Download citation
Download citation
link to html
The crystals of the title salt, 6,21-di­aza-3,9,18,24-tetraazoniatri­cyclo­[22.2.2.211,14]­triaconta-11,13,24,26(1),27,29-hexaene benzene-1,2,4,5-tetra­carboxyl­ate(4-) hexahydrate, C24H42N64+·C10H2O84-·6H2O, are formed by the intermolecular interaction of a macrocyclic hex­amine with a mol­ecule of C6H2(COOH)4 in aqueous solution. Both the cation and the anion are on inversion centres. Hydro­gen bonds are formed between the four ammonium cations in the hex­amine and the four carboxyl­ate anions in the aromatic acid. Stacks exist along the crystallographic a axis in the solid state. The water mol­ecules also take part in a hydrogen-bonding network which joins these stacks together.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101020777/sk1508sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101020777/sk1508Isup2.hkl
Contains datablock I

CCDC reference: 182991

Comment top

Macrocyclic compounds may form supramolecules if the stereochemistry of the donor atoms and the size and shape of the central cavity are suitable (Lehn, 1985, 1988). We are interested in the interplay of the covalent, ionic and hydrogen-bonding interactions that hold these supramolecules together, and in the dependence of these interactions on the conformation.

The inclusion properties of macrocyclic compounds can be adjusted by controlling the ring size. In the macrocyclic hexamine compound 3,6,9,16,19,22-hexaazatricyclo[22.2.2.211,14]triaconta-11,13,24,26 (1),27,29- hexaene, designated L, the two identical diethylenetriamine moieties can be considered as two arms of the molecule, which can coordinate to transition metal ions to form binuclear (Zhu et al., 1998; Jurek & Martell, 1999) and tetranuclear (He et al., 2001) metal complexes. This macrocyclic hexamine also creates a supramolecule, through the intermolecular hydrogen bonding that water molecules form with the hexamine and with other water molecules (He et al., 2000). However, when metal ions are absent from the central cavity, the amino groups (as ammonium cations) become available for electrostatic interactions with carboxylic groups (as carboxylate anions) in a suitable molecule. Here, we show that the centrosymmetric hexamine L and C6H2(COOH)4 form a salt, (I). \sch

The asymmetric unit of the triclinic cell of (I) contains one half of the tetraprotonated LH44+ cation, one half of the C6H2(COO)44- anion and three water molecules. The cations adopt a chair-like conformation, with one diethylenetriamine moiety flipped down and the other flipped up. The hydrogen bonding, involving the H atoms at N1 and N3 in LH44+, and the O atoms in C6H2(COO)4-, gives rise to aggregated stacks along the a axis (Fig. 1). The water molecules maintain hydrogen bonds that join the C6H2(COO)44- ions of different stacks, yielding a three-dimensional network (Fig. 2). All bond lengths and angles in (I) agree well with the corresponding dimensions of the isolated macrocycle (He et al., 2000). The observed differences from the standard values can be attributed to the participation of some atoms in hydrogen bonding.

The structure of (I) shows that the LH44+ macrocycle adjusts its conformation in order to optimize ionic interactions with C6H2(COO)44-.

Experimental top

The macrocyclic hexamine L was synthesized according to the procedure of Chen & Martell (1991). Needle-shaped single crystals of the title salt were obtained by mixing a 10 mM aqueous solution of L (1.44 ml) with a 20 mM aqueous solution of C6H2(COOH)4 (0.36 µl) (molar ratio 2:1) and 2.00 M NaOH (3.6 ml). The total volume was 7.40 ml Please check - 1.44 + 3.6 = 5.04 ml. Similar crystals were also obtained using the binuclear MgII complex [LMg2(OH)2](ClO4)2 instead of L, and mixing a 20 mM aqueous solution of [LMg2(OH)2](ClO4)2 (300 ml), a 20 mM aqueous solution of C6H2(COOH)4 (150 µl) and water (250 ml). Spectroscopic analysis for (I): 1H NMR (D2O, δ, p.p.m.): 7.28 (s, 8H, ArH in LH44+), 4.11 (s, 8H, ArCH2 in LH44+), 3.25 (t, 8H, NHCH2 in LH44+), 3.03 (t, 8H, NHCH2 in LH44+), 7.16 [s, 2H, ArCH in C6H2(COO)44-].

Refinement top

H atoms involved in hydrogen bonding were located from a difference Fourier map and their positions and isotropic displacement parameters were refined. All other H atoms were introduced at calculated positions and refined riding on their carrier atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the crystal structure of (I) showing the intermolecular interactions within a stack. Displacement ellipsoids are drawn at the 50% probability level. One of the water molecules, and H atoms not participating in these interactions, have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram for (I) viewed along the a axis. Only hydrogen bonds with H···A shorter than 2.40 Å are shown.
6,21-diaza-3,9,18,24-tetraazoniatricyclo[22.2.2.211,14]triaconta- 11,13,24,26 (1),27,29-hexaene benzene-1,2,4,5-tetracarboxylate hexahydrate top
Crystal data top
C24H42N64+·C10H2O84·6H2OZ = 1
Mr = 772.85F(000) = 414
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0983 (11) ÅCell parameters from 3621 reflections
b = 9.3947 (15) Åθ = 7–21°
c = 13.880 (2) ŵ = 0.11 mm1
α = 87.686 (3)°T = 298 K
β = 79.635 (3)°Prism, black
γ = 79.498 (3)°0.2 × 0.2 × 0.1 mm
V = 895.2 (2) Å3
Data collection top
Bruker SMART Query CCD area-detector
diffractometer
1669 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 24.7°, θmin = 2.2°
ϕ and ω scansh = 88
4531 measured reflectionsk = 1011
3011 independent reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.039P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
3011 reflectionsΔρmax = 0.22 e Å3
293 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C24H42N64+·C10H2O84·6H2Oγ = 79.498 (3)°
Mr = 772.85V = 895.2 (2) Å3
Triclinic, P1Z = 1
a = 7.0983 (11) ÅMo Kα radiation
b = 9.3947 (15) ŵ = 0.11 mm1
c = 13.880 (2) ÅT = 298 K
α = 87.686 (3)°0.2 × 0.2 × 0.1 mm
β = 79.635 (3)°
Data collection top
Bruker SMART Query CCD area-detector
diffractometer
1669 reflections with I > 2σ(I)
4531 measured reflectionsRint = 0.034
3011 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.22 e Å3
3011 reflectionsΔρmin = 0.22 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8509 (4)0.7251 (3)0.0640 (2)0.0211 (7)
H1A0.88910.63570.09470.025*
C20.8155 (4)0.7308 (3)0.0367 (2)0.0226 (8)
H2A0.82900.64530.07290.027*
C30.7603 (4)0.8614 (3)0.0846 (2)0.0216 (7)
C40.7382 (5)0.9867 (3)0.0290 (2)0.0310 (9)
H4A0.69951.07580.06000.037*
C50.7725 (5)0.9816 (3)0.0711 (2)0.0310 (9)
H5A0.75681.06740.10690.037*
C60.8305 (4)0.8501 (3)0.1204 (2)0.0201 (7)
C70.8718 (4)0.8484 (3)0.2298 (2)0.0245 (8)
H7A0.75080.87730.25430.029*
H7B0.95510.91820.25350.029*
C81.0187 (4)0.6984 (3)0.3769 (2)0.0248 (8)
H8A1.09680.77150.40010.030*
H8B0.90050.71960.40470.030*
C90.7303 (5)0.8729 (3)0.1941 (2)0.0256 (8)
H9A0.84920.89030.21290.031*
H9B0.62870.95520.21510.031*
C100.6379 (4)0.7524 (3)0.35371 (19)0.0245 (8)
H10A0.54160.83800.37380.029*
H10B0.75690.76120.37620.029*
C110.5646 (4)0.6183 (3)0.3985 (2)0.0228 (8)
H11B0.55040.62130.46930.027*
H11C0.43800.61590.38220.027*
C120.8703 (4)0.4480 (3)0.4100 (2)0.0246 (8)
H12B0.82770.44670.48040.030*
H12C0.95450.51940.39460.030*
C130.3519 (4)0.6153 (3)0.0037 (2)0.0168 (7)
C140.3762 (4)0.5523 (3)0.0870 (2)0.0162 (7)
C150.2411 (4)0.6218 (3)0.1773 (2)0.0174 (7)
C160.5260 (4)0.4341 (3)0.09131 (19)0.0164 (7)
C170.5522 (5)0.3541 (3)0.1858 (2)0.0191 (7)
H130.249 (4)0.691 (3)0.0032 (16)0.015 (8)*
H31N0.893 (5)0.640 (3)0.246 (2)0.050 (12)*
H32N1.103 (7)0.669 (5)0.231 (3)0.123 (17)*
H21N0.628 (4)0.408 (3)0.3642 (19)0.033 (9)*
H11N0.566 (5)0.714 (3)0.223 (2)0.035 (10)*
H12N0.793 (5)0.659 (3)0.226 (2)0.060 (11)*
H11W0.165 (8)0.771 (6)0.327 (4)0.16 (2)*
H12W0.138 (5)0.862 (3)0.415 (2)0.021 (11)*
H21W0.149 (5)0.040 (4)0.550 (2)0.062 (13)*
H22W0.308 (6)0.049 (4)0.473 (3)0.076 (15)*
H31W0.462 (5)0.226 (4)0.347 (3)0.071 (14)*
H32W0.573 (5)0.125 (4)0.404 (2)0.042 (12)*
N10.6755 (4)0.7405 (3)0.24451 (17)0.0196 (6)
N20.7009 (4)0.4883 (3)0.36169 (17)0.0211 (6)
N30.9681 (4)0.7029 (3)0.26820 (18)0.0204 (6)
O10.0740 (3)0.5913 (2)0.19808 (13)0.0225 (5)
O20.3060 (3)0.7094 (2)0.22321 (14)0.0226 (5)
O30.4079 (3)0.3672 (2)0.25511 (13)0.0233 (5)
O40.7130 (3)0.2751 (2)0.18966 (13)0.0238 (5)
O50.0755 (4)0.8297 (3)0.38912 (19)0.0371 (7)
O60.2412 (4)0.0139 (2)0.51266 (18)0.0292 (6)
O70.4589 (4)0.1539 (3)0.39240 (19)0.0431 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0182 (18)0.0184 (17)0.0263 (19)0.0021 (14)0.0035 (14)0.0036 (14)
C20.026 (2)0.0186 (17)0.0233 (18)0.0077 (14)0.0017 (15)0.0041 (14)
C30.0218 (19)0.0231 (17)0.0196 (18)0.0080 (14)0.0013 (15)0.0002 (14)
C40.041 (2)0.0190 (18)0.029 (2)0.0023 (15)0.0029 (17)0.0036 (15)
C50.037 (2)0.0197 (18)0.032 (2)0.0005 (16)0.0020 (17)0.0071 (15)
C60.0146 (17)0.0219 (17)0.0239 (18)0.0061 (14)0.0012 (14)0.0007 (14)
C70.0231 (19)0.0201 (17)0.0302 (19)0.0020 (14)0.0059 (15)0.0008 (14)
C80.0248 (19)0.0291 (19)0.0202 (18)0.0053 (15)0.0032 (15)0.0030 (14)
C90.031 (2)0.0225 (17)0.0234 (18)0.0124 (15)0.0010 (16)0.0016 (14)
C100.0220 (19)0.0273 (18)0.0220 (18)0.0028 (15)0.0018 (15)0.0048 (14)
C110.0182 (18)0.0281 (18)0.0202 (17)0.0041 (14)0.0019 (14)0.0013 (14)
C120.0227 (19)0.0300 (18)0.0220 (17)0.0084 (15)0.0026 (15)0.0002 (14)
C130.0101 (17)0.0152 (16)0.0243 (18)0.0025 (14)0.0009 (14)0.0002 (14)
C140.0148 (17)0.0171 (16)0.0194 (17)0.0104 (13)0.0026 (13)0.0019 (13)
C150.0193 (19)0.0165 (16)0.0151 (17)0.0022 (14)0.0021 (14)0.0050 (13)
C160.0150 (17)0.0177 (16)0.0185 (17)0.0087 (13)0.0023 (14)0.0022 (13)
C170.023 (2)0.0164 (16)0.0199 (18)0.0065 (15)0.0058 (15)0.0003 (13)
N10.0206 (17)0.0220 (15)0.0158 (14)0.0051 (13)0.0005 (13)0.0018 (11)
N20.0207 (16)0.0226 (15)0.0201 (14)0.0055 (12)0.0020 (12)0.0017 (12)
N30.0221 (17)0.0194 (15)0.0188 (15)0.0074 (13)0.0019 (13)0.0016 (12)
O10.0170 (12)0.0267 (12)0.0230 (12)0.0067 (10)0.0020 (10)0.0029 (9)
O20.0222 (13)0.0256 (12)0.0203 (12)0.0077 (10)0.0002 (10)0.0067 (9)
O30.0174 (12)0.0323 (13)0.0178 (12)0.0049 (10)0.0027 (10)0.0055 (9)
O40.0200 (13)0.0268 (12)0.0238 (12)0.0007 (10)0.0068 (10)0.0005 (9)
O50.0237 (15)0.0521 (17)0.0361 (16)0.0087 (13)0.0005 (13)0.0194 (13)
O60.0238 (15)0.0307 (14)0.0323 (15)0.0050 (12)0.0018 (12)0.0058 (12)
O70.0320 (18)0.0575 (19)0.0400 (17)0.0117 (14)0.0086 (14)0.0251 (14)
Geometric parameters (Å, º) top
C1—C21.376 (4)C11—H11C0.9700
C1—C61.384 (4)C12—N21.463 (4)
C1—H1A0.9300C12—C8i1.500 (3)
C2—C31.377 (4)C12—H12B0.9700
C2—H2A0.9300C12—H12C0.9700
C3—C41.382 (4)C13—C141.394 (4)
C3—C91.502 (4)C13—C16ii1.402 (3)
C4—C51.367 (4)C13—H130.92 (2)
C4—H4A0.9300C14—C161.398 (4)
C5—C61.395 (4)C14—C151.524 (4)
C5—H5A0.9300C15—O11.251 (3)
C6—C71.495 (4)C15—O21.258 (3)
C7—N31.486 (3)C16—C13ii1.402 (3)
C7—H7A0.9700C16—C171.509 (4)
C7—H7B0.9700C17—O41.252 (3)
C8—N31.487 (3)C17—O31.265 (3)
C8—C12i1.500 (4)N1—H11N0.96 (3)
C8—H8A0.9700N1—H12N1.03 (3)
C8—H8B0.9700N2—H21N0.99 (3)
C9—N11.483 (3)N3—H31N0.88 (3)
C9—H9A0.9700N3—H32N1.16 (5)
C9—H9B0.9700O5—H11W1.08 (5)
C10—N11.496 (3)O5—H12W0.73 (3)
C10—C111.518 (4)O6—H21W0.85 (3)
C10—H10A0.9700O6—H22W0.92 (4)
C10—H10B0.9700O7—H31W0.91 (4)
C11—N21.460 (3)O7—H32W0.84 (3)
C11—H11B0.9700
C2—C1—C6121.1 (3)C10—C11—H11B109.6
C2—C1—H1A119.4N2—C11—H11C109.6
C6—C1—H1A119.4C10—C11—H11C109.6
C3—C2—C1121.0 (3)H11B—C11—H11C108.1
C3—C2—H2A119.5N2—C12—C8i110.5 (2)
C1—C2—H2A119.5N2—C12—H12B109.5
C2—C3—C4118.3 (3)C8i—C12—H12B109.5
C2—C3—C9122.7 (3)N2—C12—H12C109.5
C4—C3—C9119.0 (3)C8i—C12—H12C109.5
C5—C4—C3120.9 (3)H12B—C12—H12C108.1
C5—C4—H4A119.5C14—C13—C16ii122.5 (3)
C3—C4—H4A119.5C14—C13—H13116.2 (15)
C4—C5—C6121.2 (3)C16ii—C13—H13121.3 (15)
C4—C5—H5A119.4C13—C14—C16119.2 (2)
C6—C5—H5A119.4C13—C14—C15117.3 (2)
C1—C6—C5117.4 (3)C16—C14—C15123.4 (2)
C1—C6—C7122.7 (3)O1—C15—O2125.3 (3)
C5—C6—C7119.9 (3)O1—C15—C14118.1 (3)
N3—C7—C6111.8 (2)O2—C15—C14116.6 (3)
N3—C7—H7A109.3C14—C16—C13ii118.3 (2)
C6—C7—H7A109.3C14—C16—C17122.1 (2)
N3—C7—H7B109.3C13ii—C16—C17119.5 (2)
C6—C7—H7B109.3O4—C17—O3124.0 (3)
H7A—C7—H7B107.9O4—C17—C16118.1 (3)
N3—C8—C12i110.4 (2)O3—C17—C16117.8 (3)
N3—C8—H8A109.6C9—N1—C10112.9 (2)
C12i—C8—H8A109.6C9—N1—H11N111.8 (17)
N3—C8—H8B109.6C10—N1—H11N110.4 (17)
C12i—C8—H8B109.6C9—N1—H12N106.0 (18)
H8A—C8—H8B108.1C10—N1—H12N107.4 (17)
N1—C9—C3112.3 (2)H11N—N1—H12N108 (2)
N1—C9—H9A109.1C11—N2—C12115.8 (2)
C3—C9—H9A109.1C11—N2—H21N108.3 (16)
N1—C9—H9B109.1C12—N2—H21N111.1 (17)
C3—C9—H9B109.1C7—N3—C8113.4 (2)
H9A—C9—H9B107.9C7—N3—H31N109 (2)
N1—C10—C11109.1 (2)C8—N3—H31N111 (2)
N1—C10—H10A109.9C7—N3—H32N106 (2)
C11—C10—H10A109.9C8—N3—H32N113 (2)
N1—C10—H10B109.9H31N—N3—H32N104 (3)
C11—C10—H10B109.9H11W—O5—H12W109 (4)
H10A—C10—H10B108.3H21W—O6—H22W106 (3)
N2—C11—C10110.1 (2)H31W—O7—H32W109 (3)
N2—C11—H11B109.6
C6—C1—C2—C30.6 (5)C16—C14—C15—O1101.6 (3)
C1—C2—C3—C41.0 (5)C13—C14—C15—O296.7 (3)
C1—C2—C3—C9176.8 (3)C16—C14—C15—O280.6 (3)
C2—C3—C4—C50.8 (5)C13—C14—C16—C13ii0.9 (4)
C9—C3—C4—C5177.1 (3)C15—C14—C16—C13ii176.4 (3)
C3—C4—C5—C60.1 (5)C13—C14—C16—C17175.6 (3)
C2—C1—C6—C50.1 (4)C15—C14—C16—C177.1 (4)
C2—C1—C6—C7178.6 (3)C14—C16—C17—O4162.4 (3)
C4—C5—C6—C10.4 (5)C13ii—C16—C17—O421.2 (4)
C4—C5—C6—C7178.4 (3)C14—C16—C17—O319.9 (4)
C1—C6—C7—N310.0 (4)C13ii—C16—C17—O3156.5 (3)
C5—C6—C7—N3168.7 (3)C3—C9—N1—C10177.9 (2)
C2—C3—C9—N126.7 (4)C11—C10—N1—C9174.7 (2)
C4—C3—C9—N1155.5 (3)C10—C11—N2—C1281.5 (3)
N1—C10—C11—N254.5 (3)C8i—C12—N2—C11171.1 (2)
C16ii—C13—C14—C160.9 (5)C6—C7—N3—C8177.7 (2)
C16ii—C13—C14—C15176.5 (3)C12i—C8—N3—C7175.3 (3)
C13—C14—C15—O181.1 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31N···O3ii0.88 (3)2.17 (4)2.837 (4)132 (3)
N3—H31N···O1ii0.88 (3)2.23 (3)2.942 (3)138 (3)
N3—H32N···O4i1.16 (5)1.69 (5)2.726 (3)146 (4)
N1—H11N···O20.96 (3)1.85 (3)2.759 (4)157 (2)
N1—H12N···O1iii1.03 (3)1.95 (3)2.891 (3)151 (3)
O5—H11W···O21.08 (5)1.66 (5)2.727 (3)170 (5)
O5—H12W···O6iv0.73 (3)2.12 (3)2.835 (4)163 (3)
O6—H21W···O5v0.85 (3)1.91 (4)2.753 (3)169 (3)
O5—H11W···O21.08 (5)1.66 (5)2.727 (3)170 (5)
O6—H22W···O70.92 (4)1.80 (4)2.722 (4)174 (3)
O7—H31W···O30.91 (4)1.83 (4)2.730 (3)166 (4)
O7—H31W···O40.91 (4)2.64 (4)3.337 (3)134 (3)
O7—H32W···O6vi0.84 (3)2.03 (3)2.801 (4)151 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x, y+1, z+1; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC24H42N64+·C10H2O84·6H2O
Mr772.85
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.0983 (11), 9.3947 (15), 13.880 (2)
α, β, γ (°)87.686 (3), 79.635 (3), 79.498 (3)
V3)895.2 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.2 × 0.2 × 0.1
Data collection
DiffractometerBruker SMART Query CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4531, 3011, 1669
Rint0.034
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.104, 0.90
No. of reflections3011
No. of parameters293
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: SMART (Bruker, 1999), SMART, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31N···O3i0.88 (3)2.17 (4)2.837 (4)132 (3)
N3—H31N···O1i0.88 (3)2.23 (3)2.942 (3)138 (3)
N3—H32N···O4ii1.16 (5)1.69 (5)2.726 (3)146 (4)
N1—H11N···O20.96 (3)1.85 (3)2.759 (4)157 (2)
N1—H12N···O1iii1.03 (3)1.95 (3)2.891 (3)151 (3)
O5—H11W···O21.08 (5)1.66 (5)2.727 (3)170 (5)
O5—H12W···O6iv0.73 (3)2.12 (3)2.835 (4)163 (3)
O6—H21W···O5v0.85 (3)1.91 (4)2.753 (3)169 (3)
O5—H11W···O21.08 (5)1.66 (5)2.727 (3)170 (5)
O6—H22W···O70.92 (4)1.80 (4)2.722 (4)174 (3)
O7—H31W···O30.91 (4)1.83 (4)2.730 (3)166 (4)
O7—H31W···O40.91 (4)2.64 (4)3.337 (3)134 (3)
O7—H32W···O6vi0.84 (3)2.03 (3)2.801 (4)151 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x, y+1, z+1; (vi) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds