atoms marked with a hash sign (#) are at the symmetry position (3 - x, 2 - y, -z) for atoms C5 and O1, and (2 - x, 1 - y, -z) for atoms C36 and O2.
[Figure 4] Fig. 4. The dimers formed from C—H···π interactions in (I) via the symmetry translation (1 - x, 2 - y, 1 - z).
[Figure 5] Fig. 5. Part of the crystal structure of (II) showing dimers containing R22(10) and R22(18) rings. Atoms marked with a hash sign (#) are at the symmetry position (-x, 1 - y, -z) for atoms C5 and O1, and (-x, 2 - y, -z) for atoms C7 and O2.
[Figure 6] Fig. 6. The chains formed from C—H···O interactions in (II).
[Figure 7] Fig. 7. The dimers formed from C—H···π interactions in (II) via the symmetry translation (1 - x, 2 - y, 1 - z).
(I) (4-nitrophenylsulfanylmethyl)triphenylstannane top
Crystal data top
[Sn(C6H5)3(C7H6NO2S)]Z = 2
Mr = 518.18F(000) = 520
Triclinic, P1Dx = 1.555 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6442 (1) ÅCell parameters from 12524 reflections
b = 10.3070 (2) Åθ = 2.9–27.5°
c = 17.2597 (4) ŵ = 1.27 mm1
α = 100.3385 (8)°T = 150 K
β = 98.6403 (9)°Needle, yellow
γ = 103.6969 (16)°0.40 × 0.10 × 0.03 mm
V = 1106.51 (4) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
5030 independent reflections
Radiation source: fine-focus sealed tube4460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ/ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: empirical (using intensity measurements)
(SORTAV; Blessing, 1995, 1997)
h = 88
Tmin = 0.817, Tmax = 0.992k = 1313
16551 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0434P)2]
where P = (Fo2 + 2Fc2)/3
5030 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 1.39 e Å3
Crystal data top
[Sn(C6H5)3(C7H6NO2S)]γ = 103.6969 (16)°
Mr = 518.18V = 1106.51 (4) Å3
Triclinic, P1Z = 2
a = 6.6442 (1) ÅMo Kα radiation
b = 10.3070 (2) ŵ = 1.27 mm1
c = 17.2597 (4) ÅT = 150 K
α = 100.3385 (8)°0.40 × 0.10 × 0.03 mm
β = 98.6403 (9)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5030 independent reflections
Absorption correction: empirical (using intensity measurements)
(SORTAV; Blessing, 1995, 1997)
4460 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.992Rint = 0.052
16551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.06Δρmax = 0.82 e Å3
5030 reflectionsΔρmin = 1.39 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.53277 (2)0.721867 (15)0.286014 (9)0.02319 (7)
N11.4532 (3)0.7214 (2)0.03471 (13)0.0299 (5)
O11.5414 (3)0.81168 (19)0.06564 (12)0.0400 (5)
O21.4945 (4)0.6110 (2)0.03954 (14)0.0493 (6)
C10.9971 (4)0.7958 (2)0.10086 (14)0.0235 (5)
C21.0489 (4)0.6710 (2)0.09232 (15)0.0250 (5)
H20.98070.60220.11690.030*
C31.1991 (4)0.6474 (2)0.04825 (14)0.0250 (5)
H31.23680.56340.04330.030*
C41.2935 (4)0.7470 (2)0.01147 (14)0.0239 (5)
C51.2417 (4)0.8704 (3)0.01735 (15)0.0272 (5)
H51.30660.93720.00920.033*
C61.0955 (4)0.8945 (2)0.06216 (15)0.0281 (5)
H61.06010.97930.06710.034*
S10.82112 (11)0.84236 (7)0.15992 (4)0.03428 (16)
C70.7117 (4)0.6909 (3)0.19205 (16)0.0307 (6)
H1A0.82800.65280.21190.037*
H1B0.61780.62210.14510.037*
C110.4586 (3)0.9146 (2)0.30288 (14)0.0228 (5)
C120.4451 (4)0.9868 (3)0.24234 (15)0.0286 (5)
H120.47130.95080.19130.034*
C130.3939 (4)1.1108 (3)0.25563 (16)0.0331 (6)
H130.38391.15860.21360.040*
C140.3575 (4)1.1648 (3)0.32964 (17)0.0334 (6)
H140.32261.24970.33860.040*
C150.3720 (4)1.0956 (3)0.39042 (16)0.0349 (6)
H150.34771.13290.44150.042*
C160.4220 (4)0.9711 (3)0.37726 (15)0.0299 (6)
H160.43140.92380.41960.036*
C210.7299 (4)0.7186 (2)0.39528 (14)0.0245 (5)
C220.9143 (4)0.8229 (3)0.42788 (16)0.0315 (6)
H220.94830.89740.40240.038*
C231.0497 (4)0.8210 (3)0.49659 (17)0.0384 (7)
H231.17510.89350.51790.046*
C241.0018 (5)0.7129 (3)0.53421 (16)0.0407 (7)
H241.09480.71110.58130.049*
C250.8199 (5)0.6083 (3)0.50353 (17)0.0392 (7)
H250.78700.53450.52960.047*
C260.6843 (4)0.6102 (3)0.43459 (16)0.0326 (6)
H260.55910.53730.41370.039*
C310.2639 (4)0.5467 (2)0.25865 (14)0.0230 (5)
C320.0969 (4)0.5401 (3)0.29973 (15)0.0283 (5)
H320.10200.61490.34190.034*
C330.0751 (4)0.4263 (3)0.27971 (17)0.0354 (6)
H330.18800.42380.30780.042*
C340.0848 (4)0.3153 (3)0.21886 (17)0.0364 (6)
H340.20340.23700.20530.044*
C350.0798 (4)0.3200 (3)0.17842 (16)0.0337 (6)
H350.07460.24450.13680.040*
C360.2524 (4)0.4341 (2)0.19803 (15)0.0269 (5)
H360.36480.43580.16980.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02658 (11)0.02348 (11)0.02110 (11)0.00822 (7)0.00777 (7)0.00462 (7)
N10.0367 (12)0.0279 (12)0.0257 (11)0.0074 (9)0.0131 (9)0.0037 (9)
O10.0494 (12)0.0351 (11)0.0420 (12)0.0088 (9)0.0288 (9)0.0124 (9)
O20.0690 (15)0.0367 (12)0.0617 (15)0.0283 (11)0.0435 (12)0.0170 (11)
C10.0213 (11)0.0256 (13)0.0242 (12)0.0066 (9)0.0064 (9)0.0050 (10)
C20.0276 (12)0.0237 (13)0.0265 (13)0.0074 (10)0.0094 (10)0.0083 (10)
C30.0289 (12)0.0223 (12)0.0234 (13)0.0073 (10)0.0059 (10)0.0033 (10)
C40.0229 (11)0.0255 (13)0.0222 (12)0.0055 (10)0.0072 (9)0.0017 (10)
C50.0323 (13)0.0247 (13)0.0251 (13)0.0050 (10)0.0095 (10)0.0078 (10)
C60.0317 (13)0.0228 (13)0.0332 (14)0.0100 (10)0.0106 (11)0.0080 (11)
S10.0373 (4)0.0279 (3)0.0474 (4)0.0140 (3)0.0249 (3)0.0128 (3)
C70.0385 (14)0.0288 (14)0.0305 (14)0.0124 (11)0.0163 (11)0.0087 (11)
C110.0212 (11)0.0241 (12)0.0216 (12)0.0051 (9)0.0054 (9)0.0023 (10)
C120.0335 (13)0.0336 (14)0.0235 (13)0.0153 (11)0.0093 (10)0.0071 (11)
C130.0346 (14)0.0369 (15)0.0369 (15)0.0169 (12)0.0133 (12)0.0165 (12)
C140.0375 (15)0.0266 (14)0.0400 (16)0.0144 (11)0.0119 (12)0.0065 (12)
C150.0426 (16)0.0369 (15)0.0271 (14)0.0179 (12)0.0101 (12)0.0004 (12)
C160.0354 (14)0.0319 (14)0.0242 (13)0.0116 (11)0.0074 (11)0.0067 (11)
C210.0279 (12)0.0270 (13)0.0207 (12)0.0116 (10)0.0079 (10)0.0028 (10)
C220.0360 (14)0.0285 (14)0.0306 (14)0.0089 (11)0.0083 (11)0.0066 (11)
C230.0323 (14)0.0437 (17)0.0328 (15)0.0085 (12)0.0003 (12)0.0001 (13)
C240.0444 (16)0.0574 (19)0.0265 (15)0.0272 (15)0.0043 (12)0.0093 (14)
C250.0523 (18)0.0466 (17)0.0344 (16)0.0290 (14)0.0154 (13)0.0228 (14)
C260.0366 (14)0.0309 (14)0.0352 (15)0.0120 (11)0.0137 (11)0.0106 (12)
C310.0262 (12)0.0229 (12)0.0217 (12)0.0087 (9)0.0043 (9)0.0071 (10)
C320.0337 (13)0.0306 (14)0.0249 (13)0.0136 (11)0.0102 (10)0.0073 (11)
C330.0301 (13)0.0406 (16)0.0408 (16)0.0113 (12)0.0139 (12)0.0149 (13)
C340.0314 (13)0.0295 (14)0.0448 (17)0.0039 (11)0.0003 (12)0.0110 (13)
C350.0387 (15)0.0271 (14)0.0330 (15)0.0105 (11)0.0021 (12)0.0030 (12)
C360.0318 (13)0.0278 (13)0.0244 (13)0.0114 (10)0.0094 (10)0.0068 (10)
Geometric parameters (Å, º) top
Sn1—C112.138 (2)C14—C151.375 (4)
Sn1—C212.139 (2)C14—H140.9500
Sn1—C312.142 (2)C15—C161.389 (4)
Sn1—C72.172 (2)C15—H150.9500
N1—O21.223 (3)C16—H160.9500
N1—O11.228 (3)C21—C221.388 (4)
N1—C41.464 (3)C21—C261.405 (4)
C1—C21.397 (3)C22—C231.383 (4)
C1—C61.403 (3)C22—H220.9500
C1—S11.757 (2)C23—C241.385 (4)
C2—C31.382 (3)C23—H230.9500
C2—H20.9500C24—C251.375 (4)
C3—C41.379 (3)C24—H240.9500
C3—H30.9500C25—C261.386 (4)
C4—C51.385 (3)C25—H250.9500
C5—C61.370 (3)C26—H260.9500
C5—H50.9500C31—C361.394 (3)
C6—H60.9500C31—C321.399 (3)
S1—C71.780 (3)C32—C331.380 (4)
C7—H1A0.9900C32—H320.9500
C7—H1B0.9900C33—C341.389 (4)
C11—C121.392 (3)C33—H330.9500
C11—C161.392 (3)C34—C351.379 (4)
C12—C131.388 (3)C34—H340.9500
C12—H120.9500C35—C361.384 (4)
C13—C141.379 (4)C35—H350.9500
C13—H130.9500C36—H360.9500
C11—Sn1—C21107.46 (9)C15—C14—H14120.1
C11—Sn1—C31114.64 (8)C13—C14—H14120.1
C21—Sn1—C31108.01 (9)C14—C15—C16120.1 (2)
C11—Sn1—C7113.69 (9)C14—C15—H15119.9
C21—Sn1—C7106.27 (10)C16—C15—H15119.9
C31—Sn1—C7106.36 (9)C15—C16—C11120.9 (2)
O2—N1—O1123.1 (2)C15—C16—H16119.6
O2—N1—C4118.0 (2)C11—C16—H16119.6
O1—N1—C4118.9 (2)C22—C21—C26117.7 (2)
C2—C1—C6118.9 (2)C22—C21—Sn1120.07 (18)
C2—C1—S1124.66 (18)C26—C21—Sn1122.14 (19)
C6—C1—S1116.38 (18)C23—C22—C21121.5 (3)
C3—C2—C1120.2 (2)C23—C22—H22119.2
C3—C2—H2119.9C21—C22—H22119.2
C1—C2—H2119.9C22—C23—C24119.7 (3)
C4—C3—C2119.3 (2)C22—C23—H23120.1
C4—C3—H3120.4C24—C23—H23120.1
C2—C3—H3120.4C25—C24—C23120.1 (3)
C3—C4—C5121.7 (2)C25—C24—H24120.0
C3—C4—N1118.9 (2)C23—C24—H24120.0
C5—C4—N1119.4 (2)C24—C25—C26120.2 (3)
C6—C5—C4118.8 (2)C24—C25—H25119.9
C6—C5—H5120.6C26—C25—H25119.9
C4—C5—H5120.6C25—C26—C21120.7 (3)
C5—C6—C1120.9 (2)C25—C26—H26119.6
C5—C6—H6119.5C21—C26—H26119.6
C1—C6—H6119.5C36—C31—C32118.0 (2)
C1—S1—C7104.14 (11)C36—C31—Sn1119.67 (17)
S1—C7—Sn1114.11 (12)C32—C31—Sn1122.30 (18)
S1—C7—H1A108.7C33—C32—C31120.7 (2)
Sn1—C7—H1A108.7C33—C32—H32119.7
S1—C7—H1B108.7C31—C32—H32119.7
Sn1—C7—H1B108.7C32—C33—C34120.6 (2)
H1A—C7—H1B107.6C32—C33—H33119.7
C12—C11—C16118.2 (2)C34—C33—H33119.7
C12—C11—Sn1122.70 (17)C35—C34—C33119.2 (2)
C16—C11—Sn1119.14 (18)C35—C34—H34120.4
C13—C12—C11120.8 (2)C33—C34—H34120.4
C13—C12—H12119.6C34—C35—C36120.4 (2)
C11—C12—H12119.6C34—C35—H35119.8
C14—C13—C12120.2 (2)C36—C35—H35119.8
C14—C13—H13119.9C35—C36—C31121.0 (2)
C12—C13—H13119.9C35—C36—H36119.5
C15—C14—C13119.9 (2)C31—C36—H36119.5
C6—C1—C2—C31.8 (4)C14—C15—C16—C110.1 (4)
S1—C1—C2—C3176.10 (19)C12—C11—C16—C150.4 (4)
C1—C2—C3—C41.4 (4)Sn1—C11—C16—C15179.5 (2)
C2—C3—C4—C50.1 (4)C11—Sn1—C21—C2254.5 (2)
C2—C3—C4—N1179.7 (2)C31—Sn1—C21—C22178.66 (18)
O2—N1—C4—C30.9 (3)C7—Sn1—C21—C2267.5 (2)
O1—N1—C4—C3178.0 (2)C11—Sn1—C21—C26128.19 (19)
O2—N1—C4—C5179.3 (2)C31—Sn1—C21—C264.0 (2)
O1—N1—C4—C51.7 (3)C7—Sn1—C21—C26109.77 (19)
C3—C4—C5—C61.2 (4)C26—C21—C22—C230.1 (4)
N1—C4—C5—C6178.6 (2)Sn1—C21—C22—C23177.3 (2)
C4—C5—C6—C10.8 (4)C21—C22—C23—C240.0 (4)
C2—C1—C6—C50.7 (4)C22—C23—C24—C250.3 (4)
S1—C1—C6—C5177.3 (2)C23—C24—C25—C260.3 (4)
C2—C1—S1—C76.8 (2)C24—C25—C26—C210.2 (4)
C6—C1—S1—C7175.30 (19)C22—C21—C26—C250.1 (4)
C1—S1—C7—Sn1168.41 (13)Sn1—C21—C26—C25177.31 (19)
C11—Sn1—C7—S113.80 (18)C11—Sn1—C31—C36136.06 (18)
C21—Sn1—C7—S1104.19 (15)C21—Sn1—C31—C36104.20 (19)
C31—Sn1—C7—S1140.90 (13)C7—Sn1—C31—C369.5 (2)
C21—Sn1—C11—C12142.3 (2)C11—Sn1—C31—C3244.0 (2)
C31—Sn1—C11—C1297.7 (2)C21—Sn1—C31—C3275.7 (2)
C7—Sn1—C11—C1225.0 (2)C7—Sn1—C31—C32170.57 (19)
C21—Sn1—C11—C1637.7 (2)C36—C31—C32—C331.0 (4)
C31—Sn1—C11—C1682.3 (2)Sn1—C31—C32—C33179.12 (19)
C7—Sn1—C11—C16155.04 (19)C31—C32—C33—C340.7 (4)
C16—C11—C12—C130.8 (4)C32—C33—C34—C350.1 (4)
Sn1—C11—C12—C13179.18 (19)C33—C34—C35—C360.1 (4)
C11—C12—C13—C140.6 (4)C34—C35—C36—C310.2 (4)
C12—C13—C14—C150.0 (4)C32—C31—C36—C350.8 (4)
C13—C14—C15—C160.3 (4)Sn1—C31—C36—C35179.34 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.563.151 (3)121
C36—H36···O2ii0.952.573.439 (3)152
Symmetry codes: (i) x+3, y+2, z; (ii) x+2, y+1, z.
(II) (4-nitrophenylsulfonylmethyl)triphenylstannane top
Crystal data top
[Sn(C6H5)3(C7H6NO4S)]Z = 2
Mr = 550.18F(000) = 552
Triclinic, P1Dx = 1.606 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8715 (4) ÅCell parameters from 10598 reflections
b = 9.9680 (5) Åθ = 2.3–28.9°
c = 17.6403 (10) ŵ = 1.25 mm1
α = 81.0264 (19)°T = 120 K
β = 89.4798 (19)°Block, colourless
γ = 72.5146 (17)°0.5 × 0.3 × 0.3 mm
V = 1137.42 (11) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5261 independent reflections
Radiation source: fine-focus sealed tube5061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ/ω scansθmax = 28.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 98
Tmin = 0.674, Tmax = 0.688k = 1313
10598 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0246P)2 + 0.5422P]
where P = (Fo2 + 2Fc2)/3
5261 reflections(Δ/σ)max = 0.002
289 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Sn(C6H5)3(C7H6NO4S)]γ = 72.5146 (17)°
Mr = 550.18V = 1137.42 (11) Å3
Triclinic, P1Z = 2
a = 6.8715 (4) ÅMo Kα radiation
b = 9.9680 (5) ŵ = 1.25 mm1
c = 17.6403 (10) ÅT = 120 K
α = 81.0264 (19)°0.5 × 0.3 × 0.3 mm
β = 89.4798 (19)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5261 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
5061 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.688Rint = 0.011
10598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.10Δρmax = 0.38 e Å3
5261 reflectionsΔρmin = 0.61 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1272 (2)0.78849 (14)0.07945 (7)0.0229 (3)
O10.1909 (2)0.68648 (14)0.07962 (8)0.0338 (3)
O20.21350 (19)0.90812 (13)0.11411 (7)0.0320 (3)
C10.4041 (2)0.73397 (15)0.05258 (8)0.0173 (3)
C20.3224 (2)0.86023 (16)0.00211 (8)0.0200 (3)
H20.38490.93390.00180.024*
C30.1485 (2)0.87784 (16)0.04253 (8)0.0200 (3)
H30.09030.96320.07760.024*
C40.0622 (2)0.76800 (16)0.03473 (8)0.0190 (3)
C50.1449 (3)0.64027 (17)0.01373 (10)0.0260 (3)
H50.08380.56590.01670.031*
C60.3187 (2)0.62317 (16)0.05790 (9)0.0240 (3)
H60.37920.53630.09160.029*
S10.61069 (5)0.71692 (4)0.11706 (2)0.01771 (7)
O30.72525 (18)0.56815 (12)0.13397 (7)0.0288 (3)
O40.71512 (17)0.81764 (13)0.08552 (6)0.0258 (2)
C70.4902 (2)0.77127 (17)0.19955 (8)0.0203 (3)
H7A0.41470.70400.22020.024*
H7B0.38860.86620.18480.024*
Sn10.693023 (14)0.783753 (10)0.290829 (5)0.01694 (4)
C110.7754 (2)0.97516 (15)0.26859 (8)0.0191 (3)
C120.6574 (2)1.09512 (17)0.21877 (9)0.0237 (3)
H120.53911.09130.19290.028*
C130.7128 (3)1.21997 (17)0.20701 (10)0.0272 (3)
H130.63301.30020.17240.033*
C140.8821 (3)1.22852 (18)0.24508 (10)0.0304 (4)
H140.91751.31460.23750.036*
C151.0006 (3)1.1101 (2)0.29464 (11)0.0333 (4)
H151.11771.11520.32080.040*
C160.9482 (3)0.98432 (18)0.30605 (10)0.0271 (3)
H161.03080.90370.33970.033*
C210.4997 (2)0.78970 (16)0.38663 (8)0.0195 (3)
C220.4313 (2)0.91175 (17)0.42094 (9)0.0252 (3)
H220.47590.99200.40280.030*
C230.2987 (3)0.9176 (2)0.48136 (10)0.0320 (4)
H230.25171.00210.50350.038*
C240.2353 (3)0.8006 (2)0.50912 (10)0.0334 (4)
H240.14650.80390.55080.040*
C250.3016 (3)0.6788 (2)0.47588 (10)0.0319 (4)
H250.25840.59840.49490.038*
C260.4316 (3)0.67337 (17)0.41457 (9)0.0252 (3)
H260.47420.58970.39160.030*
C310.9550 (2)0.59999 (16)0.31201 (9)0.0197 (3)
C320.9942 (3)0.51393 (17)0.38376 (9)0.0260 (3)
H320.90160.53650.42350.031*
C331.1671 (3)0.39519 (18)0.39821 (10)0.0305 (4)
H331.19160.33760.44750.037*
C341.3028 (3)0.36128 (18)0.34098 (11)0.0314 (4)
H341.42090.28060.35060.038*
C351.2653 (3)0.4461 (2)0.26909 (11)0.0363 (4)
H351.35820.42310.22950.044*
C361.0928 (3)0.56447 (19)0.25470 (10)0.0285 (3)
H361.06870.62160.20530.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0218 (6)0.0249 (6)0.0209 (6)0.0054 (5)0.0037 (5)0.0037 (5)
O10.0329 (6)0.0313 (6)0.0402 (7)0.0157 (5)0.0134 (5)0.0024 (5)
O20.0284 (6)0.0270 (6)0.0354 (7)0.0029 (5)0.0130 (5)0.0009 (5)
C10.0167 (6)0.0192 (6)0.0161 (6)0.0056 (5)0.0005 (5)0.0031 (5)
C20.0217 (7)0.0196 (7)0.0197 (7)0.0090 (6)0.0009 (5)0.0008 (5)
C30.0213 (7)0.0191 (7)0.0176 (7)0.0050 (6)0.0002 (5)0.0002 (5)
C40.0183 (7)0.0215 (7)0.0171 (6)0.0054 (5)0.0020 (5)0.0038 (5)
C50.0293 (8)0.0209 (7)0.0299 (8)0.0124 (6)0.0088 (6)0.0000 (6)
C60.0270 (8)0.0183 (7)0.0259 (8)0.0083 (6)0.0082 (6)0.0026 (6)
S10.01634 (16)0.01868 (16)0.01827 (16)0.00573 (13)0.00165 (12)0.00247 (12)
O30.0266 (6)0.0206 (5)0.0348 (6)0.0001 (4)0.0111 (5)0.0056 (5)
O40.0236 (5)0.0337 (6)0.0243 (6)0.0163 (5)0.0011 (4)0.0023 (5)
C70.0190 (7)0.0259 (7)0.0167 (6)0.0079 (6)0.0002 (5)0.0029 (5)
Sn10.01711 (5)0.01794 (5)0.01597 (5)0.00640 (4)0.00087 (3)0.00107 (4)
C110.0206 (7)0.0187 (7)0.0180 (7)0.0062 (5)0.0020 (5)0.0025 (5)
C120.0204 (7)0.0246 (7)0.0228 (7)0.0031 (6)0.0006 (6)0.0016 (6)
C130.0300 (8)0.0186 (7)0.0268 (8)0.0000 (6)0.0081 (6)0.0004 (6)
C140.0413 (10)0.0202 (7)0.0331 (9)0.0137 (7)0.0102 (7)0.0060 (6)
C150.0368 (9)0.0317 (9)0.0362 (9)0.0191 (8)0.0064 (7)0.0018 (7)
C160.0284 (8)0.0245 (8)0.0280 (8)0.0104 (6)0.0072 (6)0.0022 (6)
C210.0179 (7)0.0228 (7)0.0174 (6)0.0061 (5)0.0018 (5)0.0019 (5)
C220.0241 (7)0.0250 (7)0.0281 (8)0.0085 (6)0.0021 (6)0.0062 (6)
C230.0250 (8)0.0417 (10)0.0309 (9)0.0064 (7)0.0009 (7)0.0179 (7)
C240.0237 (8)0.0543 (11)0.0225 (8)0.0120 (8)0.0037 (6)0.0069 (7)
C250.0316 (9)0.0389 (9)0.0261 (8)0.0164 (8)0.0028 (7)0.0030 (7)
C260.0277 (8)0.0236 (7)0.0250 (8)0.0096 (6)0.0017 (6)0.0024 (6)
C310.0184 (7)0.0194 (7)0.0222 (7)0.0078 (5)0.0020 (5)0.0023 (5)
C320.0278 (8)0.0249 (8)0.0233 (7)0.0073 (6)0.0003 (6)0.0003 (6)
C330.0355 (9)0.0238 (8)0.0280 (8)0.0070 (7)0.0064 (7)0.0053 (6)
C340.0263 (8)0.0225 (8)0.0401 (10)0.0011 (6)0.0053 (7)0.0017 (7)
C350.0273 (9)0.0390 (10)0.0336 (9)0.0022 (7)0.0061 (7)0.0035 (8)
C360.0237 (8)0.0326 (8)0.0241 (8)0.0043 (7)0.0016 (6)0.0017 (6)
Geometric parameters (Å, º) top
N1—O11.2222 (18)C13—C141.380 (3)
N1—O21.2254 (18)C13—H130.9500
N1—C41.4721 (19)C14—C151.390 (3)
C1—C21.388 (2)C14—H140.9500
C1—C61.389 (2)C15—C161.391 (2)
C1—S11.7782 (14)C15—H150.9500
C2—C31.388 (2)C16—H160.9500
C2—H20.9500C21—C221.396 (2)
C3—C41.382 (2)C21—C261.397 (2)
C3—H30.9500C22—C231.393 (2)
C4—C51.382 (2)C22—H220.9500
C5—C61.384 (2)C23—C241.383 (3)
C5—H50.9500C23—H230.9500
C6—H60.9500C24—C251.382 (3)
S1—O31.4396 (12)C24—H240.9500
S1—O41.4435 (11)C25—C261.393 (2)
S1—C71.7469 (15)C25—H250.9500
O3—Sn13.7259 (12)C26—H260.9500
O4—Sn13.5906 (12)C31—C361.392 (2)
C7—Sn12.1815 (14)C31—C321.392 (2)
C7—H7A0.9900C32—C331.394 (2)
C7—H7B0.9900C32—H320.9500
Sn1—C112.1275 (15)C33—C341.379 (3)
Sn1—C312.1337 (15)C33—H330.9500
Sn1—C212.1371 (15)C34—C351.389 (3)
C11—C161.397 (2)C34—H340.9500
C11—C121.401 (2)C35—C361.390 (2)
C12—C131.392 (2)C35—H350.9500
C12—H120.9500C36—H360.9500
O1—N1—O2123.57 (13)C12—C11—Sn1121.78 (11)
O1—N1—C4118.67 (13)C13—C12—C11120.33 (15)
O2—N1—C4117.76 (13)C13—C12—H12119.8
C2—C1—C6121.38 (13)C11—C12—H12119.8
C2—C1—S1119.84 (11)C14—C13—C12120.73 (15)
C6—C1—S1118.62 (11)C14—C13—H13119.6
C3—C2—C1119.40 (13)C12—C13—H13119.6
C3—C2—H2120.3C13—C14—C15119.48 (15)
C1—C2—H2120.3C13—C14—H14120.3
C4—C3—C2118.34 (13)C15—C14—H14120.3
C4—C3—H3120.8C14—C15—C16120.26 (16)
C2—C3—H3120.8C14—C15—H15119.9
C5—C4—C3122.90 (14)C16—C15—H15119.9
C5—C4—N1118.52 (13)C15—C16—C11120.71 (15)
C3—C4—N1118.57 (13)C15—C16—H16119.6
C4—C5—C6118.46 (14)C11—C16—H16119.6
C4—C5—H5120.8C22—C21—C26118.17 (14)
C6—C5—H5120.8C22—C21—Sn1121.02 (11)
C5—C6—C1119.46 (14)C26—C21—Sn1120.76 (11)
C5—C6—H6120.3C23—C22—C21121.02 (15)
C1—C6—H6120.3C23—C22—H22119.5
O3—S1—O4118.72 (7)C21—C22—H22119.5
O3—S1—C7109.20 (8)C24—C23—C22120.04 (16)
O4—S1—C7108.46 (7)C24—C23—H23120.0
O3—S1—C1107.67 (7)C22—C23—H23120.0
O4—S1—C1108.16 (7)C25—C24—C23119.71 (16)
C7—S1—C1103.56 (7)C25—C24—H24120.1
S1—O3—Sn162.83 (4)C23—C24—H24120.1
S1—O4—Sn167.78 (4)C24—C25—C26120.43 (16)
S1—C7—Sn1115.20 (7)C24—C25—H25119.8
S1—C7—H7A108.5C26—C25—H25119.8
Sn1—C7—H7A108.5C25—C26—C21120.62 (15)
S1—C7—H7B108.5C25—C26—H26119.7
Sn1—C7—H7B108.5C21—C26—H26119.7
H7A—C7—H7B107.5C36—C31—C32118.34 (14)
C11—Sn1—C31111.76 (6)C36—C31—Sn1120.73 (11)
C11—Sn1—C21109.81 (6)C32—C31—Sn1120.92 (11)
C31—Sn1—C21110.02 (6)C31—C32—C33121.08 (16)
C11—Sn1—C7111.36 (6)C31—C32—H32119.5
C31—Sn1—C7112.24 (6)C33—C32—H32119.5
C21—Sn1—C7101.15 (5)C34—C33—C32120.03 (16)
C11—Sn1—O481.13 (4)C34—C33—H33120.0
C31—Sn1—O494.52 (5)C32—C33—H33120.0
C21—Sn1—O4145.61 (4)C33—C34—C35119.48 (16)
C7—Sn1—O445.81 (4)C33—C34—H34120.3
C11—Sn1—O3118.94 (4)C35—C34—H34120.3
C31—Sn1—O370.62 (4)C34—C35—C36120.48 (17)
C21—Sn1—O3126.99 (4)C34—C35—H35119.8
C7—Sn1—O343.14 (4)C36—C35—H35119.8
O4—Sn1—O339.58 (3)C35—C36—C31120.59 (16)
C16—C11—C12118.48 (14)C35—C36—H36119.7
C16—C11—Sn1119.72 (11)C31—C36—H36119.7
C6—C1—C2—C31.8 (2)C31—Sn1—C11—C12147.86 (12)
S1—C1—C2—C3173.58 (11)C21—Sn1—C11—C1289.75 (13)
C1—C2—C3—C40.2 (2)C7—Sn1—C11—C1221.44 (14)
C2—C3—C4—C52.0 (2)O4—Sn1—C11—C1256.51 (12)
C2—C3—C4—N1177.39 (13)O3—Sn1—C11—C1268.67 (13)
O1—N1—C4—C59.0 (2)C16—C11—C12—C130.2 (2)
O2—N1—C4—C5170.43 (15)Sn1—C11—C12—C13178.33 (11)
O1—N1—C4—C3171.62 (14)C11—C12—C13—C141.1 (2)
O2—N1—C4—C39.0 (2)C12—C13—C14—C151.2 (3)
C3—C4—C5—C61.8 (3)C13—C14—C15—C160.3 (3)
N1—C4—C5—C6177.62 (15)C14—C15—C16—C110.6 (3)
C4—C5—C6—C10.2 (3)C12—C11—C16—C150.6 (2)
C2—C1—C6—C52.0 (2)Sn1—C11—C16—C15177.53 (14)
S1—C1—C6—C5173.40 (13)C11—Sn1—C21—C225.31 (14)
C2—C1—S1—O3152.70 (12)C31—Sn1—C21—C22128.72 (12)
C6—C1—S1—O331.82 (14)C7—Sn1—C21—C22112.44 (12)
C2—C1—S1—O423.25 (14)O4—Sn1—C21—C2298.35 (13)
C6—C1—S1—O4161.27 (12)O3—Sn1—C21—C22150.93 (10)
C2—C1—S1—C791.70 (13)C11—Sn1—C21—C26177.36 (12)
C6—C1—S1—C783.77 (13)C31—Sn1—C21—C2653.95 (13)
O4—S1—O3—Sn190.80 (6)C7—Sn1—C21—C2664.89 (13)
C7—S1—O3—Sn134.18 (5)O4—Sn1—C21—C2678.98 (15)
C1—S1—O3—Sn1145.99 (6)O3—Sn1—C21—C2626.40 (14)
O3—S1—O4—Sn194.34 (6)C26—C21—C22—C230.0 (2)
C7—S1—O4—Sn130.99 (5)Sn1—C21—C22—C23177.37 (12)
C1—S1—O4—Sn1142.69 (5)C21—C22—C23—C241.0 (3)
O3—S1—C7—Sn170.63 (9)C22—C23—C24—C251.0 (3)
O4—S1—C7—Sn160.12 (9)C23—C24—C25—C260.1 (3)
C1—S1—C7—Sn1174.87 (7)C24—C25—C26—C211.1 (3)
S1—C7—Sn1—C1179.80 (9)C22—C21—C26—C251.1 (2)
S1—C7—Sn1—C3146.36 (10)Sn1—C21—C26—C25178.46 (12)
S1—C7—Sn1—C21163.59 (8)C11—Sn1—C31—C3664.63 (14)
S1—C7—Sn1—O427.46 (5)C21—Sn1—C31—C36173.10 (12)
S1—C7—Sn1—O330.23 (5)C7—Sn1—C31—C3661.31 (14)
S1—O4—Sn1—C11164.80 (6)O4—Sn1—C31—C3617.61 (13)
S1—O4—Sn1—C3183.85 (6)O3—Sn1—C31—C3649.69 (12)
S1—O4—Sn1—C2152.51 (10)C11—Sn1—C31—C32114.35 (13)
S1—O4—Sn1—C733.05 (7)C21—Sn1—C31—C327.91 (14)
S1—O4—Sn1—O332.02 (4)C7—Sn1—C31—C32119.71 (12)
S1—O3—Sn1—C1152.65 (7)O4—Sn1—C31—C32163.41 (12)
S1—O3—Sn1—C31157.40 (7)O3—Sn1—C31—C32131.33 (13)
S1—O3—Sn1—C21101.67 (7)C36—C31—C32—C330.2 (2)
S1—O3—Sn1—C738.42 (7)Sn1—C31—C32—C33178.85 (13)
S1—O3—Sn1—O433.59 (4)C31—C32—C33—C340.0 (3)
C31—Sn1—C11—C1634.07 (14)C32—C33—C34—C350.1 (3)
C21—Sn1—C11—C1688.32 (13)C33—C34—C35—C360.1 (3)
C7—Sn1—C11—C16160.48 (12)C34—C35—C36—C310.1 (3)
O4—Sn1—C11—C16125.42 (13)C32—C31—C36—C350.2 (3)
O3—Sn1—C11—C16113.26 (12)Sn1—C31—C36—C35178.83 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.952.583.2753 (19)131
C5—H5···O1ii0.952.483.204 (2)133
C7—H7B···O2iii0.992.363.3163 (19)161
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z; (iii) x, y+2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Sn(C6H5)3(C7H6NO2S)][Sn(C6H5)3(C7H6NO4S)]
Mr518.18550.18
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)150120
a, b, c (Å)6.6442 (1), 10.3070 (2), 17.2597 (4)6.8715 (4), 9.9680 (5), 17.6403 (10)
α, β, γ (°)100.3385 (8), 98.6403 (9), 103.6969 (16)81.0264 (19), 89.4798 (19), 72.5146 (17)
V3)1106.51 (4)1137.42 (11)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.271.25
Crystal size (mm)0.40 × 0.10 × 0.030.5 × 0.3 × 0.3
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.817, 0.9920.674, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
16551, 5030, 4460 10598, 5261, 5061
Rint0.0520.011
(sin θ/λ)max1)0.6490.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.06 0.018, 0.046, 1.10
No. of reflections50305261
No. of parameters271289
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.390.38, 0.61

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SMART (Bruker, 1999), DENZO and COLLECT, SAINT (Bruker, 1999), SAINT, SHELXS86 (Sheldrick, 1990), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX in OSCAIL (McArdle, 1994, 2000) and ORTEPIII for Windows (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.563.151 (3)121
C36—H36···O2ii0.952.573.439 (3)152
Symmetry codes: (i) x+3, y+2, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.952.583.2753 (19)131
C5—H5···O1ii0.952.483.204 (2)133
C7—H7B···O2iii0.992.363.3163 (19)161
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z; (iii) x, y+2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds