Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In 2-tri­fluoro­methyl-4-nitro­aniline, C7H5F3N2O2, (I), the mol­ecules lie across a mirror plane in space group Pnma. The mol­ecules are linked by paired N-H...O hydrogen bonds to form a C(8)[R{_2^2}(6)] chain of rings, pairs of which are linked into a molecular ladder by a single C-H...O hydrogen bond. The isomeric 3-tri­fluoro­methyl-4-nitro­aniline, (II), has Z' = 2 in space group P21/c. Each mol­ecule is linked to four others by N-H...O hydrogen bonds to form sheets built from alternating R{_4^4}(12) and R{_4^4}(32) rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101021254/sk1528sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101021254/sk1528Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101021254/sk1528IIsup3.hkl
Contains datablock II

CCDC references: 182031; 182032

Comment top

In the structure of 4-nitroaniline (Tonogaki et al., 1993), each molecule is linked to four others by means of N—H···O hydrogen bonds, and the molecules are thereby linked into (4,4) nets (Batten & Robson, 1998). The resulting sheets, which contain a single type of R44(22) rings, are weakly linked by aromatic π···π stacking interactions. Introduction of a single methyl group in 2-methyl-4-nitroaniline gives rise to a different structure in the form of a three-dimensional framework, even though each molecule is still linked to four others by N—H···O hydrogen bonds (Ferguson et al., 2001). The structure now consists of two intersecting sets of sheets built from a single type of R88(54) ring. However, entirely different patterns of N—H···O hydrogen bonds are observed in the two polymorphs of 2-iodo-4-nitroaniline (McWilliam et al., 2001). In the triclinic polymorph, the molecules are linked into chains via a rather unusual supramolecular synthon comprising pairs of N—H···O hydrogen bonds forming an R22(6) ring, while in the orthorhombic polymorph, each molecule acts as just a single donor and single acceptor of N—H···O hydrogen bonds, with formation of simple C(8) chains. In both polymorphs, the chains are further linked into sheets by means of I···NO2 interactions.

Continuing our study of C-substituted nitroanilines (Cannon et al., 2001; Ferguson et al., 2001; Glidewell et al., 2001; McWilliam et al., 2001; Zakaria et al., 2001; Garden et al., 2001), we have now investigated the isomeric pair 2-trifluoromethyl-4-nitroaniline, (I), and 3-trifluoromethyl-4-nitroaniline, (II), which exhibit yet further modes of supramolecular aggregation. \sch

Compound (I) (Fig. 1) crystallizes in space group Pnma with Z' = 1/2, so that all the atoms, apart from two of the F atoms, lie on a mirror plane, selected as that at 1/4. The molecules are linked into chains by N—H···O hydrogen bonds (Table 1) and these chains are linked in pairs by a single C—H···O hydrogen bond. The amino atom N1 in the molecule at (x, 1/4, z) acts as a hydrogen-bond donor via H11 and H12 to O1 and O2, respectively, in the molecule at (x - 1, 1/4, z), so generating by translation a C(8)[R22(6)] chain of rings parallel to [100] (Fig. 2), where the R22(6) ring is necessarily planar. Four such chains run through each unit cell. A pair of chains related by the 21 screw axis along (x, 1/4, 1/4) are weakly linked by a soft hydrogen bond: atom C6 in the molecule at (x, 1/4, z) acts as a hydrogen-bond donor to O2 in the molecule at (x - 1/2, 1/4, 1/2 - z), while atom C6 at (x - 1/2, 1/4, 1/2 - z) in turn acts as a donor to O2 at (x - 1, 1/4, z). This combination of hard and soft hydrogen bonds thus generates a molecular ladder, in which a pair of [100] chains play the role of the uprights, while the C—H···O hydrogen bonds provide the rungs. Between the rungs, there are R32(12) rings (Fig. 2). The C(8)[R22(6)] chain of rings in (I) is thus analogous to that in triclinic 2-iodo-4-nitroaniline (McWilliam et al., 2001). In this latter compound, the linking of the chains into sheets again involves chains of like polarity, related to one another by translation. Two molecular ladders pass through each unit cell in (I), at y = 1/4 and y = 3/4, but there are no direction-specific interactions between neighbouring ladders.

Compound (II) crystallizes in space group P21/c with Z' = 2, and each molecule (Fig. 3) is linked to four others, via N—H···O hydrogen bonds (Table 3), into sheets parallel to (101). The formation of these sheets can readily be analysed in terms of three distinct one-dimensional motifs. There are two spiral chains parallel to [010], each comprising one type of molecule only, and a translational chain parallel to [101] containing both types of molecule.

Atom N11 in the type 1 molecule at (x, y, z) acts as a hydrogen-bond donor, via H12, to O12 in the type 1 molecule at (x - 1, 1/2 + y, 1/2 - z), so producing a C(8) chain parallel to [010] generated by the 21 screw axis along (-1/2, y, 1/4) (Fig. 4). Similarly, atom N21 in the type 2 molecule at (x, y, z) acts as a donor, via H22, to O21 in the type 2 molecule at (-x, y - 1/2, 3/2 - z), producing another C(8) spiral, this time generated by the 21 axis along (0, y, 3/4). Within the asymmetric unit, atom N21 acts as a donor, via H21, to O11, while atom N11 at (x, y, z) acts as a donor, via H11, to O22 at (x - 1, y, z - 1). The combination of the [101] chain with the two independent [010] chains generates a (101) sheet built of R44(12) and R44(32) rings, alternating in checkerboard fashion (Fig. 4). The interior of the large rings is occupied by the CF3 groups, the conformations of which are such that the two sets of F atoms are meshed together.

The (101) sheets in (II) are weakly linked by aromatic π···π stacking interactions. For the aromatic rings of molecules in adjacent sheets, the minimum distance between the ring centroids of a type 1 molecule at (x, y, z) and a type 2 molecule at (x - 1, 1/2 - y, z - 1/2) is 3.552 (2) Å, with the planes separated by 3.385 (3) Å.

The bond lengths in (I) and (II) present no unexpected features. In compound (II), there is evidence from the exocyclic bond angles (Table 2) for significant repulsion between the adjacent nitro and trifluoromethyl groups.

Experimental top

Samples of compounds (I) and (II) were purchased from Aldrich. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol.

Refinement top

Compound (I) crystallized in the orthorhombic system. The systematic absences permitted space groups Pna21 and Pnma; Pnma was selected, and confirmed by the analysis. For compound (II), the space group P21/c was uniquely assigned from the systematic absences. H atoms were treated as riding, with C—H = 0.95 and N—H = 0.88 Å.

Computing details top

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the linking of pairs of C(8)[R22(6)] chains of rings into a molecular ladder. The atoms marked with a star (*), hash (#), dollar sign ($) or ampersand (&) are at the symmetry positions (1 + x, 1/4, z), (x - 1, 1/4, z), (x - 1/2, 1/4, 1/2 - z) and (1/2 + x, 1/4, 1/2 - z), respectively.
[Figure 3] Fig. 3. A view of the two independent molecules of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. Part of the crystal structure of (II) showing the formation of a (101) sheet built from R44(12) and R44(32) rings. The atoms marked with a star (*), hash (#), dollar sign ($) or ampersand (&) are at the symmetry positions (x - 1, 1/2 + y, 1/2 - z), (x, 1 + y, z), (-x, 1/2 + y, 3/2 - z) and (x - 1, y, z - 1), respectively.
(I) 2-Trifluoromethyl-4-nitroaniline top
Crystal data top
C7H5F3N2O2F(000) = 416
Mr = 206.13Dx = 1.754 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 961 reflections
a = 9.0274 (4) Åθ = 2.7–27.6°
b = 6.5933 (4) ŵ = 0.18 mm1
c = 13.1170 (8) ÅT = 150 K
V = 780.73 (8) Å3Block, red
Z = 40.20 × 0.15 × 0.01 mm
Data collection top
Nonius KappaCCD
diffractometer
961 independent reflections
Radiation source: fine-focus sealed X-ray tube725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 911
Tmin = 0.987, Tmax = 0.998k = 88
3944 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.053P]
where P = (Fo2 + 2Fc2)/3
961 reflections(Δ/σ)max = 0.001
82 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C7H5F3N2O2V = 780.73 (8) Å3
Mr = 206.13Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.0274 (4) ŵ = 0.18 mm1
b = 6.5933 (4) ÅT = 150 K
c = 13.1170 (8) Å0.20 × 0.15 × 0.01 mm
Data collection top
Nonius KappaCCD
diffractometer
961 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
725 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.998Rint = 0.053
3944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
961 reflectionsΔρmin = 0.29 e Å3
82 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G·C. & Holmes, K·C. (1966). Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High-redundancy data were used in the scaling program, hence the `multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the `size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02222 (19)0.25000.01210 (14)0.0256 (5)
C10.1272 (2)0.25000.01781 (15)0.0192 (5)
C20.2192 (2)0.25000.07008 (15)0.0188 (5)
C30.3712 (2)0.25000.06062 (15)0.0191 (5)
C40.4351 (2)0.25000.03545 (15)0.0186 (5)
C50.3483 (2)0.25000.12311 (15)0.0219 (5)
C60.1968 (2)0.25000.11432 (16)0.0238 (5)
C70.1532 (2)0.25000.17425 (15)0.0250 (5)
F10.06499 (11)0.41227 (17)0.19085 (7)0.0370 (4)
F30.25374 (15)0.25000.24767 (9)0.0459 (5)
N20.59518 (19)0.25000.04274 (13)0.0222 (4)
O10.66780 (16)0.25000.03648 (11)0.0310 (4)
O20.65362 (17)0.25000.12830 (11)0.0325 (4)
H120.07560.25000.06830.031*
H110.06620.25000.04780.031*
H30.43200.25000.11970.023*
H50.39350.25000.18850.026*
H60.13760.25000.17420.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0151 (9)0.0348 (13)0.0269 (10)0.0000.0023 (7)0.000
C10.0168 (10)0.0195 (12)0.0214 (10)0.0000.0017 (8)0.000
C20.0172 (10)0.0233 (12)0.0158 (10)0.0000.0024 (8)0.000
C30.0184 (9)0.0244 (12)0.0144 (9)0.0000.0020 (8)0.000
C40.0166 (10)0.0217 (12)0.0175 (9)0.0000.0018 (8)0.000
C50.0247 (11)0.0276 (12)0.0134 (9)0.0000.0025 (8)0.000
C60.0285 (11)0.0293 (12)0.0138 (9)0.0000.0049 (9)0.000
C70.0194 (10)0.0364 (14)0.0193 (10)0.0000.0053 (8)0.000
F10.0389 (6)0.0414 (7)0.0308 (5)0.0069 (4)0.0145 (4)0.0058 (4)
F30.0280 (8)0.0960 (15)0.0136 (6)0.0000.0010 (5)0.000
N20.0193 (9)0.0249 (11)0.0224 (9)0.0000.0058 (7)0.000
O10.0154 (8)0.0502 (12)0.0274 (8)0.0000.0031 (7)0.000
O20.0253 (8)0.0487 (11)0.0235 (8)0.0000.0109 (7)0.000
Geometric parameters (Å, º) top
N1—C11.351 (3)C4—N21.448 (3)
N1—H110.8800C5—C61.373 (3)
N1—H120.8800C5—H50.9500
C1—C61.413 (3)C6—H60.9500
C1—C21.421 (3)C7—F31.324 (2)
C2—C31.377 (3)C7—F1i1.3511 (17)
C2—C71.491 (3)C7—F11.3511 (17)
C3—C41.386 (3)N2—O11.229 (2)
C3—H30.9500N2—O21.240 (2)
C4—C51.392 (3)
C1—N1—H11120.0C6—C5—C4119.46 (18)
C1—N1—H12120.0C6—C5—H5120.3
H11—N1—H12120.0C4—C5—H5120.3
N1—C1—C6119.56 (18)C5—C6—C1121.20 (18)
N1—C1—C2122.60 (18)C5—C6—H6119.4
C6—C1—C2117.83 (19)C1—C6—H6119.4
C3—C2—C1120.61 (17)F3—C7—F1i106.67 (12)
C3—C2—C7118.76 (17)F3—C7—F1106.67 (12)
C1—C2—C7120.63 (18)F1i—C7—F1104.72 (17)
C2—C3—C4119.78 (18)F3—C7—C2113.10 (17)
C2—C3—H3120.1F1i—C7—C2112.54 (11)
C4—C3—H3120.1F1—C7—C2112.54 (11)
C3—C4—C5121.11 (18)O1—N2—O2122.57 (16)
C3—C4—N2118.40 (17)O1—N2—C4118.46 (15)
C5—C4—N2120.49 (17)O2—N2—C4118.97 (16)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O1ii0.882.412.870 (2)113
N1—H12···O2ii0.882.573.299 (2)141
C6—H6···O2iii0.952.593.398 (3)143
Symmetry codes: (ii) x1, y, z; (iii) x1/2, y+1/2, z+1/2.
(II) 3-Trifluoromethyl-4-nitroaniline top
Crystal data top
C7H5F3N2O2F(000) = 832
Mr = 206.13Dx = 1.752 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3541 reflections
a = 7.1048 (2) Åθ = 3.0–27.5°
b = 15.3832 (5) ŵ = 0.18 mm1
c = 14.3091 (6) ÅT = 150 K
β = 91.9102 (12)°Plate, yellow
V = 1563.04 (9) Å30.40 × 0.16 × 0.10 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3541 independent reflections
Radiation source: fine-focus sealed X-ray tube2369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.812, Tmax = 0.983k = 1719
12016 measured reflectionsl = 1718
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0617P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3541 reflectionsΔρmax = 0.26 e Å3
254 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0153 (19)
Crystal data top
C7H5F3N2O2V = 1563.04 (9) Å3
Mr = 206.13Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.1048 (2) ŵ = 0.18 mm1
b = 15.3832 (5) ÅT = 150 K
c = 14.3091 (6) Å0.40 × 0.16 × 0.10 mm
β = 91.9102 (12)°
Data collection top
Nonius KappaCCD
diffractometer
3541 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
2369 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.983Rint = 0.064
12016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.98Δρmax = 0.26 e Å3
3541 reflectionsΔρmin = 0.32 e Å3
254 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G·C. & Holmes, K·C. (1966). Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High-redundancy data were used in the scaling program, hence the `multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the `size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.6318 (2)0.44448 (11)0.07857 (11)0.0299 (4)
C110.5772 (2)0.38575 (12)0.14419 (12)0.0203 (4)
C120.5337 (2)0.41245 (12)0.23643 (12)0.0196 (4)
C130.4776 (2)0.35482 (11)0.30538 (11)0.0180 (4)
C140.4639 (2)0.26582 (11)0.28128 (12)0.0190 (4)
C150.5097 (2)0.23876 (12)0.19038 (12)0.0217 (4)
C160.5656 (2)0.29701 (12)0.12290 (12)0.0218 (4)
C170.4507 (2)0.39216 (12)0.40263 (13)0.0235 (4)
F110.51135 (15)0.47424 (7)0.40579 (7)0.0308 (3)
F120.27187 (14)0.39329 (7)0.43395 (7)0.0336 (3)
F130.55087 (16)0.34846 (8)0.46541 (7)0.0354 (3)
N120.4002 (2)0.19935 (10)0.34611 (11)0.0238 (4)
O110.31463 (19)0.22002 (9)0.41879 (9)0.0336 (4)
O120.4301 (2)0.12258 (9)0.32571 (10)0.0395 (4)
N210.1232 (2)0.10727 (10)0.57317 (11)0.0288 (4)
C210.0653 (2)0.16737 (12)0.63724 (12)0.0210 (4)
C220.0513 (2)0.25579 (12)0.61228 (12)0.0212 (4)
C230.0046 (2)0.31808 (12)0.67648 (12)0.0203 (4)
C240.0481 (2)0.29196 (12)0.76917 (12)0.0213 (4)
C250.0405 (2)0.20458 (12)0.79359 (13)0.0228 (4)
C260.0158 (2)0.14327 (12)0.72908 (12)0.0231 (4)
C270.0342 (2)0.40838 (12)0.63987 (13)0.0262 (4)
F210.05603 (16)0.40859 (7)0.54741 (8)0.0374 (3)
F220.18993 (14)0.44588 (7)0.67764 (8)0.0343 (3)
F230.11002 (15)0.46208 (7)0.65539 (9)0.0398 (3)
N220.0947 (2)0.35281 (11)0.84365 (11)0.0267 (4)
O210.0298 (2)0.42728 (10)0.83940 (10)0.0384 (4)
O220.19263 (19)0.32704 (10)0.91097 (10)0.0377 (4)
H110.66090.42730.02120.036*
H120.63830.50000.09310.036*
H12A0.54330.47240.25160.024*
H150.50200.17880.17510.026*
H160.59670.27730.06140.026*
H220.13010.05210.58910.035*
H210.15380.12340.51570.035*
H22A0.08130.27280.54970.025*
H250.07460.18720.85560.027*
H260.02130.08390.74690.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0488 (10)0.0235 (9)0.0169 (8)0.0033 (7)0.0083 (7)0.0008 (7)
C110.0212 (9)0.0243 (11)0.0155 (9)0.0006 (7)0.0015 (7)0.0016 (8)
C120.0235 (9)0.0176 (9)0.0177 (9)0.0015 (7)0.0004 (7)0.0013 (8)
C130.0177 (8)0.0210 (10)0.0153 (9)0.0021 (7)0.0008 (6)0.0006 (7)
C140.0196 (8)0.0192 (10)0.0181 (10)0.0005 (7)0.0004 (7)0.0036 (8)
C150.0221 (9)0.0201 (10)0.0229 (10)0.0005 (7)0.0000 (7)0.0044 (8)
C160.0250 (9)0.0251 (11)0.0153 (9)0.0001 (7)0.0003 (7)0.0026 (8)
C170.0289 (10)0.0225 (11)0.0190 (10)0.0011 (8)0.0022 (7)0.0024 (8)
F110.0495 (6)0.0231 (6)0.0197 (6)0.0050 (5)0.0019 (5)0.0050 (5)
F120.0373 (6)0.0357 (7)0.0267 (6)0.0030 (5)0.0140 (5)0.0022 (5)
F130.0528 (7)0.0363 (7)0.0176 (6)0.0050 (5)0.0086 (5)0.0038 (5)
N120.0266 (8)0.0220 (9)0.0229 (9)0.0000 (6)0.0003 (6)0.0024 (7)
O110.0454 (8)0.0322 (9)0.0223 (7)0.0019 (6)0.0123 (6)0.0032 (6)
O120.0626 (10)0.0165 (8)0.0387 (9)0.0009 (7)0.0092 (7)0.0037 (6)
N210.0390 (9)0.0217 (9)0.0252 (9)0.0020 (7)0.0065 (7)0.0001 (7)
C210.0177 (8)0.0221 (10)0.0230 (10)0.0002 (7)0.0003 (7)0.0020 (8)
C220.0207 (9)0.0237 (10)0.0189 (10)0.0004 (7)0.0035 (7)0.0021 (8)
C230.0177 (8)0.0214 (10)0.0217 (10)0.0014 (7)0.0007 (7)0.0018 (8)
C240.0210 (9)0.0238 (10)0.0189 (9)0.0008 (7)0.0010 (7)0.0039 (8)
C250.0232 (9)0.0267 (11)0.0183 (9)0.0027 (7)0.0007 (7)0.0046 (8)
C260.0264 (9)0.0198 (10)0.0231 (10)0.0009 (7)0.0001 (7)0.0044 (8)
C270.0295 (10)0.0229 (11)0.0256 (11)0.0011 (8)0.0066 (8)0.0003 (8)
F210.0556 (7)0.0309 (7)0.0254 (7)0.0088 (5)0.0051 (5)0.0079 (5)
F220.0349 (6)0.0292 (7)0.0380 (7)0.0112 (5)0.0094 (5)0.0041 (5)
F230.0412 (7)0.0246 (7)0.0528 (8)0.0085 (5)0.0097 (5)0.0004 (6)
N220.0282 (8)0.0296 (10)0.0225 (9)0.0017 (7)0.0007 (7)0.0031 (7)
O210.0557 (9)0.0252 (9)0.0341 (9)0.0047 (7)0.0023 (7)0.0067 (7)
O220.0431 (8)0.0456 (10)0.0234 (8)0.0032 (7)0.0131 (6)0.0038 (7)
Geometric parameters (Å, º) top
N11—C111.351 (2)N21—C211.356 (2)
N11—H110.8800N21—H220.8800
N11—H110.8800N21—H210.8800
C11—C161.402 (2)C21—C261.399 (2)
C11—C121.407 (2)C21—C221.411 (3)
C12—C131.375 (2)C22—C231.377 (2)
C12—H12A0.9500C22—H22A0.9500
C13—C141.416 (2)C23—C241.410 (2)
C13—C171.512 (2)C23—C271.502 (3)
C14—C151.394 (2)C24—C251.390 (2)
C14—N121.443 (2)C24—N221.448 (2)
C15—C161.366 (2)C25—C261.370 (3)
C15—H150.9500C25—H250.9500
C16—H160.9500C26—H260.9500
C17—F121.333 (2)C27—F211.337 (2)
C17—F111.335 (2)C27—F231.340 (2)
C17—F131.345 (2)C27—F221.345 (2)
N12—O111.2291 (19)N22—O221.235 (2)
N12—O121.2331 (19)N22—O211.236 (2)
C11—N11—H11120.0C21—N21—H21120.0
C11—N11—H12120.0C21—N21—H22120.0
H11—N11—H12120.0H21—N21—H22120.0
N11—C11—C16121.20 (16)N21—C21—C26121.03 (17)
N11—C11—C12120.39 (17)N21—C21—C22120.57 (16)
C16—C11—C12118.40 (16)C26—C21—C22118.40 (16)
C13—C12—C11122.28 (17)C23—C22—C21121.56 (16)
C13—C12—H12A118.9C23—C22—H22A119.2
C11—C12—H12A118.9C21—C22—H22A119.2
C12—C13—C14117.97 (15)C22—C23—C24118.59 (17)
C12—C13—C17116.11 (16)C22—C23—C27116.85 (16)
C14—C13—C17125.73 (15)C24—C23—C27124.24 (16)
C15—C14—C13120.01 (16)C25—C24—C23120.17 (16)
C13—C14—N12123.44 (15)C23—C24—N22123.06 (16)
C15—C14—N12116.53 (16)C25—C24—N22116.73 (16)
C16—C15—C14121.12 (17)C26—C25—C24120.61 (17)
C16—C15—H15119.4C26—C25—H25119.7
C14—C15—H15119.4C24—C25—H25119.7
C15—C16—C11120.18 (16)C25—C26—C21120.60 (17)
C15—C16—H16119.9C25—C26—H26119.7
C11—C16—H16119.9C21—C26—H26119.7
F12—C17—F11106.33 (14)F21—C27—F23106.08 (14)
F12—C17—F13107.56 (14)F21—C27—F22105.99 (14)
F11—C17—F13105.75 (14)F23—C27—F22106.99 (15)
F12—C17—C13113.85 (14)F21—C27—C23111.69 (15)
F11—C17—C13111.06 (14)F23—C27—C23113.31 (15)
F13—C17—C13111.81 (14)F22—C27—C23112.29 (14)
O11—N12—O12121.63 (15)O22—N22—O21122.39 (16)
O11—N12—C14119.75 (15)O22—N22—C24118.41 (16)
O12—N12—C14118.60 (15)O21—N22—C24119.14 (15)
O11—N12—C14—C1316.7 (2)O21—N22—C24—C2328.1 (2)
O11—N12—C14—C15162.0 (2)O21—N22—C24—C25149.5 (2)
O12—N12—C14—C13164.8 (2)O22—N22—C24—C23154.6 (2)
O12—N12—C14—C1516.4 (2)O22—N22—C24—C2527.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O22i0.882.423.221 (2)152
N11—H12···O12ii0.882.263.088 (2)157
N21—H21···O110.882.313.088 (2)148
N21—H22···O21iii0.882.283.101 (2)155
C16—H16···F13iv0.952.403.180 (2)139
C26—H26···F23iii0.952.503.347 (2)149
Symmetry codes: (i) x1, y, z1; (ii) x1, y+1/2, z+1/2; (iii) x, y1/2, z+3/2; (iv) x, y+1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC7H5F3N2O2C7H5F3N2O2
Mr206.13206.13
Crystal system, space groupOrthorhombic, PnmaMonoclinic, P21/c
Temperature (K)150150
a, b, c (Å)9.0274 (4), 6.5933 (4), 13.1170 (8)7.1048 (2), 15.3832 (5), 14.3091 (6)
α, β, γ (°)90, 90, 9090, 91.9102 (12), 90
V3)780.73 (8)1563.04 (9)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.180.18
Crystal size (mm)0.20 × 0.15 × 0.010.40 × 0.16 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.987, 0.9980.812, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
3944, 961, 725 12016, 3541, 2369
Rint0.0530.064
(sin θ/λ)max1)0.6510.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.06 0.044, 0.114, 0.98
No. of reflections9613541
No. of parameters82254
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.290.26, 0.32

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2001), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O1i0.882.412.870 (2)113
N1—H12···O2i0.882.573.299 (2)141
C6—H6···O2ii0.952.593.398 (3)143
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1/2.
Selected bond and torsion angles (º) for (II) top
C12—C13—C17116.11 (16)C22—C23—C27116.85 (16)
C14—C13—C17125.73 (15)C24—C23—C27124.24 (16)
C13—C14—N12123.44 (15)C23—C24—N22123.06 (16)
C15—C14—N12116.53 (16)C25—C24—N22116.73 (16)
O11—N12—C14—C1316.7 (2)O21—N22—C24—C2328.1 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O22i0.882.423.221 (2)152
N11—H12···O12ii0.882.263.088 (2)157
N21—H21···O110.882.313.088 (2)148
N21—H22···O21iii0.882.283.101 (2)155
Symmetry codes: (i) x1, y, z1; (ii) x1, y+1/2, z+1/2; (iii) x, y1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds