Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Molecules of 2-amino-4,6-di­methoxy­pyrimidine, C6H9N3O2, (I), are linked by two N-H...N hydrogen bonds [H...N 2.23 and 2.50 Å, N...N 3.106 (2) and 3.261 (2) Å, and N-H...N 171 and 145°] into a chain of fused rings, where alternate rings are generated by centres of inversion and twofold rotation axes. Adjacent chains are linked by aromatic [pi]-[pi]-stacking interactions to form a three-dimensional framework. In 2-­benzylamino-4,6-bis(benzyloxy)pyrimidine, C25H23N3O2, (II), the mol­ecules are linked into centrosymmetric R{_2^2}(8) dimers by paired N-H...N hydrogen bonds [H...N 2.13 Å, N...N 2.997 (2) Å and N-H...N 170°]. Molecules of 2-amino-4,6-bis(N-pyrrolidino)­pyrimidine, C12H19N5, (III), are linked by two N-H...N hydrogen bonds [H...N 2.34 and 2.38 Å, N...N 3.186 (2) and 3.254 (2) Å, and N-H...N 163 and 170°] into a chain of fused rings similar to that in (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102005632/sk1546sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005632/sk1546Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005632/sk1546IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005632/sk1546IIIsup4.hkl
Contains datablock III

CCDC references: 187936; 187937; 187938

Comment top

4,6-Dialkoxypyrimidines are key intermediates for the synthesis of a wide range of alkoxy and amino substituted O6-benzyloxy-5-nitrosopyrimidines (Marchal et al., 1998, 2000; Quesada et al., 2000), which are important as potential, or proven, in vitro inhibitors of the human DNA-repair protein O6-alkylguanine-DNA-transferase (Chae et al., 1995; Quesada et al., 2002). Here, we report the molecular and supramolecular structures of two examples of this class of pyrimidine, 2-amino-4,6-dimethoxypyrimidine (I) and 2-benzylamino-4,6-bis(benzyloxy)pyrimidine (II). \sch

Compound (I) could, in principle, adopt a conformation having C2v (mm2) molecular symmetry. In the event, the conformations of the two independent methoxy substituents are such that there is no exact molecular symmetry, although there is approximate Cs (m) symmetry (Fig. 1, Table 1). The C—N distances in (I) span the rather small range 1.331 (2)–1.355 (2) Å, with no significant bond fixation within the pyrimidine ring (Table 1). In this respect, the molecular-electronic structure of (I) is markedly different from those in a large number of analogous pyrimidines carrying a 5-nitroso substituent, where highly polarized structures are the norm (Low et al., 2000; Low, Cannon et al., 2001; Low, Moreno et al., 2001; Quesada et al., 2002).

The amino group in (I) acts as a double donor in N—H···N hydrogen bonds, while the two ring N atoms act as the acceptors. The O atoms play no part in the intermolecular aggregation (Table 2). Amino atom N2 at (x, y, z) acts as a hydrogen-bond donor, via atom H2A, to atom N1 at (-x, 1 - y, 1 - z), so generating a centrosymmetric R22(8) ring centred at (0, 1/2, 1/2). This amino atom N2 at (x, y, z) also acts as a donor, this time via atom H2B, to atom N3 at (-x, y, 1/2 - z), so producing a second R22(8) motif, generated by the twofold rotation axis along (0, y, 1/4). Propagation of these two hydrogen-bonding motifs by inversion and rotation generates a chain of fused rings running parallel to the [001] direction (Fig. 2). The supramolecular structure can alternatively be viewed as a molecular ladder, in which paired C22(6) chains form the uprights and the C2—N2 covalent bonds form the rungs, so that the full graph-set designation is C22(6)[R22(8)][R22(8)].

Two chains of this type, related by the C-centring operation, run through each unit cell, along the lines (0, 1/2, z) and (1/2, 1, z), and the parallel chains are linked by aromatic π···π stacking interactions to form a three-dimensional continuum. The pyrimidine rings of the molecules at (x, y, z) and (1/2 - x, 1/2 - y, 1 - z) have parallel planes separated by 3.319 (2) Å; the centroid separation is 3.412 (2) Å and the centroid offset is only ca 0.79 Å (Fig. 3). In this manner, the chain along (0, 1/2, z) is linked to each of the chains along (1/2, 0, z), (1/2, 1, z), (-1/2, 0, z) and (-1/2, 1, z), so forming a continuous bundle of chains.

In compound (II) (Fig. 4), the atoms C27, C47 and C67 are also nearly coplanar with the pyrimidine ring, and the conformation of the alkoxy groups is similar to that in (I) (Fig. 4, Table 3), although the phenyl groups each add two further rotational degrees of freedom. As in (I), there is no evidence of bond fixation or charge separation in the pyrimidine ring (Table 3). With only one N—H per molecule available for N—H···N hydrogen-bond formation, the supramolecular structure of (II) is much simpler than that of (I). The molecules are linked by the hydrogen bonds into centrosymmetric dimers (Fig. 5, Table 4), and there are no aromatic π···π stacking interactions, so that the supramolecular aggregation consists simply of one finite zero-dimensional dimer per unit cell, with no direction-specific interactions between these units.

We also report here the structure of the closely-related compound 2-amino-4,6-bis(N-pyrrolidino)pyrimidine, (III). We have recently investigated the structure of the 5-nitroso analogue, (IV) (Quesada et al., 2002). However, not only were the crystals of (II) should this be (IV)?, obtainable only as a partial hydrate, of consistently poor quality [indeed, analogues of (IV) containing other secondary amino substituents cannot be crystallized at all], but the structure of (IV) was characterized by pseudosymmetry between the two independent molecules, by multiple disorder, both in the orientations of the two nitroso groups and in the conformations of the four independent pyrrolidine rings, and by partial occupancy of each of the two independent water sites. Because of the poor diffraction data and the multiple disorder, no meaningful conclusions could be drawn about the intramolecular structural parameters for (IV), although the supramolecular structure, which takes the form of centrosymmetric six-molecule aggregates, was readily established.

In compound (III) (Fig. 6), by contrast, the intramolecular distances and angles are all well defined (Table 5). The four C—N distances within the pyrimidine ring, as well as the three exocyclic C—N distances involving three-connected C, all lie within the rather narrow range 1.346 (2)–1.359 (2) Å. This range of values is somewhat higher than the mean value of 1.333 Å for pyrimidines in general (Allen et al., 1987) but, overall, the C—N and C—C distances within the pyrimidine ring of (I) should this be (III)? are consistent with aromatic delocalization, with no significant bond fixation. At each of N4 and N6, the sum of the bond angles indicates planar N, consistent with the C4—N4 and C6—N6 distances (Allen et al., 1987), and typical of amino N bonded to an aromatic or heteroaromatic ring. While the pyrrolidine rings exhibit the puckered conformation characteristic of saturated five-membered rings, there is no evidence, either from difference maps or from the displacement parameters, for any positional disorder of the C atoms in these rings. The CNC2 planes centred on N4 and N6 are only very slightly twisted out of the plane of the pyrimidine ring (Table 5). The overall conformation of the molecule of (III) is very close to having local twofold rotational symmetry. This is illustrated not only by the torsion angles within the pyrrolidine rings (Table 5) but, perhaps more strikingly, by the location of the H atoms in these rings (Fig. 6). However, a search for possible additional symmetry revealed none.

The supramolecular structure of (III) takes the form of a chain of fused rings, similar to that found in (I). The amino group acts as a double donor in the intermolecular N—H···N hydrogen bonds, where the acceptors are the two ring N atoms (Table 6); the planar pyrrolidine N atoms play no part in the supramolecular aggregation. Amino atom N2 at (x, y, z) acts as a hydrogen-bond donor, via atom H2A, to ring atom N1 at (x, 1 - y, -z), so forming an R22(8) motif centred at (0, 1/2, 0). This amino atom N2 at (x, y, z) also acts as a donor, via atom H2B, to ring atom N3 at (-x, y, 1/2 - z), so forming a second R22(8) motif, this time generated by the twofold rotation axis along (0, y, 1/4). The combination of these two distinct R22(8) motifs, the one containing atoms N1 and N2 and the other containing atoms N2 and N3, generates a chain of fused rings running parallel to the [001] direction (Fig. 6), generated by inversion centres at (0, 1/2, n/2) (for n = zero or integer) and twofold axes along (0, y, 1/4 + n/2) (n = zero or integer). Two of these chains run through each unit cell, but there are no direction-specific interactions between adjacent chains. In particular, the π···π stacking interactions found in (I) are absent from the structure of (III). We note that this type of supramolecular aggregation would be possible even if the molecules of (III) had been located on twofold rotation axes.

It is of interest to compare the conformations and supramolecular aggregation in compounds (I) and (II) with those in the related compound, (V) (Quesada et al., 2002), which is analogous to (I) in containing an unsubstituted amino group, and to (II) in containing two benzyloxy substituents. In (V), where the conformation of the alkoxy substitutents is identical to those in (I) and (II), hydrogen-bonded R22(8) dimers precisely analogous to those in (II) are linked into a molecular ladder by N—H···O hydrogen bonds, with atom O4 as the acceptor. By contrast, the O atoms in (I) and (II) play no role in the hydrogen bonding, as noted above. Likewise, the supramolecular structures of (I), (III) and (V) can be contrasted with that of 2-aminopyrimidine, (VI), itself (Scheinbeim & Schempp, 1976; Furberg et al., 1979). The molecules of (VI) act as double donors and double acceptors of N—H···N hydrogen bonds and two motifs are generated, by a centre of inversion and by a glide plane, leading to the formation of sheets.

Experimental top

A sample of (I) was purchased from Aldrich. For the synthesis of (II), (I) (19.3 mmol) was added to a stirred solution of sodium benzylate (96 mmol) in toluene (100 ml). The resulting mixture was heated under reflux, with stirring, for 60 h. Diethyl ether (30 ml) and toluene (15 ml) were then added and the mixture was filtered through silica gel. The silica gel was washed with toluene (3 × 40 ml) and diethyl ether (3 × 40 ml), and the filtrate and the washings were pooled together. After removal of the solvent, the oily residue was dissolved in a hexane-ethyl ether mixture (60:40 v/v) and cooled. The product, (II), precipitated at 253 K and was collected by filtration, washed with hexane and dried in vacuo (yield 70%, m.p. 355 K). Analysis, found: C 75.2, H 5.8, N 10.6%; C25H23N3O2 requires: C 75.5, H 5.8, N 10.6%. Spectroscopic analysis: 1H NMR (DMSO-d6, δ, p.p.m.): 4.46 (d, 2H, N—CH2, J = 6.02 Hz), 5.27 (s, 4H, O—CH2), 5.45 (s, 1H, C5—H), 7.29 (m, 15H, Ph), 7.75 (t, H, NH, J = 6.59 Hz, exchanges with D2O); 13C NMR (δ, p.p.m): 44.1, 66.7, 78.1, 126.4, 128,2, 136.8, 140.4, 161.2, 170.8. For the synthesis of (III), pyrrolidine (21.3 mmol) and triethylamine (18.3 mmol) were added to a stirred solution of 2-amino-4,6-dichloropyrimidine (Aldrich; 6.1 mmol) in n-butyl alcohol (40 ml). The resulting mixture was heated under reflux, with stirring, for 56 h. After filtration and removal of the solvent, hot ethyl acetate (100 ml) was added, and the product, (III), was filtered off (yield 68%, m.p. 497 K). Analysis, found: C 61.7, H 7.9, N 29.9%; C12H19N5 requires: C 61.8, H 8.2, N 30.0%. Spectroscopic analysis: 1H NMR (DMSO-d6, δ, p.p.m.): 1.85 (m, 8H, CH2), 3.27 (m, 8H, N—CH2, partially obscured by solvent DMSO-d6), 5.31 (s, 2H, NH2, exchanges with D2O); 13C NMR (δ, p.p.m.): 24.6, 45.7, 73.2, 161.3, 161.6. Crystals of (I), (II) and (III) suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in acetone, methanol and dichloromethane-ethyl acetate (1:1 v/v), respectively.

Refinement top

Compounds (I) and (III) are monoclinic and the systematic absences permitted space groups C2/c and Cc. For each, C2/c was chosen and confirmed by the analysis. Compound (II) is triclinic; space group P1 was selected, and confirmed by the analysis. H atoms were treated as riding, with C—H = 0.95–0.98 Å and N—H 0.88 Å.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997) for (I), (III); SMART (Bruker, 1997) for (II). Cell refinement: DENZO-SMN (Otwinowski & Minor, 1997) for (I), (III); SMART for (II). Data reduction: DENZO-SMN (Otwinowski & Minor, 1997) for (I); SHELXTL (Bruker, 1997) for (II); DENZO-SMN for (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing formation of a chain of fused rings along [001]. The atoms marked with an asterisk (*), hash (#), dollar sign ($) or ampersand (&) are at the symmetry positions (-x, y, 1/2 - z), (-x, 1 - y, 1 - z), (x, 1 - y, z - 1/2) and (x, 1 - y, 1/2 + z), respectively.
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing the aromatic π···π stacking interaction which links the [001] chains. The atoms marked with an asterisk (*) are at the symmetry position (1/2 - x, 1/2 - y, 1 - z).
[Figure 4] Fig. 4. A view of the molecule of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5] Fig. 5. Part of the crystal structure of (II) showing formation of a centrosymmetric dimer. The atoms marked with an asterisk (*) are at the symmetry position (2 - x, -y, 1 - z).
[Figure 6] Fig. 6. A view of the molecule of (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 7] Fig. 7. Part of the crystal structure of (III) showing formation of a chain of fused rings along [001]. The atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (-x, 1 - y, -z) and (-x, y, 1/2 - z), respectively.
(I) 2-Amino-4,6-dimethoxypyrimidine top
Crystal data top
C6H9N3O2F(000) = 656
Mr = 155.16Dx = 1.429 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1642 reflections
a = 12.3971 (5) Åθ = 2.9–27.4°
b = 8.3608 (5) ŵ = 0.11 mm1
c = 14.5237 (7) ÅT = 120 K
β = 106.585 (3)°Block, colourless
V = 1442.75 (13) Å30.20 × 0.15 × 0.05 mm
Z = 8
Data collection top
Nonius KappaCCD area-detector
diffractometer
1642 independent reflections
Radiation source: fine-focus sealed X-ray tube1090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 2.9°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1614
Tmin = 0.978, Tmax = 0.994k = 910
5248 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0727P)2]
where P = (Fo2 + 2Fc2)/3
1642 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C6H9N3O2V = 1442.75 (13) Å3
Mr = 155.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.3971 (5) ŵ = 0.11 mm1
b = 8.3608 (5) ÅT = 120 K
c = 14.5237 (7) Å0.20 × 0.15 × 0.05 mm
β = 106.585 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1642 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
1090 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.994Rint = 0.066
5248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
1642 reflectionsΔρmin = 0.37 e Å3
102 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G. C. & Holmes, K. C. (1966). Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High-redundancy data were used in the scaling program, hence the `multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14019 (11)0.48401 (17)0.48098 (9)0.0206 (4)
N20.01762 (11)0.37392 (19)0.37859 (10)0.0285 (4)
N30.14982 (11)0.31903 (17)0.34783 (9)0.0205 (4)
C20.09446 (13)0.3937 (2)0.40367 (11)0.0196 (4)
O40.32450 (9)0.26690 (14)0.32742 (8)0.0244 (3)
C40.26097 (13)0.3388 (2)0.37614 (11)0.0200 (4)
C410.27005 (15)0.1574 (2)0.25231 (12)0.0266 (4)
C50.31797 (13)0.4311 (2)0.45409 (11)0.0209 (4)
O60.29165 (9)0.59379 (15)0.58250 (8)0.0253 (3)
C60.25158 (13)0.5009 (2)0.50419 (10)0.0205 (4)
C610.41058 (14)0.6223 (2)0.61287 (13)0.0307 (5)
H2A0.05760.41950.41260.034*
H2B0.05110.31540.32820.034*
H41A0.21950.08730.27490.040*
H41B0.32700.09250.23470.040*
H41C0.22650.21760.19610.040*
H50.39730.44510.47170.025*
H61A0.45050.52000.62700.046*
H61B0.42960.68890.67080.046*
H61C0.43290.67740.56160.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0176 (8)0.0247 (8)0.0192 (7)0.0026 (6)0.0048 (6)0.0002 (6)
N20.0161 (8)0.0425 (10)0.0265 (8)0.0012 (7)0.0051 (6)0.0114 (7)
N30.0207 (8)0.0233 (8)0.0185 (7)0.0011 (6)0.0071 (6)0.0008 (6)
C20.0196 (9)0.0207 (10)0.0186 (8)0.0022 (7)0.0055 (7)0.0038 (7)
O40.0221 (7)0.0297 (7)0.0224 (6)0.0025 (5)0.0081 (5)0.0049 (5)
C40.0208 (9)0.0219 (10)0.0186 (8)0.0050 (7)0.0077 (7)0.0055 (7)
C410.0307 (10)0.0255 (10)0.0258 (9)0.0012 (8)0.0114 (8)0.0046 (8)
C50.0153 (8)0.0248 (10)0.0222 (8)0.0006 (7)0.0047 (7)0.0003 (7)
O60.0191 (7)0.0349 (8)0.0213 (6)0.0007 (5)0.0046 (5)0.0076 (5)
C60.0210 (9)0.0223 (10)0.0173 (8)0.0016 (7)0.0042 (7)0.0006 (7)
C610.0174 (9)0.0414 (12)0.0303 (10)0.0002 (8)0.0018 (8)0.0118 (8)
Geometric parameters (Å, º) top
N1—C21.338 (2)O6—C611.433 (2)
C2—N31.355 (2)N2—H2A0.8800
N3—C41.331 (2)N2—H2B0.8800
C4—C51.386 (2)C41—H41A0.9800
C5—C61.375 (2)C41—H41B0.9800
C6—N11.332 (2)C41—H41C0.9800
C2—N21.342 (2)C5—H50.9500
C4—O41.342 (2)C61—H61A0.9800
O4—C411.437 (2)C61—H61B0.9800
C6—O61.3492 (19)C61—H61C0.9800
C6—N1—C2115.64 (13)H41A—C41—H41C109.5
C2—N2—H2A120.0H41B—C41—H41C109.5
C2—N2—H2B120.0C6—C5—C4115.24 (15)
H2A—N2—H2B120.0C6—C5—H5122.4
C4—N3—C2114.49 (14)C4—C5—H5122.4
N1—C2—N2117.07 (14)C6—O6—C61117.00 (13)
N1—C2—N3126.64 (14)N1—C6—O6112.34 (13)
N2—C2—N3116.28 (15)N1—C6—C5123.70 (15)
C4—O4—C41117.81 (12)O6—C6—C5123.96 (15)
N3—C4—O4119.56 (15)O6—C61—H61A109.5
N3—C4—C5124.27 (15)O6—C61—H61B109.5
O4—C4—C5116.17 (14)H61A—C61—H61B109.5
O4—C41—H41A109.5O6—C61—H61C109.5
O4—C41—H41B109.5H61A—C61—H61C109.5
H41A—C41—H41B109.5H61B—C61—H61C109.5
O4—C41—H41C109.5
C6—N1—C2—N2179.80 (15)N3—C4—C5—C61.6 (2)
C6—N1—C2—N30.1 (2)O4—C4—C5—C6178.70 (14)
C4—N3—C2—N11.1 (2)C2—N1—C6—O6179.78 (13)
C4—N3—C2—N2178.68 (14)C2—N1—C6—C50.4 (2)
C2—N3—C4—O4178.40 (14)C61—O6—C6—N1178.95 (15)
C2—N3—C4—C51.9 (2)C61—O6—C6—C51.3 (2)
C41—O4—C4—N36.5 (2)C4—C5—C6—N10.3 (3)
C41—O4—C4—C5173.81 (15)C4—C5—C6—O6179.44 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.233.106 (2)171
N2—H2B···N3ii0.882.503.261 (2)145
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1/2.
(II) 2-Benzylamino-4,6-bis(benzyloxy)pyrimidine top
Crystal data top
C25H23N3O2Z = 2
Mr = 397.46F(000) = 420
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8083 (6) ÅCell parameters from 4785 reflections
b = 12.3104 (13) Åθ = 1.8–29.0°
c = 15.7260 (16) ŵ = 0.08 mm1
α = 68.549 (2)°T = 120 K
β = 85.978 (2)°Needle, colourless
γ = 82.737 (2)°0.14 × 0.05 × 0.04 mm
V = 1037.81 (19) Å3
Data collection top
Bruker SMART 1000
diffractometer
4785 independent reflections
Radiation source: fine-focus sealed X-ray tube3697 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ϕ scans, and ω scans with κ offsetsθmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 77
Tmin = 0.989, Tmax = 0.997k = 1316
6639 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.0805P]
where P = (Fo2 + 2Fc2)/3
4785 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C25H23N3O2γ = 82.737 (2)°
Mr = 397.46V = 1037.81 (19) Å3
Triclinic, P1Z = 2
a = 5.8083 (6) ÅMo Kα radiation
b = 12.3104 (13) ŵ = 0.08 mm1
c = 15.7260 (16) ÅT = 120 K
α = 68.549 (2)°0.14 × 0.05 × 0.04 mm
β = 85.978 (2)°
Data collection top
Bruker SMART 1000
diffractometer
4785 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3697 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.997Rint = 0.010
6639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
4785 reflectionsΔρmin = 0.22 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.06020 (18)0.15079 (9)0.43312 (7)0.0245 (2)
C20.9040 (2)0.14975 (10)0.37413 (8)0.0234 (2)
N20.81278 (19)0.04843 (9)0.39253 (7)0.0279 (2)
C270.6332 (2)0.03365 (11)0.33940 (8)0.0261 (3)
C210.7221 (2)0.00571 (10)0.26110 (8)0.0231 (3)
C220.5881 (2)0.07097 (11)0.23235 (8)0.0275 (3)
C230.6605 (2)0.10549 (11)0.15896 (9)0.0328 (3)
C240.8691 (2)0.07512 (12)0.11369 (9)0.0334 (3)
C251.0057 (2)0.01108 (12)0.14225 (9)0.0317 (3)
C260.9327 (2)0.02341 (11)0.21554 (8)0.0272 (3)
N30.82976 (18)0.24202 (8)0.29875 (6)0.0249 (2)
C40.9258 (2)0.33947 (10)0.28374 (8)0.0238 (3)
O40.85807 (15)0.43613 (7)0.21106 (6)0.0280 (2)
C470.6792 (2)0.42567 (11)0.15532 (9)0.0321 (3)
C410.6113 (2)0.54692 (11)0.08775 (8)0.0278 (3)
C420.7715 (3)0.60873 (13)0.02532 (11)0.0409 (3)
C430.7082 (3)0.72002 (13)0.03715 (11)0.0454 (4)
C440.4837 (3)0.77170 (12)0.03714 (10)0.0392 (3)
C450.3238 (3)0.71142 (13)0.02456 (10)0.0396 (3)
C460.3856 (2)0.59913 (12)0.08676 (9)0.0334 (3)
C51.0904 (2)0.35194 (10)0.33882 (8)0.0257 (3)
C61.1484 (2)0.25220 (10)0.41456 (8)0.0237 (3)
O61.29228 (15)0.24744 (7)0.48017 (6)0.0284 (2)
C671.3823 (3)0.35596 (11)0.47016 (9)0.0338 (3)
C611.5029 (2)0.34046 (10)0.55579 (8)0.0264 (3)
C621.3964 (2)0.38608 (11)0.61912 (9)0.0280 (3)
C631.5120 (3)0.37561 (11)0.69647 (9)0.0332 (3)
C641.7358 (2)0.32039 (11)0.71061 (9)0.0347 (3)
C651.8430 (2)0.27374 (12)0.64840 (10)0.0355 (3)
C661.7265 (2)0.28324 (11)0.57154 (9)0.0320 (3)
H20.86520.01270.43970.033*
H27A0.53400.10920.31430.031*
H27B0.53430.02480.38070.031*
H220.44490.09230.26330.033*
H230.56670.14990.13990.039*
H240.91850.09810.06330.040*
H251.14970.00930.11160.038*
H261.02740.06730.23470.033*
H47A0.54330.39420.19400.039*
H47B0.73930.37200.12300.039*
H420.92730.57430.02530.049*
H430.81990.76080.08010.054*
H440.44010.84840.07950.047*
H450.16870.74680.02490.048*
H460.27250.55810.12880.040*
H51.15750.42300.32560.031*
H67A1.25350.42000.45890.041*
H67B1.49280.37740.41730.041*
H621.24310.42480.60940.034*
H631.43710.40650.73980.040*
H641.81580.31450.76300.042*
H651.99640.23520.65830.043*
H661.80020.25030.52930.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0330 (5)0.0203 (5)0.0203 (5)0.0065 (4)0.0032 (4)0.0059 (4)
C20.0304 (6)0.0205 (6)0.0201 (5)0.0048 (5)0.0013 (5)0.0075 (5)
N20.0402 (6)0.0199 (5)0.0222 (5)0.0094 (4)0.0091 (4)0.0023 (4)
C270.0303 (6)0.0233 (6)0.0243 (6)0.0088 (5)0.0026 (5)0.0057 (5)
C210.0271 (6)0.0169 (5)0.0217 (6)0.0023 (5)0.0078 (5)0.0015 (4)
C220.0299 (6)0.0247 (6)0.0260 (6)0.0081 (5)0.0049 (5)0.0046 (5)
C230.0461 (8)0.0262 (7)0.0279 (6)0.0101 (6)0.0085 (6)0.0085 (5)
C240.0446 (8)0.0274 (7)0.0271 (6)0.0002 (6)0.0030 (6)0.0093 (5)
C250.0284 (6)0.0323 (7)0.0296 (7)0.0019 (5)0.0005 (5)0.0061 (5)
C260.0274 (6)0.0247 (6)0.0275 (6)0.0041 (5)0.0068 (5)0.0056 (5)
N30.0324 (5)0.0193 (5)0.0218 (5)0.0053 (4)0.0045 (4)0.0046 (4)
C40.0309 (6)0.0191 (6)0.0203 (6)0.0023 (5)0.0010 (5)0.0059 (5)
O40.0378 (5)0.0181 (4)0.0256 (4)0.0051 (4)0.0107 (4)0.0022 (3)
C470.0411 (7)0.0227 (6)0.0307 (7)0.0063 (5)0.0142 (6)0.0042 (5)
C410.0355 (7)0.0226 (6)0.0256 (6)0.0041 (5)0.0099 (5)0.0072 (5)
C420.0337 (7)0.0290 (7)0.0494 (9)0.0022 (6)0.0051 (6)0.0015 (6)
C430.0456 (9)0.0336 (8)0.0448 (9)0.0112 (7)0.0049 (7)0.0031 (7)
C440.0516 (9)0.0231 (7)0.0382 (8)0.0018 (6)0.0217 (7)0.0028 (6)
C450.0378 (7)0.0342 (8)0.0469 (8)0.0060 (6)0.0136 (7)0.0156 (7)
C460.0377 (7)0.0339 (7)0.0286 (7)0.0040 (6)0.0035 (5)0.0109 (6)
C50.0347 (7)0.0187 (6)0.0234 (6)0.0082 (5)0.0031 (5)0.0051 (5)
C60.0297 (6)0.0229 (6)0.0200 (6)0.0063 (5)0.0017 (5)0.0082 (5)
O60.0403 (5)0.0219 (4)0.0230 (4)0.0114 (4)0.0085 (4)0.0041 (3)
C670.0506 (8)0.0252 (6)0.0265 (6)0.0170 (6)0.0090 (6)0.0046 (5)
C610.0326 (6)0.0216 (6)0.0247 (6)0.0114 (5)0.0025 (5)0.0048 (5)
C620.0293 (6)0.0215 (6)0.0316 (7)0.0060 (5)0.0022 (5)0.0064 (5)
C630.0482 (8)0.0250 (6)0.0285 (7)0.0104 (6)0.0007 (6)0.0104 (5)
C640.0466 (8)0.0259 (7)0.0298 (7)0.0120 (6)0.0142 (6)0.0030 (5)
C650.0272 (7)0.0272 (7)0.0466 (8)0.0065 (5)0.0068 (6)0.0048 (6)
C660.0340 (7)0.0276 (7)0.0341 (7)0.0084 (5)0.0068 (6)0.0106 (5)
Geometric parameters (Å, º) top
N1—C21.3466 (15)C47—H47A0.9900
C2—N31.3582 (15)C47—H47B0.9900
N3—C41.3227 (15)C41—C421.3831 (19)
C4—C51.3925 (17)C41—C461.3833 (19)
C5—C61.3863 (16)C42—C431.384 (2)
C6—N11.3342 (15)C42—H420.9500
C2—N21.3424 (15)C43—C441.377 (2)
N2—C271.4495 (15)C43—H430.9500
C4—O41.3516 (14)C44—C451.370 (2)
O4—C471.4522 (14)C44—H440.9500
C6—O61.3530 (14)C45—C461.390 (2)
O6—C671.4470 (15)C45—H450.9500
N2—H20.8800C46—H460.9500
C27—C211.5172 (17)C5—H50.9500
C27—H27A0.9900C67—C611.5005 (17)
C27—H27B0.9900C67—H67A0.9900
C21—C221.3886 (16)C67—H67B0.9900
C21—C261.3923 (17)C61—C621.3872 (18)
C22—C231.3910 (18)C61—C661.3894 (18)
C22—H220.9500C62—C631.3872 (18)
C23—C241.383 (2)C62—H620.9500
C23—H230.9500C63—C641.381 (2)
C24—C251.3854 (19)C63—H630.9500
C24—H240.9500C64—C651.382 (2)
C25—C261.3900 (18)C64—H640.9500
C25—H250.9500C65—C661.3871 (19)
C26—H260.9500C65—H650.9500
C47—C411.5042 (17)C66—H660.9500
C6—N1—C2116.12 (10)C41—C42—H42119.5
N2—C2—N1116.63 (10)C43—C42—H42119.5
N2—C2—N3117.54 (10)C44—C43—C42120.14 (14)
N1—C2—N3125.83 (11)C44—C43—H43119.9
C2—N2—C27123.94 (10)C42—C43—H43119.9
C2—N2—H2118.0C45—C44—C43119.33 (13)
C27—N2—H2118.0C45—C44—H44120.3
N2—C27—C21114.73 (10)C43—C44—H44120.3
N2—C27—H27A108.6C44—C45—C46120.80 (13)
C21—C27—H27A108.6C44—C45—H45119.6
N2—C27—H27B108.6C46—C45—H45119.6
C21—C27—H27B108.6C41—C46—C45120.26 (13)
H27A—C27—H27B107.6C41—C46—H46119.9
C22—C21—C26118.55 (11)C45—C46—H46119.9
C22—C21—C27119.33 (11)C6—C5—C4114.53 (11)
C26—C21—C27122.11 (10)C6—C5—H5122.7
C21—C22—C23120.98 (12)C4—C5—H5122.7
C21—C22—H22119.5N1—C6—O6112.10 (10)
C23—C22—H22119.5N1—C6—C5123.60 (11)
C24—C23—C22119.95 (12)O6—C6—C5124.24 (10)
C24—C23—H23120.0C6—O6—C67116.37 (9)
C22—C23—H23120.0O6—C67—C61109.25 (10)
C23—C24—C25119.68 (12)O6—C67—H67A109.8
C23—C24—H24120.2C61—C67—H67A109.8
C25—C24—H24120.2O6—C67—H67B109.8
C24—C25—C26120.23 (12)C61—C67—H67B109.8
C24—C25—H25119.9H67A—C67—H67B108.3
C26—C25—H25119.9C62—C61—C66118.87 (11)
C25—C26—C21120.61 (12)C62—C61—C67120.71 (12)
C25—C26—H26119.7C66—C61—C67120.39 (12)
C21—C26—H26119.7C61—C62—C63120.57 (12)
C4—N3—C2115.00 (10)C61—C62—H62119.7
N3—C4—O4118.75 (10)C63—C62—H62119.7
N3—C4—C5124.90 (11)C64—C63—C62120.07 (12)
O4—C4—C5116.34 (10)C64—C63—H63120.0
C4—O4—C47116.87 (9)C62—C63—H63120.0
O4—C47—C41106.83 (10)C63—C64—C65119.89 (12)
O4—C47—H47A110.4C63—C64—H64120.1
C41—C47—H47A110.4C65—C64—H64120.1
O4—C47—H47B110.4C64—C65—C66119.99 (12)
C41—C47—H47B110.4C64—C65—H65120.0
H47A—C47—H47B108.6C66—C65—H65120.0
C42—C41—C46118.45 (12)C65—C66—C61120.59 (12)
C42—C41—C47121.14 (12)C65—C66—H66119.7
C46—C41—C47120.41 (12)C61—C66—H66119.7
C41—C42—C43121.02 (13)
C27—N2—C2—N33.0 (2)C67—O6—C6—C52.1 (2)
C47—O4—C4—N31.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.882.132.997 (2)170
C66—H66···N1ii0.952.583.516 (2)170
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z.
(III) 2-amino-4,6-bis(N-pyrrolidino)pyrimidine top
Crystal data top
C12H19N5F(000) = 1008
Mr = 233.32Dx = 1.308 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2485 reflections
a = 12.5654 (8) Åθ = 2.2–27.6°
b = 13.2735 (8) ŵ = 0.08 mm1
c = 14.2279 (9) ÅT = 120 K
β = 93.090 (2)°Prism, colourless
V = 2369.6 (3) Å30.3 × 0.2 × 0.2 mm
Z = 8
Data collection top
Nonius KappaCCD area-detector
diffractometer
2485 independent reflections
Radiation source: fine-focus sealed X-ray tube2109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ scans, and ω scans with κ offsetsθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1615
Tmin = 0.975, Tmax = 0.990k = 1617
7257 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0753P)2 + 0.6604P]
where P = (Fo2 + 2Fc2)/3
2485 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C12H19N5V = 2369.6 (3) Å3
Mr = 233.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.5654 (8) ŵ = 0.08 mm1
b = 13.2735 (8) ÅT = 120 K
c = 14.2279 (9) Å0.3 × 0.2 × 0.2 mm
β = 93.090 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2485 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
2109 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.990Rint = 0.022
7257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
2485 reflectionsΔρmin = 0.31 e Å3
154 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G. C. & Holmes, K. C. (1966). Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High-redundancy data were used in the scaling program, hence the `multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14234 (7)0.42768 (7)0.04220 (6)0.0167 (2)
C20.08934 (9)0.41017 (8)0.12032 (8)0.0169 (3)
N20.01134 (8)0.44606 (8)0.12240 (7)0.0226 (3)
N30.12512 (7)0.36133 (7)0.19908 (6)0.0177 (2)
C40.22452 (9)0.32333 (8)0.19736 (8)0.0168 (3)
N40.25920 (7)0.27045 (8)0.27487 (7)0.0210 (3)
C410.19010 (9)0.24157 (9)0.34986 (8)0.0200 (3)
C420.25113 (10)0.15405 (9)0.39630 (9)0.0247 (3)
C430.36722 (10)0.18595 (10)0.38874 (9)0.0248 (3)
C440.36740 (9)0.23140 (9)0.28994 (8)0.0203 (3)
C50.28893 (9)0.33753 (8)0.12149 (8)0.0181 (3)
C60.24377 (9)0.39189 (8)0.04469 (8)0.0163 (3)
N60.30145 (7)0.41109 (7)0.03098 (7)0.0190 (2)
C610.41069 (9)0.37530 (9)0.03849 (8)0.0193 (3)
C620.44028 (10)0.41074 (9)0.13600 (8)0.0228 (3)
C630.36687 (9)0.50100 (9)0.15631 (8)0.0216 (3)
C640.26383 (9)0.47094 (9)0.11223 (8)0.0188 (3)
H2A0.03980.47940.07380.027*
H2B0.04840.43600.17230.027*
H41A0.11900.22000.32400.024*
H41B0.18140.29760.39470.024*
H42A0.23600.09010.36230.030*
H42B0.23340.14610.46280.030*
H43A0.41580.12730.39500.030*
H43B0.38850.23650.43740.030*
H44A0.42070.28610.28710.024*
H44B0.38270.17940.24260.024*
H50.35950.31180.12180.022*
H61A0.41420.30100.03360.023*
H61B0.45890.40510.01140.023*
H62A0.42720.35700.18350.027*
H62B0.51610.43110.13550.027*
H63A0.39700.56310.12700.026*
H63B0.35500.51200.22490.026*
H64A0.22380.53090.09260.023*
H64B0.21780.43050.15650.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0156 (5)0.0198 (5)0.0148 (5)0.0000 (4)0.0009 (4)0.0007 (4)
C20.0159 (5)0.0186 (5)0.0161 (6)0.0027 (4)0.0003 (4)0.0009 (4)
N20.0161 (5)0.0349 (6)0.0172 (5)0.0040 (4)0.0034 (4)0.0079 (4)
N30.0152 (5)0.0231 (5)0.0147 (5)0.0005 (4)0.0009 (4)0.0016 (4)
C40.0182 (6)0.0173 (5)0.0148 (5)0.0023 (4)0.0007 (4)0.0001 (4)
N40.0162 (5)0.0288 (5)0.0183 (5)0.0021 (4)0.0023 (4)0.0070 (4)
C410.0205 (6)0.0244 (6)0.0149 (6)0.0020 (5)0.0005 (4)0.0031 (4)
C420.0292 (7)0.0246 (6)0.0203 (6)0.0008 (5)0.0002 (5)0.0053 (5)
C430.0252 (7)0.0264 (6)0.0225 (6)0.0037 (5)0.0027 (5)0.0047 (5)
C440.0176 (6)0.0234 (6)0.0197 (6)0.0029 (5)0.0001 (4)0.0005 (5)
C50.0154 (5)0.0210 (6)0.0179 (6)0.0024 (4)0.0017 (4)0.0011 (4)
C60.0175 (6)0.0162 (5)0.0151 (6)0.0011 (4)0.0016 (4)0.0020 (4)
N60.0173 (5)0.0249 (5)0.0152 (5)0.0049 (4)0.0038 (4)0.0037 (4)
C610.0163 (6)0.0237 (6)0.0181 (6)0.0033 (4)0.0040 (4)0.0004 (4)
C620.0215 (6)0.0283 (6)0.0191 (6)0.0021 (5)0.0068 (5)0.0009 (5)
C630.0203 (6)0.0282 (6)0.0166 (6)0.0001 (5)0.0028 (4)0.0028 (5)
C640.0190 (6)0.0229 (6)0.0144 (6)0.0002 (4)0.0004 (4)0.0016 (4)
Geometric parameters (Å, º) top
N1—C21.3464 (15)C43—H43A0.9900
C2—N31.3506 (14)C43—H43B0.9900
N3—C41.3484 (15)C44—H44A0.9900
C4—C51.3965 (16)C44—H44B0.9900
C5—C61.4035 (15)C5—H50.9500
C6—N11.3588 (14)C6—N61.3540 (15)
C2—N21.3537 (15)N6—C641.4602 (14)
N2—H2A0.8800N6—C611.4619 (14)
N2—H2B0.8800C61—C621.5296 (16)
C4—N41.3590 (14)C61—H61A0.9900
N4—C441.4601 (14)C61—H61B0.9900
N4—C411.4625 (15)C62—C631.5300 (16)
C41—C421.5230 (16)C62—H62A0.9900
C41—H41A0.9900C62—H62B0.9900
C41—H41B0.9900C63—C641.5219 (16)
C42—C431.5283 (18)C63—H63A0.9900
C42—H42A0.9900C63—H63B0.9900
C42—H42B0.9900C64—H64A0.9900
C43—C441.5298 (16)C64—H64B0.9900
C2—N1—C6115.03 (10)C43—C44—H44B111.1
N1—C2—N3127.63 (10)H44A—C44—H44B109.1
N1—C2—N2117.50 (10)C4—C5—C6116.39 (10)
N3—C2—N2114.87 (10)C4—C5—H5121.8
C2—N2—H2A120.0C6—C5—H5121.8
C2—N2—H2B120.0N6—C6—N1117.06 (10)
H2A—N2—H2B120.0N6—C6—C5120.30 (10)
C4—N3—C2115.58 (10)N1—C6—C5122.64 (10)
N3—C4—N4115.80 (10)C6—N6—C61122.82 (9)
N3—C4—C5122.65 (10)C6—N6—C64124.58 (9)
N4—C4—C5121.55 (10)C61—N6—C64112.58 (9)
C4—N4—C41123.39 (9)N6—C61—C62103.98 (9)
C4—N4—C44123.91 (10)N6—C61—H61A111.0
C41—N4—C44112.62 (9)C62—C61—H61A111.0
N4—C41—C42102.22 (9)N6—C61—H61B111.0
N4—C41—H41A111.3C62—C61—H61B111.0
C42—C41—H41A111.3H61A—C61—H61B109.0
N4—C41—H41B111.3C61—C62—C63103.80 (9)
C42—C41—H41B111.3C61—C62—H62A111.0
H41A—C41—H41B109.2C63—C62—H62A111.0
C41—C42—C43102.61 (9)C61—C62—H62B111.0
C41—C42—H42A111.2C63—C62—H62B111.0
C43—C42—H42A111.2H62A—C62—H62B109.0
C41—C42—H42B111.2C64—C63—C62103.56 (9)
C43—C42—H42B111.2C64—C63—H63A111.0
H42A—C42—H42B109.2C62—C63—H63A111.0
C42—C43—C44102.87 (9)C64—C63—H63B111.0
C42—C43—H43A111.2C62—C63—H63B111.0
C44—C43—H43A111.2H63A—C63—H63B109.0
C42—C43—H43B111.2N6—C64—C63102.86 (9)
C44—C43—H43B111.2N6—C64—H64A111.2
H43A—C43—H43B109.1C63—C64—H64A111.2
N4—C44—C43103.14 (9)N6—C64—H64B111.2
N4—C44—H44A111.1C63—C64—H64B111.2
C43—C44—H44A111.1H64A—C64—H64B109.1
N4—C44—H44B111.1
C6—N1—C2—N30.43 (17)N3—C4—C5—C61.63 (16)
C6—N1—C2—N2178.66 (9)N4—C4—C5—C6178.90 (10)
N1—C2—N3—C42.19 (17)C2—N1—C6—N6177.58 (9)
N2—C2—N3—C4178.70 (9)C2—N1—C6—C52.18 (16)
C2—N3—C4—N4177.32 (9)C4—C5—C6—N6178.52 (10)
C2—N3—C4—C53.17 (16)C4—C5—C6—N11.23 (17)
N3—C4—N4—C44174.24 (10)C5—C6—N6—C64176.89 (10)
N3—C4—N4—C419.39 (16)N1—C6—N6—C61178.70 (9)
C5—C4—N4—C445.27 (17)C5—C6—N6—C611.53 (17)
C5—C4—N4—C41171.10 (11)N1—C6—N6—C642.88 (16)
C4—N4—C41—C42158.93 (11)C6—N6—C61—C62177.59 (10)
N4—C41—C42—C4335.48 (12)N6—C64—C63—C6233.10 (11)
C41—C42—C43—C4440.59 (12)C64—C63—C62—C6135.97 (12)
C42—C43—C44—N429.44 (12)C63—C62—C61—N624.55 (12)
C43—C44—N4—C417.37 (13)C62—C61—N6—C643.82 (13)
C44—N4—C41—C4217.80 (13)C61—N6—C64—C6318.54 (12)
C4—N4—C44—C43175.92 (11)C6—N6—C64—C63160.02 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.383.2538 (14)170
N2—H2B···N3ii0.882.333.1862 (13)163
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC6H9N3O2C25H23N3O2C12H19N5
Mr155.16397.46233.32
Crystal system, space groupMonoclinic, C2/cTriclinic, P1Monoclinic, C2/c
Temperature (K)120120120
a, b, c (Å)12.3971 (5), 8.3608 (5), 14.5237 (7)5.8083 (6), 12.3104 (13), 15.7260 (16)12.5654 (8), 13.2735 (8), 14.2279 (9)
α, β, γ (°)90, 106.585 (3), 9068.549 (2), 85.978 (2), 82.737 (2)90, 93.090 (2), 90
V3)1442.75 (13)1037.81 (19)2369.6 (3)
Z828
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.110.080.08
Crystal size (mm)0.20 × 0.15 × 0.050.14 × 0.05 × 0.040.3 × 0.2 × 0.2
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Bruker SMART 1000
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Multi-scan
(SADABS; Bruker, 1997)
Multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.978, 0.9940.989, 0.9970.975, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
5248, 1642, 1090 6639, 4785, 3697 7257, 2485, 2109
Rint0.0660.0100.022
(sin θ/λ)max1)0.6480.6830.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.132, 1.01 0.041, 0.111, 1.07 0.041, 0.117, 1.08
No. of reflections164247852485
No. of parameters102271154
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.370.25, 0.220.24, 0.31

Computer programs: KappaCCD Server Software (Nonius, 1997), SMART (Bruker, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SMART, SHELXTL (Bruker, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) for (I) top
N1—C21.338 (2)C2—N21.342 (2)
C2—N31.355 (2)C4—O41.342 (2)
N3—C41.331 (2)O4—C411.437 (2)
C4—C51.386 (2)C6—O61.3492 (19)
C5—C61.375 (2)O6—C611.433 (2)
C6—N11.332 (2)
C41—O4—C4—N36.5 (2)C61—O6—C6—C51.3 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.233.106 (2)171
N2—H2B···N3ii0.882.503.261 (2)145
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1/2.
Selected geometric parameters (Å, º) for (II) top
N1—C21.3466 (15)C2—N21.3424 (15)
C2—N31.3582 (15)N2—C271.4495 (15)
N3—C41.3227 (15)C4—O41.3516 (14)
C4—C51.3925 (17)O4—C471.4522 (14)
C5—C61.3863 (16)C6—O61.3530 (14)
C6—N11.3342 (15)O6—C671.4470 (15)
C27—N2—C2—N33.0 (2)C67—O6—C6—C52.1 (2)
C47—O4—C4—N31.1 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.882.132.997 (2)170
Symmetry code: (i) x+2, y, z+1.
Selected geometric parameters (Å, º) for (III) top
N1—C21.3464 (15)C6—N11.3588 (14)
C2—N31.3506 (14)C2—N21.3537 (15)
N3—C41.3484 (15)C4—N41.3590 (14)
C4—C51.3965 (16)C6—N61.3540 (15)
C5—C61.4035 (15)
C4—N4—C41123.39 (9)C6—N6—C61122.82 (9)
C4—N4—C44123.91 (10)C6—N6—C64124.58 (9)
C41—N4—C44112.62 (9)C61—N6—C64112.58 (9)
N3—C4—N4—C419.39 (16)C5—C6—N6—C611.53 (17)
C5—C4—N4—C445.27 (17)N1—C6—N6—C642.88 (16)
N4—C41—C42—C4335.48 (12)N6—C64—C63—C6233.10 (11)
C41—C42—C43—C4440.59 (12)C64—C63—C62—C6135.97 (12)
C42—C43—C44—N429.44 (12)C63—C62—C61—N624.55 (12)
C43—C44—N4—C417.37 (13)C62—C61—N6—C643.82 (13)
C44—N4—C41—C4217.80 (13)C61—N6—C64—C6318.54 (12)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.383.2538 (14)170
N2—H2B···N3ii0.882.333.1862 (13)163
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds