Download citation
Download citation
link to html
A new p-tert-butyl­thia­calix­[4]­arene derivative, C72H68N4O4S4·2CH2Cl2, has been synthesized and is comprised of one tetra-p-tert-butyltetrakis(2-cyano­benzyl­oxy)­tetra­thia­calix­[4]arene and two di­chloro­methane mol­ecules. The calix­[4]­arene mol­ecule is centrosymmetric and adopts an unusual 1,2-alternate conformation via [pi]-[pi] interactions between adjacent cyano­phenyl rings on the lower rim of the parent thia­calix­[4]­arene system.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102008077/sk1542sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102008077/sk1542Isup2.hkl
Contains datablock I

CCDC reference: 192964

Comment top

Thiacalix[4]arenes (TCAs) have emerged very recently as new members of the well known calixarene family (Kumagai et al., 1997). It has been demonstrated that one of the remarkable results of the replacement of CH2 by S is that TCAs can quantitatively extract transition metal ions, such as Co2+, Cu2+ and Zn2+, from an aqueous phase into chloroform (Morohashi et al., 2001) and, furthermore, oxidation of the sulfur bridges to sulfoxide or sulfone moieties leads to new types of ligands with potentially interesting complexation abilities (Lhotak et al., 2000).

For the parent calix[4]arene, four limit conformers (cone, partial cone, 1,2-alternate and 1,3-alternate) are found, to the best of our knowledge, however, for most tetrasubstituted calix[4]arene derivatives, the 1,2-alternate conformation is unknown (Cambridge Structural Database; Version of April 2001; Allen & Kennard, 1993). We report herein the structure of 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis(2-cyanobenzyloxy)-2,8,14,20- tetrathiacalix[4]arene–dichloromethane (1/2), (I), which adopts an unique 1,2-alternate conformation via ππ interactions between adjacent cyanophenyl rings on the lower rim of the parent thiacalix[4]arene system.

Single-crystal analysis reveals that the molecule is centrosymmetric. Two pairs of opposite aromatic rings, C1–C6/C1A–C6A and C11–C16/C11A–C16A, are parallel to each other. The dihedral angles between adjacent aromatic rings, i.e. C1–C6 and C11–C16, and C1A–C6A and C11A–C16A, are all 102.7 (1)°. Furthermore, adjacent cyanophenyl rings on the lower rim are nearly parallel, with a dihedral angle of 7.3 (2)° and the two carbonitrile groups are oriented in roughly the same direction. The four bridging S atoms are coplanar and the average distances between two adjacent S atoms, S1···S2, and two opposite S atoms, S2···S2A, are approximately 5.581 (1) and 8.409 (1) Å, respectively. The angles C5—S1—C11 and C1—S2—C15A are 101.54 (4) and 108.36 (4)°. The two dichloromethane solvent molecules do not enter the cavity, but are located on opposite sides of the thiacalix[4]arene molecule.

In conclusion, as the precursor of a new thiacalix[4]arene derivative, the title compound adopts an unusual 1,2-alternate conformation with two pairs of distal aromatic rings and two pairs of distal cyanophenyl rings being centrosymmetric. Hydrolysis of the cyanobenzyl groups on the lower rim to the benzoxy groups and the binding ability toward metal ions of the latter derivative are currently under investigation.

Experimental top

The title compound was synthesized by reaction of thiacalix[4]arene (TCA) with 2-bromomethylbenzonitrile in the presence of K2CO3 as catalyst. The solid product was collected by filtration and recrystallization from dichloromethane gave the title compound as flat colorless crystals.

Refinement top

H atoms were placed in calculated positions and refined as riding with C—H distances of 0.93, 0.96 and 0.97 for aromatic, methyl and methylene/dichloromethane H atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SHELXTL (Sheldrick, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title thiacalix[4]arene showing 35% probability displacement ellipsoids. H atoms and dichloromethane solvent molecules have been omitted for clarity.
5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrakis(2-cyanobenzyloxy)-2,8,14,20- tetrathiacalix[4]arene–dichloromethane (1/2) top
Crystal data top
C72H68N4O4S4·2CH2Cl2F(000) = 1416
Mr = 1351.40Dx = 1.278 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 80 reflections
a = 13.768 (4) Åθ = 2.4–24.5°
b = 17.021 (5) ŵ = 0.34 mm1
c = 15.543 (4) ÅT = 293 K
β = 105.424 (5)°Plate, colorless
V = 3511.3 (17) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker CCD area-detector
diffractometer
6105 independent reflections
Radiation source: fine-focus sealed tube3885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.877, Tmax = 0.935k = 2015
14071 measured reflectionsl = 1813
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1P)2 + 0.9P]
where P = (Fo2 + 2Fc2)/3
6105 reflections(Δ/σ)max = 0.052
406 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
C72H68N4O4S4·2CH2Cl2V = 3511.3 (17) Å3
Mr = 1351.40Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.768 (4) ŵ = 0.34 mm1
b = 17.021 (5) ÅT = 293 K
c = 15.543 (4) Å0.40 × 0.30 × 0.20 mm
β = 105.424 (5)°
Data collection top
Bruker CCD area-detector
diffractometer
6105 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3885 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.935Rint = 0.039
14071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
6105 reflectionsΔρmin = 0.68 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10101 (6)0.17507 (5)0.91405 (6)0.0419 (3)
S20.28260 (6)0.11024 (5)0.95247 (6)0.0452 (3)
O10.08264 (16)0.07209 (12)0.89977 (14)0.0392 (5)
O20.15811 (17)0.00487 (13)0.90518 (14)0.0434 (6)
N10.2570 (4)0.1175 (3)0.5825 (3)0.0871 (13)
N20.0477 (4)0.0988 (4)0.6007 (3)0.1180 (18)
C10.1636 (2)0.15912 (17)0.9824 (2)0.0377 (7)
C20.1590 (3)0.22621 (19)1.0359 (2)0.0420 (8)
C30.0761 (2)0.27638 (19)1.0549 (2)0.0414 (8)
C40.0034 (2)0.25717 (19)1.0190 (2)0.0403 (8)
C50.0016 (2)0.19038 (18)0.9673 (2)0.0361 (7)
C60.0828 (2)0.14025 (17)0.9486 (2)0.0351 (7)
C70.0716 (3)0.3515 (2)1.1109 (3)0.0525 (10)
C80.0696 (5)0.4232 (3)1.0510 (3)0.0896 (16)
C90.1628 (4)0.3577 (3)1.1508 (4)0.0984 (19)
C100.0237 (3)0.3522 (3)1.1884 (3)0.0727 (13)
C110.1872 (2)0.11592 (19)0.9952 (2)0.0363 (7)
C120.2436 (2)0.15250 (19)1.0734 (2)0.0398 (8)
C130.3087 (2)0.11139 (19)1.1426 (2)0.0411 (8)
C140.3127 (2)0.03056 (19)1.1320 (2)0.0403 (8)
C150.2608 (2)0.00792 (19)1.0543 (2)0.0383 (8)
C160.2008 (2)0.03557 (18)0.9818 (2)0.0336 (7)
C170.3723 (3)0.1555 (2)1.2254 (2)0.0507 (9)
C180.3042 (4)0.2014 (3)1.2691 (3)0.0765 (13)
C190.4389 (4)0.0984 (3)1.2934 (3)0.098 (2)
C200.4427 (3)0.2129 (3)1.1949 (3)0.0795 (14)
C210.1633 (3)0.0293 (2)0.8216 (2)0.0533 (9)
C220.1859 (3)0.0339 (2)0.7620 (3)0.0541 (10)
C230.2409 (3)0.1004 (3)0.7930 (3)0.0704 (12)
C240.2619 (4)0.1552 (3)0.7334 (4)0.0904 (16)
C250.2281 (5)0.1433 (4)0.6426 (4)0.1033 (19)
C260.1714 (5)0.0786 (4)0.6093 (4)0.0944 (18)
C270.1507 (3)0.0230 (3)0.6675 (3)0.0664 (12)
C280.0925 (4)0.0448 (4)0.6301 (3)0.0779 (14)
C290.1298 (3)0.08019 (19)0.8058 (2)0.0412 (8)
C300.1148 (2)0.0054 (2)0.7598 (2)0.0404 (8)
C310.0617 (3)0.0581 (2)0.8043 (3)0.0500 (9)
C320.0436 (3)0.1233 (2)0.7573 (3)0.0645 (11)
C330.0786 (4)0.1265 (3)0.6650 (3)0.0747 (13)
C340.1341 (3)0.0660 (3)0.6198 (3)0.0664 (12)
C350.1531 (3)0.0007 (2)0.6662 (2)0.0474 (9)
C360.2107 (3)0.0658 (3)0.6185 (3)0.0585 (10)
Cl10.4272 (4)0.2014 (2)0.9251 (3)0.2541 (19)
Cl20.43900 (17)0.03918 (17)0.88973 (15)0.1532 (8)
C370.4564 (5)0.1130 (5)0.9651 (7)0.147 (3)
H2A0.21290.23751.05930.050*
H4A0.05930.29001.03000.048*
H8A0.12920.42341.00210.134*
H8B0.01120.42041.02850.134*
H8C0.06700.47051.08530.134*
H9A0.16370.31321.18840.148*
H9B0.22390.35891.10340.148*
H9C0.15740.40501.18540.148*
H10A0.02310.30791.22650.109*
H10B0.02610.39981.22190.109*
H10C0.08180.34921.16550.109*
H12A0.23720.20651.07920.048*
H14A0.35180.00091.17880.048*
H18A0.26040.16581.28870.115*
H18B0.26450.23781.22680.115*
H18C0.34440.22981.31940.115*
H19A0.39680.06181.31380.148*
H19B0.47860.12761.34320.148*
H19C0.48260.07021.26530.148*
H20A0.40320.24951.15290.119*
H20B0.48610.18401.16710.119*
H20C0.48270.24091.24560.119*
H21A0.21570.06900.83230.064*
H21B0.09970.05430.79270.064*
H23A0.26430.10910.85410.085*
H24A0.29900.20000.75510.108*
H25A0.24390.17960.60360.124*
H26A0.14690.07190.54790.113*
H29A0.10000.12390.78180.049*
H29B0.20110.09060.79600.049*
H31A0.03800.05710.86620.060*
H32A0.00750.16550.78800.077*
H33A0.06410.16980.63410.090*
H34A0.15950.06870.55810.080*
H37A0.41670.10161.00670.176*
H37B0.52660.11310.99880.176*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0417 (5)0.0436 (5)0.0388 (5)0.0044 (4)0.0077 (4)0.0045 (4)
S20.0348 (5)0.0340 (4)0.0608 (6)0.0011 (4)0.0025 (4)0.0065 (4)
O10.0474 (13)0.0297 (11)0.0344 (12)0.0031 (10)0.0003 (10)0.0043 (9)
O20.0446 (13)0.0471 (13)0.0355 (13)0.0055 (11)0.0051 (10)0.0089 (10)
N10.108 (3)0.092 (3)0.053 (2)0.023 (3)0.008 (2)0.004 (2)
N20.126 (4)0.142 (5)0.082 (3)0.026 (4)0.020 (3)0.028 (3)
C10.0378 (18)0.0289 (16)0.0399 (18)0.0003 (13)0.0010 (14)0.0016 (13)
C20.0436 (19)0.0368 (18)0.0422 (19)0.0012 (15)0.0056 (15)0.0068 (15)
C30.0436 (19)0.0342 (17)0.0411 (19)0.0025 (15)0.0018 (15)0.0065 (14)
C40.0405 (18)0.0331 (17)0.0401 (19)0.0045 (14)0.0021 (15)0.0012 (14)
C50.0360 (17)0.0355 (17)0.0322 (17)0.0064 (13)0.0008 (13)0.0036 (13)
C60.0398 (18)0.0281 (15)0.0320 (17)0.0031 (14)0.0000 (13)0.0020 (13)
C70.060 (2)0.0363 (19)0.055 (2)0.0032 (17)0.0056 (18)0.0156 (16)
C80.135 (5)0.043 (2)0.085 (4)0.005 (3)0.019 (3)0.011 (2)
C90.092 (4)0.084 (3)0.128 (5)0.012 (3)0.044 (3)0.067 (3)
C100.083 (3)0.061 (3)0.064 (3)0.004 (2)0.001 (2)0.024 (2)
C110.0337 (16)0.0393 (17)0.0363 (18)0.0007 (13)0.0098 (13)0.0006 (14)
C120.0395 (18)0.0356 (17)0.0408 (19)0.0047 (14)0.0044 (15)0.0058 (14)
C130.0399 (18)0.0380 (18)0.0422 (19)0.0015 (15)0.0050 (15)0.0045 (15)
C140.0356 (17)0.0410 (18)0.0397 (19)0.0021 (14)0.0016 (14)0.0029 (15)
C150.0299 (16)0.0363 (17)0.046 (2)0.0028 (13)0.0060 (14)0.0057 (14)
C160.0291 (16)0.0367 (17)0.0340 (17)0.0047 (13)0.0069 (13)0.0033 (14)
C170.057 (2)0.0428 (19)0.042 (2)0.0073 (16)0.0045 (17)0.0085 (16)
C180.079 (3)0.081 (3)0.067 (3)0.016 (3)0.015 (2)0.029 (2)
C190.117 (4)0.069 (3)0.069 (3)0.002 (3)0.045 (3)0.013 (2)
C200.067 (3)0.085 (3)0.079 (3)0.031 (3)0.006 (2)0.024 (3)
C210.060 (2)0.061 (2)0.038 (2)0.0021 (19)0.0117 (17)0.0040 (17)
C220.052 (2)0.062 (2)0.051 (2)0.0120 (19)0.0191 (18)0.0134 (19)
C230.076 (3)0.072 (3)0.066 (3)0.005 (2)0.022 (2)0.012 (2)
C240.102 (4)0.075 (3)0.104 (5)0.014 (3)0.045 (3)0.019 (3)
C250.135 (5)0.100 (5)0.093 (5)0.009 (4)0.062 (4)0.042 (4)
C260.121 (5)0.118 (5)0.057 (3)0.016 (4)0.046 (3)0.032 (3)
C270.071 (3)0.083 (3)0.052 (3)0.013 (2)0.029 (2)0.015 (2)
C280.085 (3)0.105 (4)0.045 (3)0.002 (3)0.019 (2)0.003 (3)
C290.0472 (19)0.0373 (18)0.0347 (18)0.0028 (15)0.0031 (15)0.0052 (14)
C300.0381 (18)0.0410 (18)0.042 (2)0.0053 (15)0.0097 (14)0.0066 (15)
C310.053 (2)0.0379 (19)0.055 (2)0.0032 (16)0.0072 (17)0.0056 (16)
C320.066 (3)0.046 (2)0.080 (3)0.0049 (19)0.017 (2)0.013 (2)
C330.086 (3)0.056 (3)0.087 (4)0.003 (2)0.031 (3)0.031 (2)
C340.078 (3)0.072 (3)0.053 (2)0.006 (2)0.025 (2)0.024 (2)
C350.049 (2)0.056 (2)0.038 (2)0.0046 (17)0.0136 (16)0.0108 (17)
C360.067 (3)0.067 (3)0.038 (2)0.003 (2)0.0072 (19)0.009 (2)
Cl10.368 (5)0.157 (2)0.304 (4)0.026 (3)0.206 (4)0.054 (3)
Cl20.1340 (16)0.199 (2)0.1280 (16)0.0160 (15)0.0375 (12)0.0098 (15)
C370.090 (5)0.161 (8)0.211 (9)0.016 (5)0.078 (5)0.012 (7)
Geometric parameters (Å, º) top
S1—C111.794 (3)C17—C191.545 (6)
S1—C51.797 (3)C18—H18A0.9600
S2—C15i1.775 (3)C18—H18B0.9600
S2—C11.785 (3)C18—H18C0.9600
O1—C61.386 (4)C19—H19A0.9600
O1—C291.438 (4)C19—H19B0.9600
O2—C161.365 (4)C19—H19C0.9600
O2—C211.443 (4)C20—H20A0.9600
N1—C361.141 (5)C20—H20B0.9600
N2—C281.134 (7)C20—H20C0.9600
C1—C61.388 (5)C21—C221.504 (5)
C1—C21.404 (4)C21—H21A0.9700
C2—C31.393 (5)C21—H21B0.9700
C2—H2A0.9300C22—C231.377 (6)
C3—C41.393 (5)C22—C271.432 (6)
C3—C71.538 (5)C23—C241.398 (7)
C4—C51.389 (4)C23—H23A0.9300
C4—H4A0.9300C24—C251.378 (8)
C5—C61.408 (4)C24—H24A0.9300
C7—C101.527 (5)C25—C261.370 (9)
C7—C91.545 (6)C25—H25A0.9300
C7—C81.540 (6)C26—C271.390 (7)
C8—H8A0.9600C26—H26A0.9300
C8—H8B0.9600C27—C281.436 (8)
C8—H8C0.9600C29—C301.501 (5)
C9—H9A0.9600C29—H29A0.9700
C9—H9B0.9600C29—H29B0.9700
C9—H9C0.9600C30—C311.383 (5)
C10—H10A0.9600C30—C351.412 (5)
C10—H10B0.9600C31—C321.389 (5)
C10—H10C0.9600C31—H31A0.9300
C11—C121.401 (4)C32—C331.387 (6)
C11—C161.404 (4)C32—H32A0.9300
C12—C131.392 (5)C33—C341.362 (7)
C12—H12A0.9300C33—H33A0.9300
C13—C141.389 (5)C34—C351.406 (5)
C13—C171.545 (5)C34—H34A0.9300
C14—C151.393 (4)C35—C361.447 (6)
C14—H14A0.9300Cl1—C371.637 (9)
C15—C161.417 (4)Cl2—C371.691 (9)
C15—S2i1.775 (3)C37—H37A0.9700
C17—C181.514 (6)C37—H37B0.9700
C17—C201.536 (6)
C11—S1—C5101.54 (14)H18A—C18—H18B109.5
C15i—S2—C1108.36 (14)C17—C18—H18C109.5
C6—O1—C29114.2 (2)H18A—C18—H18C109.5
C16—O2—C21118.0 (3)H18B—C18—H18C109.5
C6—C1—C2119.8 (3)C17—C19—H19A109.5
C6—C1—S2124.5 (2)C17—C19—H19B109.5
C2—C1—S2115.3 (3)H19A—C19—H19B109.5
C3—C2—C1122.0 (3)C17—C19—H19C109.5
C3—C2—H2A119.0H19A—C19—H19C109.5
C1—C2—H2A119.0H19B—C19—H19C109.5
C4—C3—C2117.2 (3)C17—C20—H20A109.5
C4—C3—C7120.3 (3)C17—C20—H20B109.5
C2—C3—C7122.5 (3)H20A—C20—H20B109.5
C3—C4—C5121.9 (3)C17—C20—H20C109.5
C3—C4—H4A119.0H20A—C20—H20C109.5
C5—C4—H4A119.0H20B—C20—H20C109.5
C4—C5—C6120.2 (3)O2—C21—C22109.5 (3)
C4—C5—S1119.1 (3)O2—C21—H21A109.8
C6—C5—S1120.3 (2)C22—C21—H21A109.8
O1—C6—C1121.2 (3)O2—C21—H21B109.8
O1—C6—C5119.9 (3)C22—C21—H21B109.8
C1—C6—C5118.8 (3)H21A—C21—H21B108.2
C10—C7—C9107.6 (4)C23—C22—C27118.1 (4)
C10—C7—C3110.5 (3)C23—C22—C21123.9 (4)
C9—C7—C3111.7 (3)C27—C22—C21118.0 (4)
C10—C7—C8108.7 (4)C22—C23—C24120.5 (5)
C9—C7—C8109.6 (4)C22—C23—H23A119.7
C3—C7—C8108.7 (3)C24—C23—H23A119.7
C7—C8—H8A109.5C25—C24—C23120.5 (5)
C7—C8—H8B109.5C25—C24—H24A119.7
H8A—C8—H8B109.5C23—C24—H24A119.7
C7—C8—H8C109.5C24—C25—C26120.6 (5)
H8A—C8—H8C109.5C24—C25—H25A119.7
H8B—C8—H8C109.5C26—C25—H25A119.7
C7—C9—H9A109.5C25—C26—C27119.7 (5)
C7—C9—H9B109.5C25—C26—H26A120.1
H9A—C9—H9B109.5C27—C26—H26A120.1
C7—C9—H9C109.5C26—C27—C22120.5 (5)
H9A—C9—H9C109.5C26—C27—C28118.2 (5)
H9B—C9—H9C109.5C22—C27—C28121.3 (4)
C7—C10—H10A109.5N2—C28—C27179.1 (6)
C7—C10—H10B109.5O1—C29—C30108.7 (3)
H10A—C10—H10B109.5O1—C29—H29A109.9
C7—C10—H10C109.5C30—C29—H29A109.9
H10A—C10—H10C109.5O1—C29—H29B109.9
H10B—C10—H10C109.5C30—C29—H29B109.9
C12—C11—C16119.8 (3)H29A—C29—H29B108.3
C12—C11—S1118.1 (2)C31—C30—C35118.4 (3)
C16—C11—S1122.1 (2)C31—C30—C29123.0 (3)
C13—C12—C11122.8 (3)C35—C30—C29118.6 (3)
C13—C12—H12A118.6C30—C31—C32120.4 (4)
C11—C12—H12A118.6C30—C31—H31A119.8
C14—C13—C12116.4 (3)C32—C31—H31A119.8
C14—C13—C17123.3 (3)C33—C32—C31120.9 (4)
C12—C13—C17120.4 (3)C33—C32—H32A119.5
C13—C14—C15122.8 (3)C31—C32—H32A119.5
C13—C14—H14A118.6C34—C33—C32119.8 (4)
C15—C14—H14A118.6C34—C33—H33A120.1
C14—C15—C16120.1 (3)C32—C33—H33A120.1
C14—C15—S2i117.2 (2)C33—C34—C35120.2 (4)
C16—C15—S2i122.5 (2)C33—C34—H34A119.9
O2—C16—C11125.3 (3)C35—C34—H34A119.9
O2—C16—C15117.1 (3)C34—C35—C30120.3 (4)
C11—C16—C15117.6 (3)C34—C35—C36120.5 (3)
C18—C17—C20109.1 (4)C30—C35—C36119.3 (3)
C18—C17—C19110.1 (4)N1—C36—C35178.4 (5)
C20—C17—C19107.6 (4)Cl1—C37—Cl2116.4 (6)
C18—C17—C13110.0 (3)Cl1—C37—H37A108.2
C20—C17—C13108.4 (3)Cl2—C37—H37A108.2
C19—C17—C13111.4 (3)Cl1—C37—H37B108.2
C17—C18—H18A109.5Cl2—C37—H37B108.2
C17—C18—H18B109.5H37A—C37—H37B107.3
C15i—S2—C1—C640.8 (3)S1—C11—C16—O25.6 (4)
C15i—S2—C1—C2146.6 (2)C12—C11—C16—C159.0 (4)
C6—C1—C2—C31.6 (5)S1—C11—C16—C15172.2 (2)
S2—C1—C2—C3171.4 (3)C14—C15—C16—O2175.2 (3)
C1—C2—C3—C40.4 (5)S2i—C15—C16—O20.9 (4)
C1—C2—C3—C7178.0 (3)C14—C15—C16—C116.9 (4)
C2—C3—C4—C50.9 (5)S2i—C15—C16—C11178.9 (2)
C7—C3—C4—C5179.3 (3)C14—C13—C17—C18122.9 (4)
C3—C4—C5—C61.0 (5)C12—C13—C17—C1857.6 (5)
C3—C4—C5—S1173.7 (2)C14—C13—C17—C20117.9 (4)
C11—S1—C5—C493.2 (3)C12—C13—C17—C2061.6 (5)
C11—S1—C5—C694.1 (3)C14—C13—C17—C190.4 (5)
C29—O1—C6—C187.0 (4)C12—C13—C17—C19179.9 (4)
C29—O1—C6—C595.3 (3)C16—O2—C21—C22139.1 (3)
C2—C1—C6—O1176.3 (3)O2—C21—C22—C2329.9 (5)
S2—C1—C6—O111.4 (4)O2—C21—C22—C27152.1 (3)
C2—C1—C6—C51.5 (4)C27—C22—C23—C240.4 (6)
S2—C1—C6—C5170.8 (2)C21—C22—C23—C24177.6 (4)
C4—C5—C6—O1177.5 (3)C22—C23—C24—C250.2 (8)
S1—C5—C6—O19.8 (4)C23—C24—C25—C261.5 (9)
C4—C5—C6—C10.2 (4)C24—C25—C26—C272.2 (9)
S1—C5—C6—C1172.4 (2)C25—C26—C27—C221.6 (8)
C4—C3—C7—C1055.3 (5)C25—C26—C27—C28178.9 (5)
C2—C3—C7—C10126.4 (4)C23—C22—C27—C260.3 (6)
C4—C3—C7—C9175.1 (4)C21—C22—C27—C26178.5 (4)
C2—C3—C7—C96.6 (5)C23—C22—C27—C28179.8 (4)
C4—C3—C7—C863.8 (5)C21—C22—C27—C282.1 (6)
C2—C3—C7—C8114.5 (4)C6—O1—C29—C30174.0 (3)
C5—S1—C11—C1273.6 (3)O1—C29—C30—C311.2 (5)
C5—S1—C11—C16107.6 (3)O1—C29—C30—C35178.5 (3)
C16—C11—C12—C134.6 (5)C35—C30—C31—C322.4 (5)
S1—C11—C12—C13176.6 (3)C29—C30—C31—C32174.9 (4)
C11—C12—C13—C142.2 (5)C30—C31—C32—C330.3 (6)
C11—C12—C13—C17177.3 (3)C31—C32—C33—C342.0 (7)
C12—C13—C14—C154.5 (5)C32—C33—C34—C352.1 (7)
C17—C13—C14—C15175.0 (3)C33—C34—C35—C300.0 (6)
C13—C14—C15—C160.0 (5)C33—C34—C35—C36179.1 (4)
C13—C14—C15—S2i174.6 (3)C31—C30—C35—C342.3 (5)
C21—O2—C16—C1147.2 (4)C29—C30—C35—C34175.2 (3)
C21—O2—C16—C15135.0 (3)C31—C30—C35—C36178.7 (4)
C12—C11—C16—O2173.2 (3)C29—C30—C35—C363.9 (5)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC72H68N4O4S4·2CH2Cl2
Mr1351.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.768 (4), 17.021 (5), 15.543 (4)
β (°) 105.424 (5)
V3)3511.3 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.877, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
14071, 6105, 3885
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.186, 1.06
No. of reflections6105
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.68

Computer programs: SMART (Bruker, 1998), SMART, SHELXTL (Sheldrick, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
S1—C111.794 (3)O2—C211.443 (4)
S1—C51.797 (3)N1—C361.141 (5)
S2—C15i1.775 (3)N2—C281.134 (7)
S2—C11.785 (3)C3—C71.538 (5)
O1—C61.386 (4)C13—C171.545 (5)
O1—C291.438 (4)C21—C221.504 (5)
O2—C161.365 (4)C29—C301.501 (5)
C11—S1—C5101.54 (14)C14—C15—S2i117.2 (2)
C15i—S2—C1108.36 (14)C16—C15—S2i122.5 (2)
C6—O1—C29114.2 (2)O2—C16—C11125.3 (3)
C16—O2—C21118.0 (3)O2—C16—C15117.1 (3)
C6—C1—S2124.5 (2)O2—C21—C22109.5 (3)
C2—C1—S2115.3 (3)N2—C28—C27179.1 (6)
C12—C11—S1118.1 (2)O1—C29—C30108.7 (3)
C16—C11—S1122.1 (2)N1—C36—C35178.4 (5)
Symmetry code: (i) x, y, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds