Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of 4-methyl-2-[N-(3,4-methyl­ene­dioxybenzyl­idene)hydrazino]­thia­zole, C12H11N3O2S, and its reduction product 4-methyl-2-[N-(3,4-methyl­ene­dioxybenzyl­idene)hydrazono]-4,5-di­hydro­thia­zole, C12H13N3O2S, have been determined and compared. In the reduction product, the tautomer observed bears an H atom on the exocyclic N atom. Both compounds form hydrogen-bonded dimers over centers of inversion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101017851/sk1506sup1.cif
Contains datablocks global, I, IIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017851/sk1506Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017851/sk1506IIbsup3.hkl
Contains datablock IIb

CCDC references: 182015; 182016

Comment top

Reduction of N-(3,4-methylenedioxy) benzylidene hydrazino methylthiazole (1) has been reported to lead to the corresponding benzyl analogue (2) (Mazzone et al., 1992; Pignatello et al., 1994; Cambria et al., 1996; Gritsch et al., 2001). Determination of the crystal structures of both compounds has been undertaken in order to clarify the mechanism of reduction of (1). The structural evidence given in this work demonstrates that the product of the reaction is the (2 b) isomer. The crystal structure further establishes that the tautomeric form of this product is the one with an H on the endocyclic N3 nitrogen.

Both compounds adopt an extended conformation (Fig. 1) with torsion angles N3—C4—N6—N7 [-177.53 (14) and 176.72 (19)° for (1) and (2) respectively], C4—N6—N7—C8 [179.46 (15) and 171.73 (18)°], and N6—N7—C8—C9 [179.9 (2) and 177.6 (2)°] close to 180°. A similar anti E conformation is observed for related substituted thiazol-2-yl hydrazines in solution as demonstrated by NMR data and ab initio calculations in water (Wouters et al., 2001).

For the fully oxidized molecule (1), analysis of the bond lengths and angles confirm an sp2 hybridation of all C and N atoms of the benzylidene hydrazino thiazole fragment. The C1—C2 [1.345 (3) Å], C2—N3 [1.394 (2) Å], N3—C4 [1.3071 (19) Å], C4—N6 [1.356 (2) Å], N6—N7 [1.3714 (18) Å], and N7—C8 (1.276 (2) Å) bond lengths are intermediate between C—C or C—N single and double bonds. The alternation of shorter and longer bonds further confirms electron delocalization along the whole molecule.

In the reduced product (2), C1 and C2 adopt a (sp3) tetrahedral geometry as demonstrated by the C2—C1—S5 [107.37 (15)°] and C1—C2—N3 [104.93 (18)°] valence angles. The C1—C2 bond [1.533 (3) Å] is significantly longer that the corresponding bond in molecule (1). In (2), the C4—N3 bond [1.339 (3) Å] is also longer than the C4—N6 bond [1.294 (3) Å]. The opposite is observed in (1). Analysis of the geometry therefore strongly suggests that the structure of the reduction product of (1) is the (2 b) isomer and not (2a).

Unambiguous localization from the difference Fourier map of an hydrogen on endocyclic N3 nitrogen in (2) establishes the tautomeric preference of the reduction product. Recent results obtained by energy calculations at the HF/6–31 G(d) and MP2/6–31 G(d) levels confirm the stability of the endocyclic N3 tautomeric form (Wouters et al., 2001).

In compound (2), the hydrogen on endocyclic nitrogen N3 is involved in an H bond connecting N3 to N6 [N3···N6 = 3.005 (2) Å, Table 1]. As a consequence of this H bond, molecules form interesting dimers in the crystal packing as illustrated in the ORTEP plot (Fig. 1).

A similar dimeric assembly is observed in the crystal structure of compound (1). The same nitrogen atoms are involved in the stabilization via H bond. In contrast to structure (2), the H donor in (1) is the exocyclic nitrogen N6 [N6···N3 = 3.048 (2) Å, Table 1].

Experimental top

Description of the synthesis of the title compounds is given in Mazzone et al. (1992), Pignatello et al. (1994) and Cambria et al. (1996).

Refinement top

H atoms on N3 or N6 were located at the end of the refinement by Fourier difference synthesis. Once located, they were refined using the riding model method.

Computing details top

Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I); SHELXS97 (Sheldrick, 1990) for (IIb). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. View of the dimers formed in the crystal structures of (a) compound (1) and (b) compound (2). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level and the atom-numbering scheme is given.
(I) top
Crystal data top
C12H11N3O2SF(000) = 544
Mr = 261.31Dx = 1.447 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.219 (1) Åθ = 35–45°
b = 12.163 (2) ŵ = 2.40 mm1
c = 15.855 (1) ÅT = 293 K
β = 91.13 (1)°Plate, yellow
V = 1199.1 (3) Å30.6 × 0.4 × 0.09 mm
Z = 4
Data collection top
Enraf Nonius CAD 4
diffractometer
2066 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 71.9°, θmin = 4.6°
θ/2θ scansh = 07
Absorption correction: analytical
North et al. (1968)
k = 1114
Tmin = 0.393, Tmax = 0.805l = 1919
3882 measured reflections3 standard reflections every 60 min
2356 independent reflections intensity decay: 1%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.038Calculated w = 1/[σ2(Fo2) + (0.0521P)2 + 0.2929P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.23 e Å3
2356 reflectionsΔρmin = 0.28 e Å3
164 parameters
Crystal data top
C12H11N3O2SV = 1199.1 (3) Å3
Mr = 261.31Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.219 (1) ŵ = 2.40 mm1
b = 12.163 (2) ÅT = 293 K
c = 15.855 (1) Å0.6 × 0.4 × 0.09 mm
β = 91.13 (1)°
Data collection top
Enraf Nonius CAD 4
diffractometer
2066 reflections with I > 2σ(I)
Absorption correction: analytical
North et al. (1968)
Rint = 0.015
Tmin = 0.393, Tmax = 0.8053 standard reflections every 60 min
3882 measured reflections intensity decay: 1%
2356 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters not refined
S = 1.09Δρmax = 0.23 e Å3
2356 reflectionsΔρmin = 0.28 e Å3
164 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S50.79678 (8)0.14782 (4)0.29729 (3)0.0618 (2)
O120.09986 (19)0.39953 (11)0.40256 (8)0.0611 (4)
O140.26993 (19)0.41203 (10)0.53016 (9)0.0581 (4)
N31.0512 (2)0.01641 (11)0.37999 (8)0.0455 (4)
N60.7658 (2)0.08673 (11)0.45879 (9)0.0479 (4)
N70.5847 (2)0.15092 (11)0.45379 (9)0.0458 (4)
C01.3144 (3)0.04372 (19)0.27277 (14)0.0727 (8)
C11.0092 (3)0.08857 (18)0.24570 (11)0.0627 (7)
C21.1240 (3)0.02250 (15)0.29753 (11)0.0518 (5)
C40.8793 (2)0.07730 (13)0.38701 (10)0.0429 (5)
C80.4753 (3)0.15987 (13)0.52066 (11)0.0464 (5)
C90.2798 (2)0.22569 (13)0.52381 (10)0.0429 (5)
C100.1948 (2)0.27923 (13)0.45198 (10)0.0449 (5)
C110.0113 (2)0.33899 (13)0.46195 (11)0.0443 (5)
C130.2898 (3)0.43654 (16)0.44252 (13)0.0568 (6)
C150.0907 (2)0.34695 (13)0.53856 (11)0.0458 (5)
C160.0125 (3)0.29586 (14)0.60916 (11)0.0508 (5)
C170.1753 (3)0.23447 (14)0.60032 (11)0.0484 (5)
H0A1.343330.031180.214310.1091*
H0B1.285250.120340.281530.1091*
H0C1.437150.022280.306550.1091*
H11.040290.100750.189330.0753*
H60.805140.054350.504780.0575*
H80.521950.123120.569090.0558*
H100.260740.274160.399990.0539*
H13A0.307160.515110.434380.0682*
H13B0.414840.399730.418290.0682*
H160.080720.301600.660640.0610*
H170.232610.198140.647220.0581*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S50.0541 (3)0.0811 (4)0.0499 (3)0.0050 (2)0.0033 (2)0.0081 (2)
O120.0469 (7)0.0730 (8)0.0638 (8)0.0118 (6)0.0103 (6)0.0139 (6)
O140.0409 (6)0.0627 (8)0.0710 (8)0.0090 (5)0.0116 (6)0.0015 (6)
N30.0426 (7)0.0479 (7)0.0463 (7)0.0012 (6)0.0102 (5)0.0017 (6)
N60.0401 (7)0.0547 (8)0.0493 (7)0.0078 (6)0.0081 (6)0.0041 (6)
N70.0347 (7)0.0474 (7)0.0553 (8)0.0013 (5)0.0038 (6)0.0011 (6)
C00.0717 (13)0.0837 (14)0.0640 (12)0.0061 (11)0.0307 (10)0.0048 (11)
C10.0608 (11)0.0839 (14)0.0436 (9)0.0082 (10)0.0068 (8)0.0002 (9)
C20.0488 (9)0.0598 (10)0.0472 (9)0.0080 (8)0.0123 (7)0.0056 (8)
C40.0377 (8)0.0455 (8)0.0456 (8)0.0066 (6)0.0032 (6)0.0027 (6)
C80.0381 (8)0.0487 (9)0.0526 (9)0.0003 (7)0.0030 (7)0.0016 (7)
C90.0336 (7)0.0427 (8)0.0526 (9)0.0050 (6)0.0052 (6)0.0047 (6)
C100.0365 (8)0.0492 (9)0.0494 (8)0.0046 (6)0.0088 (6)0.0022 (7)
C110.0348 (8)0.0446 (8)0.0537 (9)0.0051 (6)0.0042 (7)0.0006 (7)
C130.0357 (8)0.0593 (10)0.0755 (12)0.0019 (7)0.0031 (8)0.0002 (9)
C150.0323 (7)0.0453 (8)0.0600 (10)0.0044 (6)0.0091 (7)0.0078 (7)
C160.0452 (9)0.0579 (10)0.0499 (9)0.0024 (7)0.0124 (7)0.0068 (8)
C170.0439 (9)0.0525 (9)0.0490 (8)0.0015 (7)0.0034 (7)0.0028 (7)
Geometric parameters (Å, º) top
S5—C41.7303 (17)C8—C91.457 (2)
S5—C11.725 (2)C9—C101.406 (2)
O12—C111.372 (2)C9—C171.392 (2)
O12—C131.424 (2)C10—C111.3648 (19)
O14—C131.424 (3)C11—C151.385 (2)
O14—C151.3715 (18)C15—C161.362 (2)
N3—C41.3071 (19)C16—C171.396 (3)
N3—C21.394 (2)C1—H10.9300
N6—N71.3714 (18)C8—H80.9300
N6—C41.356 (2)C10—H100.9299
N7—C81.276 (2)C13—H13A0.9701
N6—H60.8600C13—H13B0.9700
C0—C21.491 (3)C16—H160.9299
C1—C21.345 (3)C17—H170.9299
C1—S5—C488.01 (8)C10—C11—C15122.50 (15)
C11—O12—C13105.99 (13)O12—C13—O14108.12 (14)
C13—O14—C15105.68 (14)O14—C15—C16128.29 (16)
C2—N3—C4109.33 (14)O14—C15—C11109.92 (14)
N7—N6—C4116.11 (13)C11—C15—C16121.79 (14)
N6—N7—C8116.83 (14)C15—C16—C17116.59 (16)
C4—N6—H6121.93C9—C17—C16122.33 (16)
N7—N6—H6121.96S5—C1—H1124.38
S5—C1—C2111.24 (14)C2—C1—H1124.38
N3—C2—C1115.26 (16)N7—C8—H8118.84
N3—C2—C0119.51 (16)C9—C8—H8118.86
C0—C2—C1125.23 (17)C9—C10—H10121.46
S5—C4—N6119.82 (11)C11—C10—H10121.49
S5—C4—N3116.15 (12)O12—C13—H13A110.08
N3—C4—N6124.03 (14)O12—C13—H13B110.08
N7—C8—C9122.30 (15)O14—C13—H13A110.08
C8—C9—C17118.44 (15)O14—C13—H13B110.08
C10—C9—C17119.73 (13)H13A—C13—H13B108.41
C8—C9—C10121.82 (14)C15—C16—H16121.70
C9—C10—C11117.05 (14)C17—C16—H16121.70
O12—C11—C15109.35 (12)C9—C17—H17118.84
O12—C11—C10128.15 (15)C16—C17—H17118.83
C1—S5—C4—N6178.59 (14)S5—C1—C2—N30.5 (2)
C4—S5—C1—C20.19 (15)S5—C1—C2—C0178.26 (16)
C1—S5—C4—N30.96 (14)N7—C8—C9—C103.0 (2)
C11—O12—C13—O149.60 (18)N7—C8—C9—C17177.43 (16)
C13—O12—C11—C10174.33 (16)C10—C9—C17—C160.5 (2)
C13—O12—C11—C156.17 (17)C8—C9—C17—C16179.90 (18)
C15—O14—C13—O129.36 (17)C8—C9—C10—C11179.83 (14)
C13—O14—C15—C16175.03 (17)C17—C9—C10—C110.6 (2)
C13—O14—C15—C115.61 (17)C9—C10—C11—C150.6 (2)
C4—N3—C2—C11.2 (2)C9—C10—C11—O12178.85 (15)
C2—N3—C4—S51.39 (17)O12—C11—C15—C16179.05 (15)
C2—N3—C4—N6178.13 (15)O12—C11—C15—O140.36 (17)
C4—N3—C2—C0177.65 (16)C10—C11—C15—C160.5 (2)
N7—N6—C4—S51.98 (19)C10—C11—C15—O14179.88 (18)
N7—N6—C4—N3177.53 (14)C11—C15—C16—C170.3 (2)
C4—N6—N7—C8179.46 (15)O14—C15—C16—C17179.63 (15)
N6—N7—C8—C9179.9 (2)C15—C16—C17—C90.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N3i0.862.193.048 (2)172
Symmetry code: (i) x+2, y, z+1.
(IIb) top
Crystal data top
C12H13N3O2SF(000) = 552
Mr = 263.32Dx = 1.344 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 14.738 (1) Åθ = 35–45°
b = 5.750 (1) ŵ = 2.21 mm1
c = 15.898 (1) ÅT = 293 K
β = 105.02 (1)°Prism, yellow
V = 1301.2 (3) Å30.6 × 0.4 × 0.21 mm
Z = 4
Data collection top
Enraf Nonius CAD 4
diffractometer
2333 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 71.9°, θmin = 3.1°
θ/2θ scansh = 1817
Absorption correction: analytical
North et al. (1968)
k = 75
Tmin = 0.336, Tmax = 0.660l = 019
3758 measured reflections3 standard reflections every 60 min
2540 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters not refined
wR(F2) = 0.135Calculated w = 1/[σ2(Fo2) + (0.0703P)2 + 0.3517P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2540 reflectionsΔρmax = 0.30 e Å3
167 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0035 (5)
Crystal data top
C12H13N3O2SV = 1301.2 (3) Å3
Mr = 263.32Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.738 (1) ŵ = 2.21 mm1
b = 5.750 (1) ÅT = 293 K
c = 15.898 (1) Å0.6 × 0.4 × 0.21 mm
β = 105.02 (1)°
Data collection top
Enraf Nonius CAD 4
diffractometer
2333 reflections with I > 2σ(I)
Absorption correction: analytical
North et al. (1968)
Rint = 0.030
Tmin = 0.336, Tmax = 0.6603 standard reflections every 60 min
3758 measured reflections intensity decay: 1%
2540 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.135H-atom parameters not refined
S = 1.11Δρmax = 0.30 e Å3
2540 reflectionsΔρmin = 0.25 e Å3
167 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C00.19889 (19)0.2577 (7)0.0887 (2)0.1012 (11)
H0A0.22730.14400.04570.152*
H0B0.24690.35370.10150.152*
H0C0.16480.18030.14080.152*
C10.08248 (17)0.5943 (5)0.11810 (16)0.0692 (6)
H1A0.12050.63800.15710.074 (7)*
H1B0.07180.73170.08660.092 (9)*
C20.13261 (16)0.4067 (5)0.05427 (16)0.0672 (6)
H20.16730.48090.00000.085 (9)*
N30.05820 (12)0.2663 (3)0.03746 (12)0.0596 (5)
H30.06870.15330.00030.050*
C40.02269 (13)0.2579 (4)0.09979 (12)0.0495 (4)
S50.02832 (4)0.47341 (10)0.17933 (3)0.0597 (2)
N60.08724 (11)0.1051 (3)0.10000 (11)0.0548 (4)
N70.16639 (11)0.1413 (3)0.16895 (10)0.0514 (4)
C80.22709 (13)0.0193 (3)0.17883 (13)0.0506 (4)
H80.21580.15430.13890.050*
C90.31637 (13)0.0098 (3)0.24518 (12)0.0458 (4)
C100.33979 (13)0.1817 (3)0.30242 (12)0.0475 (4)
H100.29840.30490.30050.057*
C110.42579 (13)0.1774 (3)0.36064 (11)0.0469 (4)
O120.46423 (10)0.3403 (3)0.42296 (10)0.0628 (4)
C130.55967 (15)0.2700 (4)0.45742 (14)0.0612 (5)
H13A0.60130.37490.43760.073*
H13B0.57580.27410.52060.073*
O140.56982 (11)0.0399 (3)0.42813 (10)0.0639 (4)
C150.48911 (13)0.0032 (3)0.36400 (12)0.0485 (4)
C160.46836 (14)0.1908 (4)0.31048 (12)0.0522 (5)
H160.51070.31230.31340.063*
C170.38013 (13)0.1920 (3)0.25082 (12)0.0501 (4)
H170.36330.31850.21360.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C00.0680 (15)0.128 (3)0.112 (2)0.0048 (17)0.0307 (16)0.036 (2)
C10.0724 (13)0.0618 (13)0.0698 (14)0.0151 (11)0.0118 (11)0.0135 (12)
C20.0606 (12)0.0721 (14)0.0626 (12)0.0180 (11)0.0046 (10)0.0121 (11)
N30.0522 (9)0.0648 (10)0.0561 (9)0.0057 (8)0.0039 (7)0.0207 (8)
C40.0517 (9)0.0518 (10)0.0446 (9)0.0034 (8)0.0121 (8)0.0083 (8)
S50.0721 (4)0.0556 (3)0.0467 (3)0.0055 (2)0.0065 (2)0.0135 (2)
N60.0482 (8)0.0623 (10)0.0503 (9)0.0018 (7)0.0062 (7)0.0169 (8)
N70.0485 (8)0.0574 (9)0.0459 (8)0.0021 (7)0.0078 (6)0.0106 (7)
C80.0520 (10)0.0534 (10)0.0478 (10)0.0019 (8)0.0152 (8)0.0099 (8)
C90.0503 (9)0.0478 (9)0.0426 (9)0.0016 (7)0.0177 (7)0.0013 (7)
C100.0499 (9)0.0455 (9)0.0488 (9)0.0019 (7)0.0157 (7)0.0025 (8)
C110.0543 (9)0.0465 (9)0.0414 (9)0.0034 (8)0.0151 (7)0.0007 (7)
O120.0641 (8)0.0574 (9)0.0595 (8)0.0015 (7)0.0025 (7)0.0105 (7)
C130.0597 (11)0.0718 (14)0.0477 (10)0.0055 (10)0.0058 (9)0.0014 (10)
O140.0588 (8)0.0718 (10)0.0537 (8)0.0068 (7)0.0014 (6)0.0044 (7)
C150.0517 (10)0.0545 (10)0.0399 (9)0.0029 (8)0.0132 (7)0.0094 (8)
C160.0610 (11)0.0530 (11)0.0461 (9)0.0121 (8)0.0202 (8)0.0074 (8)
C170.0613 (11)0.0479 (10)0.0447 (9)0.0027 (8)0.0203 (8)0.0020 (8)
Geometric parameters (Å, º) top
C0—C21.504 (4)C8—H80.9890
C0—H0A0.9600C9—C171.395 (3)
C0—H0B0.9600C9—C101.413 (3)
C0—H0C0.9600C10—C111.362 (3)
C1—C21.533 (3)C10—H100.9300
C1—S51.809 (2)C11—O121.375 (2)
C1—H1A0.9700C11—C151.388 (3)
C1—H1B0.9700O12—C131.429 (3)
C2—N31.441 (3)C13—O141.424 (3)
C2—H20.9800C13—H13A0.9700
N3—C41.339 (3)C13—H13B0.9700
N3—H30.8707O14—C151.374 (2)
C4—N61.294 (3)C15—C161.359 (3)
C4—S51.7569 (19)C16—C171.397 (3)
N6—N71.394 (2)C16—H160.9300
N7—C81.267 (3)C17—H170.9300
C8—C91.459 (3)
C2—C0—H0A109.5N7—C8—H8119.8
C2—C0—H0B109.5C9—C8—H8117.6
H0A—C0—H0B109.5C17—C9—C10119.73 (18)
C2—C0—H0C109.5C17—C9—C8118.99 (17)
H0A—C0—H0C109.5C10—C9—C8121.28 (17)
H0B—C0—H0C109.5C11—C10—C9116.90 (17)
C2—C1—S5107.37 (16)C11—C10—H10121.5
C2—C1—H1A110.2C9—C10—H10121.5
S5—C1—H1A110.2C10—C11—O12127.91 (17)
C2—C1—H1B110.2C10—C11—C15122.53 (18)
S5—C1—H1B110.2O12—C11—C15109.56 (16)
H1A—C1—H1B108.5C11—O12—C13105.32 (16)
N3—C2—C0110.2 (2)O14—C13—O12108.30 (17)
N3—C2—C1104.93 (18)O14—C13—H13A110.0
C0—C2—C1114.0 (2)O12—C13—H13A110.0
N3—C2—H2109.2O14—C13—H13B110.0
C0—C2—H2109.2O12—C13—H13B110.0
C1—C2—H2109.2H13A—C13—H13B108.4
C4—N3—C2117.19 (17)C15—O14—C13105.43 (15)
C4—N3—H3116.7C16—C15—O14128.22 (18)
C2—N3—H3122.5C16—C15—C11122.00 (18)
N6—C4—N3122.62 (17)O14—C15—C11109.77 (17)
N6—C4—S5125.39 (14)C15—C16—C17116.59 (18)
N3—C4—S5111.99 (15)C15—C16—H16121.7
C4—S5—C190.92 (10)C17—C16—H16121.7
C4—N6—N7111.45 (16)C9—C17—C16122.22 (18)
C8—N7—N6114.15 (16)C9—C17—H17118.9
N7—C8—C9122.54 (17)C16—C17—H17118.9
S5—C1—C2—N327.7 (3)C9—C10—C11—O12179.43 (17)
S5—C1—C2—C092.9 (2)C9—C10—C11—C150.8 (3)
C0—C2—N3—C496.2 (3)C10—C11—O12—C13171.82 (19)
C1—C2—N3—C426.9 (3)C15—C11—O12—C137.9 (2)
C2—N3—C4—N6166.1 (2)C11—O12—C13—O1412.6 (2)
C2—N3—C4—S513.1 (3)O12—C13—O14—C1512.4 (2)
N6—C4—S5—C1176.1 (2)C13—O14—C15—C16173.63 (19)
N3—C4—S5—C14.62 (18)C13—O14—C15—C117.5 (2)
C2—C1—S5—C419.02 (19)C10—C11—C15—C161.6 (3)
N3—C4—N6—N7176.72 (19)O12—C11—C15—C16178.65 (17)
S5—C4—N6—N74.1 (3)C10—C11—C15—O14179.45 (17)
C4—N6—N7—C8171.73 (18)O12—C11—C15—O140.3 (2)
N6—N7—C8—C9177.58 (17)O14—C15—C16—C17179.53 (18)
N7—C8—C9—C17178.90 (18)C11—C15—C16—C170.8 (3)
N7—C8—C9—C100.0 (3)C10—C9—C17—C161.4 (3)
C17—C9—C10—C110.6 (3)C8—C9—C17—C16177.57 (17)
C8—C9—C10—C11178.33 (17)C15—C16—C17—C90.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N6i0.872.1393.005 (2)174.6
Symmetry code: (i) x, y, z.

Experimental details

(I)(IIb)
Crystal data
Chemical formulaC12H11N3O2SC12H13N3O2S
Mr261.31263.32
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)6.219 (1), 12.163 (2), 15.855 (1)14.738 (1), 5.750 (1), 15.898 (1)
β (°) 91.13 (1) 105.02 (1)
V3)1199.1 (3)1301.2 (3)
Z44
Radiation typeCu KαCu Kα
µ (mm1)2.402.21
Crystal size (mm)0.6 × 0.4 × 0.090.6 × 0.4 × 0.21
Data collection
DiffractometerEnraf Nonius CAD 4
diffractometer
Enraf Nonius CAD 4
diffractometer
Absorption correctionAnalytical
North et al. (1968)
Analytical
North et al. (1968)
Tmin, Tmax0.393, 0.8050.336, 0.660
No. of measured, independent and
observed [I > 2σ(I)] reflections
3882, 2356, 2066 3758, 2540, 2333
Rint0.0150.030
(sin θ/λ)max1)0.6160.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.09 0.042, 0.135, 1.11
No. of reflections23562540
No. of parameters164167
H-atom treatmentH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.23, 0.280.30, 0.25

Computer programs: SHELXS97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990).

Selected geometric parameters (Å, º) for (I) top
N3—C41.3071 (19)N7—C81.276 (2)
N3—C21.394 (2)C1—C21.345 (3)
N6—N71.3714 (18)C8—C91.457 (2)
N6—C41.356 (2)
C2—N3—C4109.33 (14)N3—C2—C1115.26 (16)
N7—N6—C4116.11 (13)N3—C4—N6124.03 (14)
N6—N7—C8116.83 (14)N7—C8—C9122.30 (15)
S5—C1—C2111.24 (14)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N3i0.862.1943.048 (2)172.0
Symmetry code: (i) x+2, y, z+1.
Selected geometric parameters (Å, º) for (IIb) top
C1—C21.533 (3)N6—N71.394 (2)
C2—N31.441 (3)N7—C81.267 (3)
N3—C41.339 (3)C8—C91.459 (3)
C4—N61.294 (3)
C2—C1—S5107.37 (16)C8—N7—N6114.15 (16)
C4—N3—C2117.19 (17)N7—C8—C9122.54 (17)
N6—C4—N3122.62 (17)
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N6i0.872.1393.005 (2)174.6
Symmetry code: (i) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds