Download citation
Download citation
link to html
The title compound, [Ce(C3H9OP)4(H2O)4]Cl3·3H2O, con­tains eight-coordinate Ce atoms in an approximate dodeca­hedral arrangement, with Ce-O(P) = 2.372 (2)-2.423 (2) Å and Ce-O(H2) = 2.518 (2)-2.630 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102004766/sk1541sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004766/sk1541Isup2.hkl
Contains datablock I

CCDC reference: 187910

Comment top

During attempts to synthesize octahedral [Ln(Me3PO)6]3+ cations (Ln is a lanthanide), the reaction of CeCl3·6H2O with eight molar equivalents of Me3PO in methanol was investigated. The product isolated was [Ce(Me3PO)4Cl3]·4H2O, as identified by analysis and IR spectroscopy, and, significantly, the complex was a non-electrolyte in freshly prepared nitromethane solution (Leung, 2001). Colourless crystals were isolated from a solution of this complex in nitromethane, which was allowed to evaporate in air over a period of three weeks. The structure showed that the crystals contained the title complex, [Ce(Me3PO)4(H2O)4]Cl3·3H2O, (I), showing that the initial complex had been converted into the mixed phosphine oxide-aqua complex on standing in the polar solvent, the extra water coming from the atmosphere. Complexes of the type [Ln(Me3PO)6][PF6]3 have since been isolated from the reaction of LnCl3.xH2O, Me3PO and NH4PF6 in 1:8:3 molar ratios in methanol (Hill et al., 2002). The structure of (I) is presented here. \sch

The structure of (I) consists of a distorted eight-coordinate CeIII cation composed of four O-donor phosphine oxide ligands and four water molecules. The Ce—O(P) distances are shorter [2.372 (2)–2.423 (2) Å] than the Ce—O(H2) distances [2.518 (2)–2.630 (2) Å]. The oxygen geometry at the Ce atom is, to a good approximation, a triangulated dodecahedron (bisdisphenoid) with idealized D2 d symmetry. Of the two interpenetrating tetrahedra, the flattened tetrahedron is formed by the four Me3PO groups and the elongated one by the four H2O ligands. The two trapezoidal planes often used to describe this geometry are similar, and are formed by atoms O1, O2, O6 and O7, and O3, O4, O5 and O8, respectively (Table 1 and Fig. 1).

The M—O—P angles in phosphine oxide complexes are highly variable and, in the present case, are in the range 144.27 (12)–151.31 (13)°. All the O—P—C angles are larger than the idealized tetrahedral angles (by an average of 2°) and the C—P—C angles are correspondingly smaller.

Both H atoms of each water molecule are involved in hydrogen bonding, either to a Cl atom or to an O atom. The shortest OH···Cl distance involves atom O7 and the shortest OH···O distance is between a coordinated water and a hydrate water molecule (Table 2).

There are no reports of structurally characterized lanthanide phosphine oxide complexes with the same stoichiometry as (I), but the structures of two CeIII complexes of triphenylphosphine oxide, the nine-coordinate [Ce(Ph3PO)3(NO3)3] (Lin et al., 1994) and [Ce(Ph3PO)2(EtOH)(NO3)3] (Levason et al., 2000), have been reported. The structure of the six-coordinate arsine oxide complex [Ce(Ph3AsO)3Cl3]·MeCN has also been described (Ryan et al., 1987).

Experimental top

Colourless crystals of (I) were isolated from a solution of [Ce(Me3PO)4Cl3]·4H2O in nitromethane, which was allowed to evaporate in air over a period of three weeks.

Refinement top

Methyl-group H atoms were positioned geometrically, with C—H = 0.98 Å, and water H atoms were located in the difference electron-density map. The latter were not refined and all H atoms were given a fixed isotropic displacement parameter.

Computing details top

Data collection: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. A view of the cation of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, and the Cl- anions, hydrate molecules and H atoms have been omitted for clarity.
Tetraaquatetrakis(trimethylphosphine oxide-κO)cerium(III) trichloride trihydrate top
Crystal data top
[Ce(C3H9OP)4(H2O)4]Cl3·3H2OZ = 2
Mr = 740.87F(000) = 758
Triclinic, P1Dx = 1.519 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2753 (10) ÅCell parameters from 12600 reflections
b = 11.1003 (10) Åθ = 2.9–27.5°
c = 15.6822 (15) ŵ = 1.89 mm1
α = 70.406 (10)°T = 120 K
β = 82.483 (10)°Block, colourless
γ = 74.161 (10)°0.26 × 0.20 × 0.16 mm
V = 1619.6 (3) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
5444 independent reflections
Radiation source: Nonius rotating anode4908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1211
Tmin = 0.656, Tmax = 0.739k = 1313
18262 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters not refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0184P)2 + 0.6782P]
where P = (Fo2 + 2Fc2)/3
5444 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Ce(C3H9OP)4(H2O)4]Cl3·3H2Oγ = 74.161 (10)°
Mr = 740.87V = 1619.6 (3) Å3
Triclinic, P1Z = 2
a = 10.2753 (10) ÅMo Kα radiation
b = 11.1003 (10) ŵ = 1.89 mm1
c = 15.6822 (15) ÅT = 120 K
α = 70.406 (10)°0.26 × 0.20 × 0.16 mm
β = 82.483 (10)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5444 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4908 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.739Rint = 0.073
18262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.064H-atom parameters not refined
S = 1.03Δρmax = 0.61 e Å3
5444 reflectionsΔρmin = 0.88 e Å3
281 parameters
Special details top

Experimental. The missing 4.5% of reflections presumably arose from the choice of frames recorded during the data collection on the area diffractometer.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.170923 (14)0.447541 (15)0.236975 (10)0.00969 (7)
Cl10.66467 (8)0.13714 (8)0.95434 (5)0.02455 (18)
Cl20.79567 (7)0.46661 (8)0.46286 (5)0.02255 (18)
Cl30.81261 (8)0.15098 (7)0.27890 (5)0.02305 (18)
P10.45924 (7)0.53612 (8)0.30830 (5)0.01389 (17)
P20.13475 (8)0.27826 (8)0.07704 (5)0.01521 (17)
P30.21974 (8)0.12407 (8)0.43087 (5)0.01755 (18)
P40.02876 (8)0.78827 (7)0.21972 (5)0.01511 (17)
O10.31975 (19)0.54269 (19)0.28467 (13)0.0167 (4)
O20.1148 (2)0.38855 (19)0.11687 (13)0.0178 (5)
O30.2181 (2)0.2225 (2)0.33801 (13)0.0205 (5)
O40.0266 (2)0.66530 (18)0.19285 (13)0.0171 (4)
O50.2950 (2)0.57446 (19)0.09564 (13)0.0172 (5)
O60.0693 (2)0.3978 (2)0.28078 (13)0.0194 (5)
O70.0860 (2)0.4750 (2)0.38972 (13)0.0215 (5)
O80.3968 (2)0.30949 (19)0.20133 (14)0.0207 (5)
O90.6418 (2)0.3001 (2)0.09643 (14)0.0236 (5)
O100.5393 (2)0.0538 (2)0.28094 (14)0.0250 (5)
O110.4524 (2)0.0460 (2)0.86491 (15)0.0305 (6)
C10.5285 (3)0.3828 (3)0.3900 (2)0.0238 (7)
H1A0.46720.36910.44390.0419*
H1B0.61670.38350.40690.0419*
H1C0.53990.31120.36430.0419*
C20.5748 (3)0.5549 (3)0.2123 (2)0.0227 (7)
H2A0.53980.63900.16580.0419*
H2B0.58530.48220.18780.0419*
H2C0.66280.55400.23050.0419*
C30.4572 (3)0.6642 (3)0.3538 (2)0.0220 (7)
H3A0.41940.75010.30990.0419*
H3B0.54980.65950.36620.0419*
H3C0.40120.65320.41020.0419*
C40.1849 (3)0.1205 (3)0.1596 (2)0.0269 (8)
H4A0.26970.11360.18520.0419*
H4B0.19830.05160.13100.0419*
H4C0.11420.10950.20800.0419*
C50.0185 (3)0.2855 (3)0.0333 (2)0.0238 (7)
H5A0.08950.27980.08170.0419*
H5B0.00550.21180.00940.0419*
H5C0.04540.36900.01550.0419*
C60.2602 (4)0.2892 (4)0.0131 (3)0.0413 (10)
H6A0.34630.28530.00940.0419*
H6B0.23170.37280.06150.0419*
H6C0.27160.21550.03680.0419*
C70.2723 (3)0.0406 (3)0.4263 (2)0.0251 (7)
H7A0.21140.05320.38850.0419*
H7B0.26930.10270.48760.0419*
H7C0.36490.05650.40010.0419*
C80.0585 (4)0.1418 (3)0.4892 (2)0.0331 (9)
H8A0.00830.13470.45300.0419*
H8B0.03110.22820.49880.0419*
H8C0.06390.07210.54790.0419*
C90.3347 (4)0.1376 (4)0.5003 (2)0.0327 (9)
H9A0.42530.12810.47070.0419*
H9B0.33720.06820.55900.0419*
H9C0.30500.22420.50970.0419*
C100.0588 (3)0.9334 (3)0.1237 (2)0.0219 (7)
H10A0.02540.93830.08670.0419*
H10B0.09031.01130.14410.0419*
H10C0.12800.93030.08750.0419*
C110.0850 (3)0.8126 (3)0.2858 (2)0.0225 (7)
H11A0.17240.81390.25250.0419*
H11B0.09760.74050.34330.0419*
H11C0.04720.89680.29790.0419*
C120.1849 (3)0.7866 (3)0.2831 (2)0.0285 (8)
H12A0.17290.70790.33670.0419*
H12B0.25310.78510.24540.0419*
H12C0.21480.86570.30220.0419*
H5X0.30270.65920.09260.030*
H5Y0.27780.59280.04050.030*
H6X0.10920.41670.32340.030*
H6Y0.09690.32830.28020.030*
H7X0.00180.48340.41830.030*
H7Y0.14360.48500.42970.030*
H8X0.42440.22230.23630.030*
H8Y0.46980.32820.16340.030*
H9X0.68230.24830.15180.030*
H9Y0.65580.22150.08340.030*
H10X0.61680.07870.27530.030*
H10Y0.54880.02230.23250.030*
H11X0.42210.00400.91440.030*
H11Y0.53320.03630.89290.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.00884 (11)0.01139 (10)0.01005 (10)0.00222 (6)0.00039 (6)0.00514 (7)
Cl10.0271 (5)0.0225 (4)0.0279 (4)0.0097 (3)0.0001 (3)0.0104 (3)
Cl20.0144 (4)0.0417 (5)0.0187 (4)0.0116 (3)0.0030 (3)0.0163 (4)
Cl30.0224 (4)0.0231 (4)0.0274 (4)0.0058 (3)0.0008 (3)0.0126 (3)
P10.0103 (4)0.0203 (4)0.0143 (4)0.0066 (3)0.0004 (3)0.0077 (3)
P20.0155 (4)0.0194 (4)0.0157 (4)0.0070 (3)0.0026 (3)0.0109 (3)
P30.0192 (5)0.0146 (4)0.0155 (4)0.0039 (3)0.0027 (3)0.0019 (3)
P40.0154 (4)0.0127 (4)0.0168 (4)0.0002 (3)0.0013 (3)0.0065 (3)
O10.0105 (11)0.0263 (12)0.0193 (11)0.0070 (9)0.0016 (8)0.0138 (9)
O20.0235 (12)0.0175 (11)0.0168 (11)0.0050 (8)0.0040 (9)0.0099 (9)
O30.0187 (12)0.0170 (11)0.0177 (11)0.0007 (8)0.0025 (9)0.0004 (9)
O40.0196 (12)0.0123 (11)0.0205 (11)0.0002 (8)0.0039 (9)0.0085 (9)
O50.0236 (12)0.0164 (11)0.0115 (10)0.0082 (9)0.0009 (8)0.0024 (9)
O60.0155 (12)0.0266 (12)0.0230 (12)0.0097 (9)0.0041 (9)0.0149 (10)
O70.0163 (12)0.0406 (14)0.0178 (11)0.0156 (10)0.0067 (8)0.0182 (10)
O80.0124 (12)0.0158 (11)0.0264 (12)0.0009 (8)0.0076 (9)0.0035 (9)
O90.0251 (13)0.0254 (12)0.0199 (12)0.0063 (9)0.0040 (9)0.0082 (10)
O100.0203 (13)0.0239 (12)0.0269 (13)0.0014 (9)0.0005 (9)0.0065 (10)
O110.0337 (15)0.0392 (15)0.0224 (13)0.0162 (11)0.0049 (10)0.0073 (11)
C10.0238 (19)0.0272 (19)0.0211 (17)0.0111 (14)0.0079 (14)0.0021 (14)
C20.0167 (18)0.0309 (19)0.0208 (17)0.0081 (13)0.0044 (13)0.0088 (15)
C30.0184 (18)0.0321 (19)0.0252 (18)0.0123 (14)0.0018 (13)0.0176 (15)
C40.0264 (19)0.0191 (18)0.038 (2)0.0005 (14)0.0096 (15)0.0130 (15)
C50.029 (2)0.0237 (18)0.0216 (17)0.0098 (14)0.0082 (14)0.0055 (14)
C60.039 (2)0.058 (3)0.040 (2)0.0261 (19)0.0216 (17)0.030 (2)
C70.0264 (19)0.0177 (17)0.0301 (19)0.0046 (13)0.0001 (14)0.0071 (15)
C80.029 (2)0.0250 (19)0.033 (2)0.0040 (15)0.0158 (15)0.0027 (16)
C90.047 (2)0.030 (2)0.0212 (18)0.0129 (17)0.0093 (16)0.0023 (16)
C100.0262 (19)0.0161 (17)0.0217 (17)0.0006 (13)0.0039 (13)0.0062 (14)
C110.031 (2)0.0150 (16)0.0238 (18)0.0025 (13)0.0077 (14)0.0092 (14)
C120.023 (2)0.0257 (19)0.0297 (19)0.0009 (14)0.0048 (14)0.0076 (15)
Geometric parameters (Å, º) top
Ce1—O12.3926 (19)O11—H11Y0.9526
Ce1—O22.372 (2)C1—H1A0.9800
Ce1—O32.4230 (19)C1—H1B0.9800
Ce1—O42.3896 (19)C1—H1C0.9800
Ce1—O52.5827 (18)C2—H2A0.9800
Ce1—O62.6300 (19)C2—H2B0.9800
Ce1—O72.528 (2)C2—H2C0.9800
Ce1—O82.518 (2)C3—H3A0.9800
P1—O11.503 (2)C3—H3B0.9800
P1—C11.778 (3)C3—H3C0.9800
P1—C21.782 (3)C4—H4A0.9800
P1—C31.786 (3)C4—H4B0.9800
P2—O21.508 (2)C4—H4C0.9800
P2—C51.770 (3)C5—H5A0.9800
P2—C61.780 (3)C5—H5B0.9800
P2—C41.780 (3)C5—H5C0.9800
P3—O31.498 (2)C6—H6A0.9800
P3—C91.774 (3)C6—H6B0.9800
P3—C81.779 (3)C6—H6C0.9800
P3—C71.783 (3)C7—H7A0.9800
P4—O41.505 (2)C7—H7B0.9800
P4—C121.774 (3)C7—H7C0.9800
P4—C101.784 (3)C8—H8A0.9800
P4—C111.786 (3)C8—H8B0.9800
O5—H5X0.9502C8—H8C0.9800
O5—H5Y0.8502C9—H9A0.9800
O6—H6X0.7960C9—H9B0.9800
O6—H6Y0.8949C9—H9C0.9800
O7—H7X0.9166C10—H10A0.9800
O7—H7Y0.9675C10—H10B0.9800
O8—H8X0.9235C10—H10C0.9800
O8—H8Y0.9195C11—H11A0.9800
O9—H9X0.9420C11—H11B0.9800
O9—H9Y0.9314C11—H11C0.9800
O10—H10X0.8966C12—H12A0.9800
O10—H10Y0.9215C12—H12B0.9800
O11—H11X0.8661C12—H12C0.9800
O2—Ce1—O495.04 (7)P1—C1—H1B109.5
O2—Ce1—O1145.66 (7)H1A—C1—H1B109.5
O4—Ce1—O185.72 (7)P1—C1—H1C109.5
O2—Ce1—O393.30 (7)H1A—C1—H1C109.5
O4—Ce1—O3149.91 (7)H1B—C1—H1C109.5
O1—Ce1—O3103.12 (7)P1—C2—H2A109.5
O2—Ce1—O879.32 (7)P1—C2—H2B109.5
O4—Ce1—O8143.01 (6)H2A—C2—H2B109.5
O1—Ce1—O879.73 (7)P1—C2—H2C109.5
O3—Ce1—O867.02 (6)H2A—C2—H2C109.5
O2—Ce1—O7142.93 (7)H2B—C2—H2C109.5
O4—Ce1—O778.93 (7)P1—C3—H3A109.5
O1—Ce1—O770.96 (6)P1—C3—H3B109.5
O3—Ce1—O777.05 (7)H3A—C3—H3B109.5
O8—Ce1—O7126.33 (7)P1—C3—H3C109.5
O2—Ce1—O575.65 (7)H3A—C3—H3C109.5
O4—Ce1—O575.84 (7)H3B—C3—H3C109.5
O1—Ce1—O571.26 (6)P2—C4—H4A109.5
O3—Ce1—O5134.25 (7)P2—C4—H4B109.5
O8—Ce1—O567.32 (6)H4A—C4—H4B109.5
O7—Ce1—O5135.61 (6)P2—C4—H4C109.5
O2—Ce1—O673.50 (7)H4A—C4—H4C109.5
O4—Ce1—O678.80 (7)H4B—C4—H4C109.5
O1—Ce1—O6139.51 (6)P2—C5—H5A109.5
O3—Ce1—O675.99 (7)P2—C5—H5B109.5
O8—Ce1—O6132.16 (7)H5A—C5—H5B109.5
O7—Ce1—O669.45 (6)P2—C5—H5C109.5
O5—Ce1—O6137.71 (6)H5A—C5—H5C109.5
O1—P1—C1111.31 (13)H5B—C5—H5C109.5
O1—P1—C2112.50 (13)P2—C6—H6A109.5
C1—P1—C2107.30 (16)P2—C6—H6B109.5
O1—P1—C3111.37 (13)H6A—C6—H6B109.5
C1—P1—C3107.75 (16)P2—C6—H6C109.5
C2—P1—C3106.32 (15)H6A—C6—H6C109.5
O2—P2—C5110.01 (14)H6B—C6—H6C109.5
O2—P2—C6111.54 (16)P3—C7—H7A109.5
C5—P2—C6107.84 (18)P3—C7—H7B109.5
O2—P2—C4111.84 (14)H7A—C7—H7B109.5
C5—P2—C4107.58 (15)P3—C7—H7C109.5
C6—P2—C4107.85 (19)H7A—C7—H7C109.5
O3—P3—C9111.92 (14)H7B—C7—H7C109.5
O3—P3—C8112.77 (14)P3—C8—H8A109.5
C9—P3—C8106.80 (19)P3—C8—H8B109.5
O3—P3—C7111.25 (14)H8A—C8—H8B109.5
C9—P3—C7106.34 (17)P3—C8—H8C109.5
C8—P3—C7107.40 (16)H8A—C8—H8C109.5
O4—P4—C12112.02 (15)H8B—C8—H8C109.5
O4—P4—C10112.05 (13)P3—C9—H9A109.5
C12—P4—C10106.79 (15)P3—C9—H9B109.5
O4—P4—C11112.62 (13)H9A—C9—H9B109.5
C12—P4—C11107.56 (17)P3—C9—H9C109.5
C10—P4—C11105.37 (15)H9A—C9—H9C109.5
P1—O1—Ce1149.58 (12)H9B—C9—H9C109.5
P2—O2—Ce1144.83 (12)P4—C10—H10A109.5
P3—O3—Ce1151.31 (13)P4—C10—H10B109.5
P4—O4—Ce1144.27 (12)H10A—C10—H10B109.5
Ce1—O5—H5X117.6P4—C10—H10C109.5
Ce1—O5—H5Y127.2H10A—C10—H10C109.5
H5X—O5—H5Y97.5H10B—C10—H10C109.5
Ce1—O6—H6X116.9P4—C11—H11A109.5
Ce1—O6—H6Y129.1P4—C11—H11B109.5
H6X—O6—H6Y104.6H11A—C11—H11B109.5
Ce1—O7—H7X132.4P4—C11—H11C109.5
Ce1—O7—H7Y122.4H11A—C11—H11C109.5
H7X—O7—H7Y105.1H11B—C11—H11C109.5
Ce1—O8—H8X119.6P4—C12—H12A109.5
Ce1—O8—H8Y133.9P4—C12—H12B109.5
H8X—O8—H8Y105.9H12A—C12—H12B109.5
H9X—O9—H9Y86.5P4—C12—H12C109.5
H10X—O10—H10Y101.2H12A—C12—H12C109.5
H11X—O11—H11Y91.3H12B—C12—H12C109.5
P1—C1—H1A109.5
C1—P1—O1—Ce152.0 (3)C9—P3—O3—Ce165.7 (3)
C2—P1—O1—Ce168.5 (3)C8—P3—O3—Ce154.8 (3)
C3—P1—O1—Ce1172.3 (2)C7—P3—O3—Ce1175.5 (2)
O2—Ce1—O1—P166.8 (3)O2—Ce1—O3—P3147.3 (3)
O4—Ce1—O1—P1159.4 (2)O4—Ce1—O3—P341.3 (3)
O3—Ce1—O1—P149.7 (2)O1—Ce1—O3—P363.1 (3)
O8—Ce1—O1—P113.6 (2)O8—Ce1—O3—P3135.8 (3)
O7—Ce1—O1—P1120.8 (2)O7—Ce1—O3—P33.5 (3)
O5—Ce1—O1—P182.9 (2)O5—Ce1—O3—P3139.6 (2)
O6—Ce1—O1—P1133.4 (2)O6—Ce1—O3—P375.2 (3)
C5—P2—O2—Ce1141.6 (2)C12—P4—O4—Ce191.7 (2)
C6—P2—O2—Ce198.8 (2)C10—P4—O4—Ce1148.4 (2)
C4—P2—O2—Ce122.1 (3)C11—P4—O4—Ce129.8 (3)
O4—Ce1—O2—P2175.4 (2)O2—Ce1—O4—P4174.0 (2)
O1—Ce1—O2—P294.8 (2)O1—Ce1—O4—P440.5 (2)
O3—Ce1—O2—P224.4 (2)O3—Ce1—O4—P468.4 (3)
O8—Ce1—O2—P241.5 (2)O8—Ce1—O4—P4107.1 (2)
O7—Ce1—O2—P297.1 (2)O7—Ce1—O4—P430.9 (2)
O5—Ce1—O2—P2110.6 (2)O5—Ce1—O4—P4112.2 (2)
O6—Ce1—O2—P298.7 (2)O6—Ce1—O4—P4101.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5X···Cl1i0.952.243.161 (2)164
O5—H5Y···O9ii0.852.252.933 (3)137
O6—H6X···Cl2iii0.802.453.242 (2)173
O6—H6Y···Cl3iii0.892.403.295 (2)176
O7—H7X···Cl2iii0.922.183.067 (2)163
O7—H7Y···Cl2i0.972.143.068 (2)160
O8—H8X···O100.921.872.755 (3)159
O8—H8Y···O90.921.942.818 (3)160
O9—H9X···Cl30.942.323.250 (2)168
O9—H9Y···Cl1iv0.932.483.260 (2)141
O10—H10X···Cl30.902.373.265 (2)172
O10—H10Y···O11v0.921.922.840 (3)173
O11—H11X···Cl1vi0.872.333.193 (2)179
O11—H11Y···Cl10.952.433.271 (2)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x, y, z1; (v) x+1, y, z+1; (vi) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Ce(C3H9OP)4(H2O)4]Cl3·3H2O
Mr740.87
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.2753 (10), 11.1003 (10), 15.6822 (15)
α, β, γ (°)70.406 (10), 82.483 (10), 74.161 (10)
V3)1619.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.26 × 0.20 × 0.16
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.656, 0.739
No. of measured, independent and
observed [I > 2σ(I)] reflections
18262, 5444, 4908
Rint0.073
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.03
No. of reflections5444
No. of parameters281
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.61, 0.88

Computer programs: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997), COLLECT and DENZO, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Ce1—O12.3926 (19)Ce1—O52.5827 (18)
Ce1—O22.372 (2)Ce1—O62.6300 (19)
Ce1—O32.4230 (19)Ce1—O72.528 (2)
Ce1—O42.3896 (19)Ce1—O82.518 (2)
O2—Ce1—O1145.66 (7)O2—Ce1—O673.50 (7)
O4—Ce1—O3149.91 (7)O7—Ce1—O669.45 (6)
O3—Ce1—O867.02 (6)P1—O1—Ce1149.58 (12)
O1—Ce1—O770.96 (6)P2—O2—Ce1144.83 (12)
O4—Ce1—O575.84 (7)P3—O3—Ce1151.31 (13)
O8—Ce1—O567.32 (6)P4—O4—Ce1144.27 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5X···Cl1i0.952.243.161 (2)164
O5—H5Y···O9ii0.852.252.933 (3)137
O6—H6X···Cl2iii0.802.453.242 (2)173
O6—H6Y···Cl3iii0.892.403.295 (2)176
O7—H7X···Cl2iii0.922.183.067 (2)163
O7—H7Y···Cl2i0.972.143.068 (2)160
O8—H8X···O100.921.872.755 (3)159
O8—H8Y···O90.921.942.818 (3)160
O9—H9X···Cl30.942.323.250 (2)168
O9—H9Y···Cl1iv0.932.483.260 (2)141
O10—H10X···Cl30.902.373.265 (2)172
O10—H10Y···O11v0.921.922.840 (3)173
O11—H11X···Cl1vi0.872.333.193 (2)179
O11—H11Y···Cl10.952.433.271 (2)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x, y, z1; (v) x+1, y, z+1; (vi) x+1, y, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds