Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C26H22O4, the pyran­one ring adopts a twisted boat conformation, while the cyclo­hexane ring is close to an envelope conformation. The dihedral angle between the mean planes of the coumarin and naphthalene systems is 78.8 (1)°. The attached phenyl ring is in an equatorial position with respect to the cyclo­hexane ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101017164/sk1509sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017164/sk1509Isup2.hkl
Contains datablock I

CCDC reference: 182009

Comment top

The photoinduced reactions of coumarin derivatives have been widely investigated (Lewis & Barancyk, 1989). However, the photoinduced reactions of coumarins with phenylethenes have not been much investigated. In order to extend the scope of photoinduced reactions of coumarin derivatives, we have conducted the photoinduced reaction of 3-ethoxycarbonylcoumarin with 1,1-diphenylethene. It is unexpectedly found that the coumarin ring was annulated in this reaction to give the title compound, (I). An X-ray crystal structure analysis of (I) was undertaken to confirm its novel four-ring structure. The crystal structure is a racemate.

In the title structure (Fig. 1), the pyranone ring adopts a twisted boat conformation, with atoms C1 and C2 deviating by ±0.300 (3) Å and puckering parameters (Cremer & Pople, 1975) Q2 = 0.445 (3) Å, Q3 = 0.192 (3) Å, QT = 0.484 (3) Å, θ = 66.7 (4)° and ϕ2 = 151.0 (4)°. The cyclohexane ring is close to an envelope conformation, with atom C1 deviating by -0.358 (2) Å and puckering parameters Q2 = 0.413 (3) Å, Q3 = -0.290 (3) Å, QT = 0.505 (3) Å, θ = 125.1 (3)° and ϕ2 = 170.2 (4)°. The dihedral angle between the mean planes through the pyranone and cyclohexane rings is 69.7 (2)°, while these two rings make dihedral angles of 15.9 (2) and 10.2 (1)° with the benzene rings in the coumarin and naphthalene moieties, respectively. The coumarin and naphthalene moieties make a dihedral angle of 78.8 (1)° with one another, corresponding to a synclinical configuration.

The bond lengths and angles within (I) are normal (Allen et al., 1987). Except for the C3—C8 and C12—C17 bonds, all the C—C bond distances in the pyranone and cyclohexane rings are typical Csp3—Csp3 single-bond values. The average C—C bond distances within the benzene and phenyl rings are 1.377 (4), 1.381 (4) and 1.387 (4) Å.

The phenyl-ring substituent attached to the cyclohexane ring moiety at C9 is twisted by 68.1 (2)° with respect to the mean plane of the cyclohexane ring, corresponding to an equatorial position with respect to the cyclohexane ring. The ketone O2 atom deviates by 0.286 (2) Å from the cyclohexane ring. The ethoxycarbonyl group is nearly planar, with atom O3 deviating by 0.261 (2) Å. This plane makes a dihedral angle of 85.4 (3)° to the cyclohexane ring.

In the title structure, an intramolecular C—H···O interaction forms an O4—C24—C1—C2—H2A closed ring. The molecules are stacked into columns nearly along the c axis. One weak intermolecular C—H···O interaction (symmetry code: x, y + 1, z) was also observed which interconnects the molecules into infinite molecular sheets along the b axis. These interactions, as well as van der Waals interactions, stabilize the molecular and packing structure in the crystal.

Experimental top

The title compound, (I), was prepared by photolysis of 3-ethoxycarbonylcoumarin (50 mmol) in benzene solution with an excess amount of 1,1-diphenylethylene using light of wavelength longer than 300 nm. Single crystals suitable for X-ray diffraction analysis were recrystallized by slow evaporation from a petroleum ether–ethyl acetate solution.

Refinement top

After checking their presence in the difference map, all H atoms were fixed geometrically and allowed to ride on the parent C atoms (C—H = 0.93–0.98 Å).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the structure (I) viewed down the a axis.
Ethyl (6aRS,8RS,12bRS)-6-oxo-8-phenyl-6a,7,8,12b-tetrahydro-6H-benzo[b]- naphtho[1,2-d]pyran-6a-carboxylate top
Crystal data top
C26H22O4Z = 2
Mr = 398.44F(000) = 420
Triclinic, P1Dx = 1.282 Mg m3
Hall symbol: -P 1Melting point: 435K K
a = 10.5692 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6982 (2) ÅCell parameters from 4216 reflections
c = 10.7687 (1) Åθ = 2.0–28.3°
α = 94.848 (1)°µ = 0.09 mm1
β = 99.091 (1)°T = 293 K
γ = 119.064 (1)°Slab, colourless
V = 1032.43 (3) Å30.36 × 0.30 × 0.14 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4425 independent reflections
Radiation source: fine-focus sealed tube2402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 8.33 pixels mm-1θmax = 27.0°, θmin = 2.0°
ω scansh = 1213
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1213
Tmin = 0.970, Tmax = 0.988l = 1310
6894 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.209 w = 1/[σ2(Fo2) + (0.0916P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
4425 reflectionsΔρmax = 0.57 e Å3
272 parametersΔρmin = 0.59 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.226 (15)
Crystal data top
C26H22O4γ = 119.064 (1)°
Mr = 398.44V = 1032.43 (3) Å3
Triclinic, P1Z = 2
a = 10.5692 (2) ÅMo Kα radiation
b = 10.6982 (2) ŵ = 0.09 mm1
c = 10.7687 (1) ÅT = 293 K
α = 94.848 (1)°0.36 × 0.30 × 0.14 mm
β = 99.091 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4425 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2402 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.988Rint = 0.084
6894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 0.87Δρmax = 0.57 e Å3
4425 reflectionsΔρmin = 0.59 e Å3
272 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2491 (2)0.5661 (2)0.35589 (19)0.0495 (6)
O20.2382 (2)0.4991 (2)0.1549 (2)0.0564 (6)
O30.1815 (2)0.7109 (2)0.02682 (18)0.0513 (6)
O40.40941 (19)0.8018 (2)0.09736 (17)0.0441 (5)
C10.2103 (3)0.7073 (3)0.2001 (2)0.0302 (6)
C20.2992 (3)0.8420 (3)0.3095 (2)0.0318 (6)
H2A0.40550.87950.31590.038*
C30.2661 (3)0.9592 (3)0.2788 (2)0.0345 (6)
C40.3750 (3)1.1048 (3)0.3189 (3)0.0462 (7)
H4A0.46931.12840.36260.055*
C50.3482 (4)1.2150 (3)0.2964 (3)0.0600 (9)
H5A0.42331.31170.32440.072*
C60.2092 (4)1.1812 (4)0.2320 (3)0.0637 (10)
H6A0.18931.25520.21790.076*
C70.0986 (4)1.0369 (3)0.1880 (3)0.0501 (8)
H7A0.00591.01500.14200.060*
C80.1243 (3)0.9240 (3)0.2116 (2)0.0341 (6)
C90.0002 (3)0.7678 (3)0.1611 (2)0.0328 (6)
H9A0.03180.75780.06850.039*
C100.0433 (3)0.6524 (3)0.1824 (2)0.0330 (6)
H10A0.01060.57250.10970.040*
H10B0.01200.61420.25760.040*
C110.2344 (3)0.5839 (3)0.2323 (3)0.0381 (6)
C120.2392 (3)0.6569 (3)0.4504 (3)0.0431 (7)
C130.2054 (4)0.6027 (4)0.5602 (3)0.0589 (9)
H13A0.19110.51120.56890.071*
C140.1935 (4)0.6867 (4)0.6560 (3)0.0697 (11)
H14A0.17110.65200.73070.084*
C150.2144 (4)0.8210 (4)0.6426 (3)0.0692 (10)
H15A0.20440.87630.70760.083*
C160.2504 (3)0.8754 (4)0.5323 (3)0.0516 (8)
H16A0.26650.96770.52490.062*
C170.2626 (3)0.7929 (3)0.4334 (2)0.0363 (6)
C180.1358 (3)0.7301 (3)0.2171 (3)0.0370 (6)
C190.1227 (3)0.7930 (3)0.3398 (3)0.0512 (8)
H19A0.03020.86540.38860.061*
C200.2497 (4)0.7470 (4)0.3900 (4)0.0663 (10)
H20A0.24080.78960.47230.080*
C210.3848 (4)0.6414 (4)0.3204 (4)0.0657 (10)
H21A0.46820.61140.35480.079*
C220.3981 (3)0.5793 (4)0.1997 (4)0.0625 (9)
H22A0.49130.50700.15200.075*
C230.2773 (3)0.6213 (3)0.1479 (3)0.0496 (8)
H23A0.28900.57710.06540.060*
C240.2626 (3)0.7401 (3)0.0760 (2)0.0336 (6)
C250.4751 (3)0.8142 (3)0.0124 (3)0.0483 (7)
H25A0.44540.86540.06950.058*
H25C0.44290.71830.05920.058*
C260.6405 (3)0.8970 (4)0.0371 (3)0.0556 (8)
H26D0.68790.90730.03340.083*
H26A0.66850.84520.09330.083*
H26B0.67100.99160.08310.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0673 (14)0.0514 (13)0.0489 (12)0.0381 (11)0.0267 (10)0.0254 (9)
O20.0760 (15)0.0453 (13)0.0673 (14)0.0396 (11)0.0343 (12)0.0144 (10)
O30.0493 (12)0.0657 (14)0.0307 (11)0.0221 (10)0.0130 (9)0.0081 (9)
O40.0377 (10)0.0609 (13)0.0366 (10)0.0221 (9)0.0235 (8)0.0147 (8)
C10.0323 (12)0.0304 (13)0.0304 (13)0.0148 (10)0.0159 (10)0.0093 (9)
C20.0296 (12)0.0340 (14)0.0288 (13)0.0118 (10)0.0128 (10)0.0081 (10)
C30.0420 (14)0.0295 (13)0.0296 (13)0.0130 (11)0.0186 (11)0.0081 (9)
C40.0511 (17)0.0319 (15)0.0438 (16)0.0091 (12)0.0211 (13)0.0078 (11)
C50.078 (2)0.0288 (16)0.062 (2)0.0135 (15)0.0351 (19)0.0095 (13)
C60.102 (3)0.0413 (19)0.073 (2)0.0434 (19)0.052 (2)0.0292 (16)
C70.0619 (19)0.0505 (19)0.0586 (19)0.0360 (16)0.0328 (16)0.0282 (14)
C80.0414 (14)0.0339 (14)0.0343 (14)0.0191 (11)0.0241 (11)0.0140 (10)
C90.0335 (13)0.0363 (14)0.0298 (13)0.0163 (11)0.0136 (10)0.0101 (10)
C100.0309 (12)0.0289 (13)0.0362 (14)0.0110 (10)0.0146 (11)0.0057 (10)
C110.0378 (14)0.0362 (15)0.0456 (16)0.0183 (11)0.0208 (12)0.0151 (11)
C120.0437 (16)0.0504 (17)0.0363 (15)0.0211 (13)0.0158 (12)0.0182 (12)
C130.065 (2)0.061 (2)0.0427 (18)0.0216 (16)0.0154 (16)0.0280 (15)
C140.077 (2)0.079 (3)0.0317 (17)0.0193 (19)0.0206 (16)0.0229 (16)
C150.081 (2)0.082 (3)0.0310 (17)0.030 (2)0.0232 (17)0.0048 (15)
C160.0597 (19)0.0542 (19)0.0311 (15)0.0208 (14)0.0147 (13)0.0050 (12)
C170.0336 (13)0.0416 (15)0.0283 (13)0.0133 (11)0.0108 (11)0.0102 (10)
C180.0370 (14)0.0416 (15)0.0426 (15)0.0238 (12)0.0175 (12)0.0171 (11)
C190.0479 (17)0.060 (2)0.0484 (17)0.0257 (15)0.0242 (14)0.0100 (14)
C200.075 (2)0.080 (3)0.068 (2)0.047 (2)0.044 (2)0.0241 (18)
C210.0479 (19)0.071 (2)0.102 (3)0.0360 (18)0.048 (2)0.040 (2)
C220.0365 (16)0.065 (2)0.087 (3)0.0231 (15)0.0232 (17)0.0210 (18)
C230.0370 (15)0.0479 (18)0.0607 (19)0.0180 (13)0.0147 (14)0.0108 (14)
C240.0368 (13)0.0314 (13)0.0347 (14)0.0158 (11)0.0178 (12)0.0080 (10)
C250.0563 (18)0.0527 (18)0.0443 (16)0.0263 (14)0.0348 (14)0.0150 (12)
C260.0479 (17)0.069 (2)0.062 (2)0.0303 (16)0.0357 (16)0.0250 (16)
Geometric parameters (Å, º) top
O1—C111.356 (3)C10—H10B0.9700
O1—C121.399 (3)C12—C131.382 (4)
O2—C111.199 (3)C12—C171.387 (4)
O3—C241.200 (3)C13—C141.372 (5)
O4—C241.328 (3)C13—H13A0.9300
O4—C251.447 (3)C14—C151.368 (5)
C1—C111.518 (4)C14—H14A0.9300
C1—C241.530 (3)C15—C161.393 (4)
C1—C101.537 (3)C15—H15A0.9300
C1—C21.548 (3)C16—C171.387 (4)
C2—C31.504 (4)C16—H16A0.9300
C2—C171.513 (3)C18—C191.385 (4)
C2—H2A0.9800C18—C231.399 (4)
C3—C41.388 (4)C19—C201.403 (4)
C3—C81.404 (4)C19—H19A0.9300
C4—C51.372 (4)C20—C211.352 (5)
C4—H4A0.9300C20—H20A0.9300
C5—C61.375 (5)C21—C221.363 (5)
C5—H5A0.9300C21—H21A0.9300
C6—C71.386 (5)C22—C231.362 (4)
C6—H6A0.9300C22—H22A0.9300
C7—C81.396 (4)C23—H23A0.9300
C7—H7A0.9300C25—C261.498 (4)
C8—C91.518 (3)C25—H25A0.9700
C9—C181.527 (3)C25—H25C0.9700
C9—C101.535 (3)C26—H26D0.9600
C9—H9A0.9800C26—H26A0.9600
C10—H10A0.9700C26—H26B0.9600
C11—O1—C12120.9 (2)C17—C12—O1121.3 (2)
C24—O4—C25117.9 (2)C14—C13—C12118.6 (3)
C11—C1—C24105.24 (18)C14—C13—H13A120.7
C11—C1—C10107.43 (19)C12—C13—H13A120.7
C24—C1—C10112.1 (2)C15—C14—C13120.5 (3)
C11—C1—C2111.0 (2)C15—C14—H14A119.7
C24—C1—C2111.6 (2)C13—C14—H14A119.7
C10—C1—C2109.34 (19)C14—C15—C16120.4 (3)
C3—C2—C17113.8 (2)C14—C15—H15A119.8
C3—C2—C1109.9 (2)C16—C15—H15A119.8
C17—C2—C1108.0 (2)C17—C16—C15120.5 (3)
C3—C2—H2A108.3C17—C16—H16A119.8
C17—C2—H2A108.3C15—C16—H16A119.8
C1—C2—H2A108.3C12—C17—C16117.2 (2)
C4—C3—C8118.8 (3)C12—C17—C2118.6 (2)
C4—C3—C2120.2 (2)C16—C17—C2124.2 (3)
C8—C3—C2121.0 (2)C19—C18—C23118.0 (2)
C5—C4—C3122.1 (3)C19—C18—C9121.9 (2)
C5—C4—H4A118.9C23—C18—C9120.0 (2)
C3—C4—H4A118.9C18—C19—C20119.6 (3)
C4—C5—C6119.4 (3)C18—C19—H19A120.2
C4—C5—H5A120.3C20—C19—H19A120.2
C6—C5—H5A120.3C21—C20—C19120.9 (3)
C5—C6—C7120.0 (3)C21—C20—H20A119.6
C5—C6—H6A120.0C19—C20—H20A119.6
C7—C6—H6A120.0C20—C21—C22119.7 (3)
C6—C7—C8121.0 (3)C20—C21—H21A120.2
C6—C7—H7A119.5C22—C21—H21A120.2
C8—C7—H7A119.5C23—C22—C21121.1 (3)
C7—C8—C3118.6 (2)C23—C22—H22A119.5
C7—C8—C9119.0 (2)C21—C22—H22A119.5
C3—C8—C9122.3 (2)C22—C23—C18120.8 (3)
C8—C9—C18112.33 (19)C22—C23—H23A119.6
C8—C9—C10114.9 (2)C18—C23—H23A119.6
C18—C9—C10107.8 (2)O3—C24—O4124.8 (2)
C8—C9—H9A107.2O3—C24—C1124.5 (2)
C18—C9—H9A107.2O4—C24—C1110.6 (2)
C10—C9—H9A107.2O4—C25—C26107.2 (2)
C9—C10—C1114.8 (2)O4—C25—H25A110.3
C9—C10—H10A108.6C26—C25—H25A110.3
C1—C10—H10A108.6O4—C25—H25C110.3
C9—C10—H10B108.6C26—C25—H25C110.3
C1—C10—H10B108.6H25A—C25—H25C108.5
H10A—C10—H10B107.6C25—C26—H26D109.5
O2—C11—O1117.8 (3)C25—C26—H26A109.5
O2—C11—C1124.2 (2)H26D—C26—H26A109.5
O1—C11—C1118.1 (2)C25—C26—H26B109.5
C13—C12—C17122.8 (3)H26D—C26—H26B109.5
C13—C12—O1115.9 (3)H26A—C26—H26B109.5
C11—C1—C2—C3176.57 (18)C11—O1—C12—C13158.9 (3)
C24—C1—C2—C366.4 (3)C11—O1—C12—C1721.2 (4)
C10—C1—C2—C358.2 (3)C17—C12—C13—C140.4 (5)
C11—C1—C2—C1751.9 (3)O1—C12—C13—C14179.7 (3)
C24—C1—C2—C17168.91 (19)C12—C13—C14—C150.2 (5)
C10—C1—C2—C1766.5 (3)C13—C14—C15—C161.1 (5)
C17—C2—C3—C491.6 (3)C14—C15—C16—C171.4 (5)
C1—C2—C3—C4147.1 (2)C13—C12—C17—C160.1 (4)
C17—C2—C3—C887.1 (3)O1—C12—C17—C16180.0 (2)
C1—C2—C3—C834.2 (3)C13—C12—C17—C2179.9 (3)
C8—C3—C4—C50.8 (4)O1—C12—C17—C20.0 (4)
C2—C3—C4—C5178.0 (3)C15—C16—C17—C120.8 (4)
C3—C4—C5—C60.0 (4)C15—C16—C17—C2179.2 (3)
C4—C5—C6—C71.4 (5)C3—C2—C17—C12158.1 (2)
C5—C6—C7—C82.1 (4)C1—C2—C17—C1235.9 (3)
C6—C7—C8—C31.4 (4)C3—C2—C17—C1621.8 (3)
C6—C7—C8—C9179.9 (2)C1—C2—C17—C16144.1 (3)
C4—C3—C8—C70.1 (3)C8—C9—C18—C1932.0 (4)
C2—C3—C8—C7178.7 (2)C10—C9—C18—C1995.5 (3)
C4—C3—C8—C9178.4 (2)C8—C9—C18—C23153.0 (3)
C2—C3—C8—C92.9 (3)C10—C9—C18—C2379.5 (3)
C7—C8—C9—C1861.3 (3)C23—C18—C19—C200.3 (5)
C3—C8—C9—C18120.3 (2)C9—C18—C19—C20175.4 (3)
C7—C8—C9—C10175.1 (2)C18—C19—C20—C210.3 (5)
C3—C8—C9—C103.4 (3)C19—C20—C21—C220.3 (6)
C8—C9—C10—C123.2 (3)C20—C21—C22—C230.2 (5)
C18—C9—C10—C1149.2 (2)C21—C22—C23—C180.3 (5)
C11—C1—C10—C9174.71 (19)C19—C18—C23—C220.3 (4)
C24—C1—C10—C970.1 (3)C9—C18—C23—C22175.5 (3)
C2—C1—C10—C954.2 (3)C25—O4—C24—O310.3 (4)
C12—O1—C11—O2177.2 (2)C25—O4—C24—C1168.1 (2)
C12—O1—C11—C11.3 (4)C11—C1—C24—O3108.2 (3)
C24—C1—C11—O224.8 (3)C10—C1—C24—O38.3 (3)
C10—C1—C11—O294.8 (3)C2—C1—C24—O3131.4 (3)
C2—C1—C11—O2145.7 (3)C11—C1—C24—O470.2 (2)
C24—C1—C11—O1156.8 (2)C10—C1—C24—O4173.3 (2)
C10—C1—C11—O183.6 (3)C2—C1—C24—O450.2 (3)
C2—C1—C11—O135.9 (3)C24—O4—C25—C26175.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O40.982.442.815 (3)102
C6—H6A···O2i0.932.583.449 (4)156
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H22O4
Mr398.44
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.5692 (2), 10.6982 (2), 10.7687 (1)
α, β, γ (°)94.848 (1), 99.091 (1), 119.064 (1)
V3)1032.43 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.30 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6894, 4425, 2402
Rint0.084
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.209, 0.87
No. of reflections4425
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.59

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
O1—C111.356 (3)C2—C171.513 (3)
O1—C121.399 (3)C3—C81.404 (4)
C1—C111.518 (4)C8—C91.518 (3)
C1—C101.537 (3)C9—C181.527 (3)
C1—C21.548 (3)C9—C101.535 (3)
C2—C31.504 (4)
C11—C1—C24105.24 (18)C3—C2—C17113.8 (2)
C11—C1—C10107.43 (19)C8—C9—C18112.33 (19)
C24—C1—C10112.1 (2)C8—C9—C10114.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O40.982.44232.815 (3)102
C6—H6A···O2i0.932.57603.449 (4)156
Symmetry code: (i) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds