Download citation
Download citation
link to html
The title compound, 3,5,7-tri­aza-1-azoniatri­cyclo­[3.3.1.13,7]­decane 2,4-di­nitro­phenolate monohydrate, C6H13N4+·C6H3N2O5-·H2O, the 1:1 hydrate adduct of hexa­methyl­enetetr­amine (HMT) and 2,4-di­nitro­phenol, undergoes a temperature phase transition. In the room-temperature phase, the adduct crystallizes in the monoclinic P21/m space group, whereas in the low-temperature phase, the adduct crystallizes in the triclinic P\overline 1 space group. This phase transition is reversible, with the transition temperature at 273 K, and the phase transition is governed by hydrogen bonds and weak interactions. In both these temperature-dependent polymorphs, the crystal structure is alternately layered with sheets of hexa­methyl­enetetr­amine and sheets of di­nitro­phenol stacked along the c axis. The hexa­methyl­enetetr­amine and di­nitro­phenol moieties are linked by intermolecular hydrogen bonds. The water mol­ecule in the adduct plays an important role, forming O-H...O hydrogen bonds which, together with C-H...O hydrogen bonds, bridge the adducts into molecular ribbons. Extra hydrogen bonds and weak interactions exist for the low-temperature polymorph and these interconnect the molecular ribbons into a three-dimensional packing structure. Also in these two temperature-dependent polymorphs, di­nitro­phenol acts as a hydrogen-bond acceptor and HMT acts as a hydrogen-bond donor.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101016742/sk1495sup1.cif
Contains datablocks global, Iat300K, Iat143K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016742/sk1495Iat300Ksup2.hkl
Contains datablock Iat300K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016742/sk1495Iat143Ksup3.hkl
Contains datablock Iat143K

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270101016742/sk1495sup4.pdf
Supplementary material

CCDC references: 179279; 179280

Comment top

The N—H···O-type of hydrogen bond is a versatile synthon in crystal engineering (Fan et al., 1994; Desiraju, 1995). Phenols, in general, are strong acids and tend to form N—H···O hydrogen bonds with aromatic or tertiary amines. Therefore, a number of studies have been conducted into phenol–hexamethylenetetramine adducts (with various ratios) to design and construct a variety of hydrogen-bonding systems. In general, in the adducts of hexamethylenetetramine (HMT) with simple phenols, HMT acts as either a mono-, bis- or tris-acceptor of hydrogen bonds (Jordan & Mak, 1970; Mak et al., 1977, 1978; Mahmoud & Wallwork, 1979; Coupar, Glidewell & Ferguson, 1997; Coupar, Ferguson et al., 1997).

We have now isolated the crystalline form of the hydrate, (I), of the 1:1 stoichiometric adduct of 2,4-dinitrophenol with HMT, and one water molecule is incorporated in the adduct during the crystallization.

The adduct undergoes a phase transition when the temperature is lowered. The room-temperature monoclinic P21/m phase transforms into a low-temperature triclinic P1 phase upon lowering the temperature below 273 K. The phase transition is reversible. We report here the crystal structures of these two temperature-dependent polymorphs, the monoclinic polymorph at 300 K and the triclinic polymorph at 143 K.

In these two temperature-dependent polymorphs, HMT, in an unusual manner, acts as a hydrogen-bond donor of the N—H···O hydrogen bonds observed in these structures.

At 300 K, the asymmetric unit contains one half of HMT, and the monoclinic unit-cell volume contains two adducts. One half of the HMT is related to the other by a centre of inversion passing through atoms N5, N3 and C10. At 143 K, the asymmetric unit contains the complete adduc and the triclinic unit-cell volume also contains two adducts. In both these two space groups, the geometry of dinitrophenol and HMT are as expected. The dinitrophenol transfers an H atom from the hydroxy group to the HMT and becomes negatively charged, with the transfered H atom being localized at the N3 atom of HMT, making it postively charged. A similar effect was also observed in the adduct of HMT with azelaic acid (Hostettler et al., 1999).

In the present adduct, the transfer of the H atom from the hydroxy group was followed by an increase in the delocalization of the π-electron resulting in slight distortions in the N—O, N—C and O—C bond distances of the functional groups within the dinitrophenol moiety, whereas due to the localization of the positive charge at the N3 atom, the C—N3 bond distances are as expected for C—N single bond in an ammonium ion (Allen et al., 1987). All the other bond lengths and angles in the adduct (I) show normal values and are listed in Table 1 for the monoclinic and Table 3 for the triclinic polymorphs.

In both these polymorphs, the dinitrophenol is essentially planar, with the O3 atom deviating by a maximum of 0.0 Å at 300 K and 0.080 (3) Å at 143 K. All the six-membered C—N—C—N—C—N rings of HMT adopt a chair conformation with almost the same puckering parameters (Cremer & Pople, 1975); see _geom_special_details of the archived CIF. These facts rule out that the temperature phase transformation is due to conformational changes since there are not much differences in the structures of these two temperature-dependent polymorphs. However, there are changes in the hydrogen-bond motifs of these two polymorphs.

In both these polymorphs, there are conventional hydrogen bonds (Table 2 and Table 4) and C9—H9B···O4 and N3—H13N···O4 weak interactions [C9···O4i and C9—H9B···O4i = 3.136 (2) Å and 117 (1)° at 300 K, and 3.114 (3) Å and 117 (2)° at 143 K; N3···O4ii and N3—H13N···O4ii = 2.873 (2) Å and 122 (3)° at 300 K, and 2.843 (3) Å and 125 (3)° at 143 K; symmetry codes: (i) 1 - x, 1/2 + y, 1 - z; (ii) 1 - x, 1/2 + y, 1 - z]. Figs. 2 and 3 show the packing diagrams with hydrogen bonds and weak interactions. The crystal structure of the adduct in both the polymorphs is built from molecular sheets of HMT and molecular sheets dinitrophenol alternatingly stacked along the c axis. HMT unusually takes a role as a donor of these intermolecular N—H···O hydrogen bonds, i.e. the N3 atom acts as donor to the O4 and O5 atoms in the dinitrophenol. The N···O distances within the N—H···O hydrogen bonds in these two polymorphs of adduct (I) are comparable with those observed for the O—H···N hydrogen bonds in other HMT—phenol adducts (Mak et al., 1978; Mahmoud & Wallock, 1979; Coupar, Glidewell & Ferguson, 1997; Coupar, Ferguson et al., 1997).

The water molecule in the adduct plays an important role forming O—H···O hydrogen bonds, which together with an intermolecular C—H···O hydrogen bond, i.e. C5—H5A···O3, bridge the dinitrophenols and links the adducts into molecular ribbons parallel to the b axis. These molecular ribbons pack on top of one another.

At low temperature, two extra intramolecular weak interactions [C9A—H9AB···O4 123 (2)° and C6—H6A···O1 101 (2)°] and two extra intermolecular C—H···O hydrogen bonds (Table 4) were observed; the extra weak interactions and hydrogen bonds link the four C atoms of the HMT and the two O atoms of the dinitrophenol, i.e. they link the C9 and C9A atoms and the O4 atom, and they link the C7 and C9 atoms and the O1 atom. These extra intermolecular C—H···O hydrogen bonds interconnects the molecular ribbons into a three-dimentional molecular packing, and stabilize the triclinic polymorphic structure.

Since the only difference in these two polymorphs are the packing structures which are governed by the different hydrogen-bonding and weak interaction patterns, we can attribute this reversible temperature phase transition, which we named as Fun-Anwar-Suchada-Transition (FAST), as due to the presence or absence of these extra hydrogen bonding and weak interactions.

In conclusion, the FAST observed in the 1:1 HMT–2,4-dinitrophenol hydrate adduct is a new type of reversible temperature phase transistion governed by hydrogen bonding and weak interactions. We have also observed similar FAST phenomena in other complexes which are presently under investigation in our research laboratory.

Related literature top

For related literature, see: Allen et al. (1987); Coupar, Ferguson, Glidewell & Meehan (1997); Coupar, Glidewell & Ferguson (1997); Cremer & Pople (1975); Desiraju (1995); Fan et al. (1994); Hostettler et al. (1999); Jordan & Mak (1970); Mahmoud & Wallwork (1979); Mak et al. (1977, 1978).

Experimental top

HMT (1.4 g, 10 mmol) and 2,4-dinitrophenol (1.8 g, 10 mmol) were mixed and dissolved in acetone (30 ml) together with a few drops of water. The resulting mixture was heated until a clear solution was obtained. The solution was then filtered and the filtrate was left to evaporate slowly in air. Yellow single crystals suitable for X-ray diffraction studies were obtained after a few days.

Refinement top

For the two polymorphs, all the H atoms were located from the difference map and refined isotropically [C—H = 0.87 (3)–1.03 (2) Å].

Computing details top

For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of the title adduct showing 50% probability displacement ellipsoids with the atom-numbering scheme (a) for the monoclinic polymorph and (b) for the triclinic polymorph.
[Figure 2] Fig. 2. Packing diagram of the monoclinic polymorph.
[Figure 3] Fig. 3. Packing diagram of the triclinic polymorph.
(Iat300K) 3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane 2,4-dinitrophenolate monohydrate top
Crystal data top
C6H13N4+·C6H3N2O5·H2OF(000) = 360
Mr = 342.32Dx = 1.524 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 7.8610 (5) ÅCell parameters from 3560 reflections
b = 6.5980 (4) Åθ = 1.4–29.6°
c = 14.4339 (9) ŵ = 0.12 mm1
β = 94.915 (1)°T = 300 K
V = 745.89 (8) Å3Block, yellow
Z = 20.42 × 0.24 × 0.20 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1900 independent reflections
Radiation source: fine-focus sealed tube1288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 8.33 pixels mm-1θmax = 28.0°, θmin = 2.6°
ω scansh = 109
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 87
Tmin = 0.950, Tmax = 0.976l = 1918
5088 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059All H-atom parameters refined
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0622P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
1900 reflectionsΔρmax = 0.33 e Å3
178 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.145 (17)
Crystal data top
C6H13N4+·C6H3N2O5·H2OV = 745.89 (8) Å3
Mr = 342.32Z = 2
Monoclinic, P21/mMo Kα radiation
a = 7.8610 (5) ŵ = 0.12 mm1
b = 6.5980 (4) ÅT = 300 K
c = 14.4339 (9) Å0.42 × 0.24 × 0.20 mm
β = 94.915 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1900 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1288 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.976Rint = 0.069
5088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.144All H-atom parameters refined
S = 0.95Δρmax = 0.33 e Å3
1900 reflectionsΔρmin = 0.31 e Å3
178 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

# loop_ # _publ_manuscript_incl_extra_item # # '_geom_extra_tableA_col_1' # '_geom_extra_tableA_col_2' # '_geom_extra_table_head_A' # '_geom_table_footnote_A' # # _geom_extra_table_head_A #; # Average C—N bond distances (Å) along with the puckering parameters (Å, °) # of the six-membered C—N—C—N—C—N rings of the HMT #; # # loop_ # _geom_extra_tableA_col_1 # _geom_extra_tableA_col_2 # 'Scheme 2 here' ? # ? ? # 'T = 300K' 'T = 143K' # ? ? # 'Average C—N = 1.474' 'Average C—N = 1.480 (3)' # 'Q2 = 0.014 (2)' 'Q2 = 0.009 (3)' # 'Q3 = 0.592 (2)' 'Q3 = 0.596 (3)' # 'QT = 0.593 (2)' 'QT = 0.596 (3)' # 'θ = 0.4 (2)' 'θ = 0.0 (3)' # ? ? # 'Average C—N = 1.474 (3)' 'Average C—N = 1.480 (3)' # 'Q2 = 0.014 (2)' 'Q2 = 0.017 (3)' # 'Q3 = 0.592 (2)' 'Q3 = 0.600 (3)' # 'QT = 0.593 (2)' 'QT = 0.600 (3)' # 'θ = 0.4 (2)' 'θ = 1.8 (3)' # ? ? # 'Average C—N = 1.471 (3)' 'Average C—N = 1.479 (3)' # 'Q2 = 0.008 (2)' 'Q2 = 0.007 (2)' # 'Q3 = 0.598 (2)' 'Q3 = 0.597 (2)' # 'QT = 0.598 (2)' 'QT = 0.597 (3)' # 'θ = 1.6 (2)' 'θ = 2.1 (3)' # ? ? # 'Average C—N = 1.469 (3)' 'Average C—N = 1.473 (3)' # 'Q2 = 0.004 (2)' 'Q2 = 0.009 (3)' # 'Q3 = 0.584 (2)' 'Q3 = 0.578 (3)' # 'QT = 0.585 (2)' 'QT = 0.578 (3)' # 'θ = 1.1 (2)' 'θ = 0.0 (3)' # ? ? # # _geom_table_footnote_A #; # Note: All the rings adopt a chair conformation. #; #

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3354 (3)0.25000.24704 (13)0.0402 (5)
N20.0558 (2)0.25000.53083 (13)0.0432 (6)
N30.7478 (2)0.75000.20852 (12)0.0325 (5)
H1N30.727 (4)0.75000.265 (2)0.047*
N40.88545 (17)0.5660 (2)0.09159 (9)0.0337 (4)
N50.6216 (2)0.75000.04920 (13)0.0351 (5)
O10.4692 (3)0.25000.20695 (11)0.0526 (6)
O20.1928 (3)0.25000.20416 (12)0.0621 (6)
O30.0775 (2)0.25000.48100 (14)0.0754 (8)
O40.0538 (2)0.25000.61478 (13)0.0811 (9)
O50.3979 (2)0.25000.63206 (10)0.0465 (5)
O1W0.2668 (3)0.75000.28182 (14)0.0585 (6)
H1W10.379 (4)0.75000.313 (2)0.060 (9)*
H2W10.208 (6)0.75000.318 (3)0.109 (18)*
C10.3505 (3)0.25000.34722 (14)0.0315 (5)
C20.2036 (3)0.25000.39233 (15)0.0341 (6)
H2A0.100 (3)0.25000.3631 (18)0.040 (7)*
C30.2154 (3)0.25000.48886 (14)0.0312 (5)
C40.3758 (3)0.25000.54426 (14)0.0317 (5)
C50.5219 (3)0.25000.49069 (16)0.0401 (6)
H5A0.623 (4)0.25000.522 (2)0.049 (8)*
C60.5104 (3)0.25000.39662 (15)0.0356 (6)
H6A0.607 (3)0.25000.3653 (18)0.045 (7)*
C70.5830 (3)0.75000.14533 (17)0.0393 (6)
H7A0.516 (2)0.628 (3)0.1585 (13)0.045 (5)*
C80.7247 (2)0.5697 (3)0.03182 (12)0.0390 (4)
H8A0.655 (2)0.442 (3)0.0453 (13)0.047 (5)*
C90.8499 (2)0.5642 (3)0.18767 (11)0.0353 (4)
H9B0.957 (2)0.563 (3)0.2306 (13)0.045*
C100.9820 (3)0.75000.07362 (16)0.0368 (6)
H11A1.009 (3)0.75000.0117 (19)0.044*
H8B0.754 (2)0.579 (3)0.0316 (15)0.048 (5)*
H9A0.784 (3)0.453 (3)0.2013 (14)0.053 (6)*
H11B1.088 (4)0.75000.1155 (19)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0491 (13)0.0472 (13)0.0248 (10)0.0000.0058 (9)0.000
N20.0238 (10)0.0765 (16)0.0296 (10)0.0000.0044 (8)0.000
N30.0361 (11)0.0453 (12)0.0165 (9)0.0000.0049 (8)0.000
N40.0412 (8)0.0327 (8)0.0269 (7)0.0056 (6)0.0007 (6)0.0029 (5)
N50.0344 (11)0.0420 (12)0.0276 (10)0.0000.0053 (8)0.000
O10.0588 (12)0.0720 (14)0.0295 (9)0.0000.0190 (8)0.000
O20.0564 (13)0.1013 (18)0.0269 (9)0.0000.0061 (9)0.000
O30.0228 (9)0.156 (2)0.0465 (12)0.0000.0018 (8)0.000
O40.0330 (11)0.182 (3)0.0295 (10)0.0000.0110 (8)0.000
O50.0292 (9)0.0894 (15)0.0210 (8)0.0000.0022 (6)0.000
O1W0.0396 (12)0.0976 (18)0.0368 (11)0.0000.0054 (9)0.000
C10.0385 (13)0.0358 (13)0.0209 (10)0.0000.0059 (9)0.000
C20.0276 (12)0.0477 (15)0.0266 (11)0.0000.0009 (9)0.000
C30.0248 (11)0.0451 (14)0.0244 (11)0.0000.0063 (8)0.000
C40.0277 (11)0.0450 (14)0.0228 (10)0.0000.0043 (8)0.000
C50.0236 (11)0.0676 (18)0.0292 (12)0.0000.0023 (9)0.000
C60.0301 (12)0.0501 (15)0.0281 (11)0.0000.0110 (9)0.000
C70.0291 (12)0.0535 (17)0.0357 (13)0.0000.0045 (10)0.000
C80.0489 (11)0.0368 (10)0.0301 (9)0.0013 (8)0.0043 (7)0.0063 (7)
C90.0438 (10)0.0329 (9)0.0289 (9)0.0001 (7)0.0010 (7)0.0064 (7)
C100.0341 (13)0.0516 (16)0.0252 (11)0.0000.0064 (10)0.000
Geometric parameters (Å, º) top
N1—O21.234 (3)O1W—H2W10.73 (5)
N1—O11.243 (3)C1—C21.374 (3)
N1—C11.441 (3)C1—C61.391 (3)
N2—O41.213 (3)C2—C31.388 (3)
N2—O31.219 (3)C2—H2A0.88 (3)
N2—C31.440 (3)C3—C41.434 (3)
N3—C9i1.510 (2)C4—C51.438 (3)
N3—C91.510 (2)C5—C61.353 (3)
N3—C71.519 (3)C5—H5A0.87 (3)
N3—H1N30.85 (3)C6—H6A0.91 (3)
N4—C91.438 (2)C7—H7A0.989 (19)
N4—C101.4666 (19)C8—H8A1.029 (19)
N4—C81.468 (2)C8—H8B0.97 (2)
N5—C71.446 (3)C9—H9B1.00 (2)
N5—C8i1.473 (2)C9—H9A0.93 (2)
N5—C81.473 (2)C10—N4i1.4666 (19)
O5—C41.264 (3)C10—H11A0.94 (3)
O1W—H1W10.96 (3)C10—H11B0.99 (3)
O2—N1—O1122.4 (2)O5—C4—C5119.4 (2)
O2—N1—C1119.8 (2)C3—C4—C5113.87 (19)
O1—N1—C1117.9 (2)C6—C5—C4123.5 (2)
O4—N2—O3120.4 (2)C6—C5—H5A119.5 (18)
O4—N2—C3120.4 (2)C4—C5—H5A117.1 (18)
O3—N2—C3119.20 (19)C5—C6—C1119.6 (2)
C9i—N3—C9108.61 (18)C5—C6—H6A120.6 (17)
C9i—N3—C7108.71 (11)C1—C6—H6A119.8 (17)
C9—N3—C7108.71 (11)N5—C7—N3109.74 (18)
C9i—N3—H1N3110.0 (10)N5—C7—H7A110.1 (11)
C9—N3—H1N3110.0 (10)N3—C7—H7A109.0 (11)
C7—N3—H1N3111 (2)N4—C8—N5111.82 (13)
C9—N4—C10108.88 (14)N4—C8—H8A108.6 (11)
C9—N4—C8109.75 (14)N5—C8—H8A108.6 (10)
C10—N4—C8108.35 (15)N4—C8—H8B106.9 (12)
C7—N5—C8i109.10 (12)N5—C8—H8B106.9 (11)
C7—N5—C8109.10 (12)H8A—C8—H8B114.0 (15)
C8i—N5—C8107.76 (19)N4—C9—N3109.65 (13)
H1W1—O1W—H2W1106 (4)N4—C9—H9B112.0 (10)
C2—C1—C6121.11 (19)N3—C9—H9B108.3 (11)
C2—C1—N1118.4 (2)N4—C9—H9A111.7 (12)
C6—C1—N1120.51 (19)N3—C9—H9A106.4 (12)
C1—C2—C3119.3 (2)H9B—C9—H9A108.7 (16)
C1—C2—H2A123.4 (16)N4—C10—N4i111.77 (18)
C3—C2—H2A117.4 (16)N4—C10—H11A109.4 (8)
C2—C3—C4122.66 (19)N4i—C10—H11A109.4 (8)
C2—C3—N2115.9 (2)N4—C10—H11B108.3 (7)
C4—C3—N2121.47 (18)N4i—C10—H11B108.3 (7)
O5—C4—C3126.68 (19)H11A—C10—H11B110 (2)
O2—N1—C1—C20.0C4—C5—C6—C10.0
O1—N1—C1—C2180.0C2—C1—C6—C50.0
O2—N1—C1—C6180.0N1—C1—C6—C5180.0
O1—N1—C1—C60.0C8i—N5—C7—N358.75 (12)
C6—C1—C2—C30.0C8—N5—C7—N358.75 (12)
N1—C1—C2—C3180.0C9i—N3—C7—N559.03 (10)
C1—C2—C3—C40.0C9—N3—C7—N559.03 (10)
C1—C2—C3—N2180.0C9—N4—C8—N559.88 (18)
O4—N2—C3—C2180.0C10—N4—C8—N558.89 (18)
O3—N2—C3—C20.0C7—N5—C8—N459.55 (19)
O4—N2—C3—C40.0C8i—N5—C8—N458.8 (2)
O3—N2—C3—C4180.0C10—N4—C9—N359.37 (19)
C2—C3—C4—O5180.0C8—N4—C9—N359.07 (18)
N2—C3—C4—O50.0C9i—N3—C9—N459.2 (2)
C2—C3—C4—C50.0C7—N3—C9—N458.92 (18)
N2—C3—C4—C5180.0C9—N4—C10—N4i60.7 (2)
O5—C4—C5—C6180.0C8—N4—C10—N4i58.6 (2)
C3—C4—C5—C60.0
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H13N···O5ii0.85 (3)1.85 (3)2.657 (2)159 (3)
O1W—H11W···O5ii0.96 (3)1.86 (3)2.816 (3)177 (3)
O1W—H21W···O4iii0.73 (5)2.35 (5)3.037 (3)159 (5)
C5—H5A···O3iv0.88 (3)2.48 (3)3.164 (3)135 (2)
Symmetry codes: (ii) x+1, y+1/2, z+1; (iii) x, y+1/2, z+1; (iv) x+1, y, z.
(Iat143K) Hexamethylenetetramine-2,4-dinitrophenol Hydrate top
Crystal data top
C6H13N4+·C6H3N2O5·H2OZ = 2
Mr = 342.32F(000) = 360
Triclinic, P1Dx = 1.574 Mg m3
a = 6.3877 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9017 (5) ÅCell parameters from 3560 reflections
c = 14.4042 (9) Åθ = 1.4–29.6°
α = 84.412 (1)°µ = 0.13 mm1
β = 86.367 (1)°T = 143 K
γ = 89.304 (1)°Block, yellow
V = 722.11 (8) Å30.42 × 0.24 × 0.20 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3227 independent reflections
Radiation source: fine-focus sealed tube2201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 8.33 pixels mm-1θmax = 28.0°, θmin = 2.6°
ω scansh = 86
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.948, Tmax = 0.975l = 1818
4841 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.087All H-atom parameters refined
wR(F2) = 0.206 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
3227 reflectionsΔρmax = 0.54 e Å3
281 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.099 (15)
Crystal data top
C6H13N4+·C6H3N2O5·H2Oγ = 89.304 (1)°
Mr = 342.32V = 722.11 (8) Å3
Triclinic, P1Z = 2
a = 6.3877 (4) ÅMo Kα radiation
b = 7.9017 (5) ŵ = 0.13 mm1
c = 14.4042 (9) ÅT = 143 K
α = 84.412 (1)°0.42 × 0.24 × 0.20 mm
β = 86.367 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3227 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2201 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.975Rint = 0.073
4841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0870 restraints
wR(F2) = 0.206All H-atom parameters refined
S = 0.96Δρmax = 0.54 e Å3
3227 reflectionsΔρmin = 0.54 e Å3
281 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

# loop_ # _publ_manuscript_incl_extra_item # # '_geom_extra_tableA_col_1' # '_geom_extra_tableA_col_2' # '_geom_extra_table_head_A' # '_geom_table_footnote_A' # # _geom_extra_table_head_A #; # Average C—N bond distances (Å) along with the puckering parameters (Å, °) # of the six-membered C—N—C—N—C—N rings of the HMT #; # # loop_ # _geom_extra_tableA_col_1 # _geom_extra_tableA_col_2 # 'Scheme 2 here' ? # ? ? # 'T = 300K' 'T = 143K' # ? ? # 'Average C—N = 1.474' 'Average C—N = 1.480 (3)' # 'Q2 = 0.014 (2)' 'Q2 = 0.009 (3)' # 'Q3 = 0.592 (2)' 'Q3 = 0.596 (3)' # 'QT = 0.593 (2)' 'QT = 0.596 (3)' # 'θ = 0.4 (2)' 'θ = 0.0 (3)' # ? ? # 'Average C—N = 1.474 (3)' 'Average C—N = 1.480 (3)' # 'Q2 = 0.014 (2)' 'Q2 = 0.017 (3)' # 'Q3 = 0.592 (2)' 'Q3 = 0.600 (3)' # 'QT = 0.593 (2)' 'QT = 0.600 (3)' # 'θ = 0.4 (2)' 'θ = 1.8 (3)' # ? ? # 'Average C—N = 1.471 (3)' 'Average C—N = 1.479 (3)' # 'Q2 = 0.008 (2)' 'Q2 = 0.007 (2)' # 'Q3 = 0.598 (2)' 'Q3 = 0.597 (2)' # 'QT = 0.598 (2)' 'QT = 0.597 (3)' # 'θ = 1.6 (2)' 'θ = 2.1 (3)' # ? ? # 'Average C—N = 1.469 (3)' 'Average C—N = 1.473 (3)' # 'Q2 = 0.004 (2)' 'Q2 = 0.009 (3)' # 'Q3 = 0.584 (2)' 'Q3 = 0.578 (3)' # 'QT = 0.585 (2)' 'QT = 0.578 (3)' # 'θ = 1.1 (2)' 'θ = 0.0 (3)' # ? ? # # _geom_table_footnote_A #; # Note: All the rings adopt a chair conformation. #; #

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2752 (3)0.6767 (3)0.25439 (15)0.0154 (5)
N20.2440 (3)0.9482 (3)0.03112 (14)0.0147 (5)
N30.2238 (3)0.7463 (3)0.29237 (15)0.0133 (5)
H1N30.219 (5)0.733 (4)0.239 (2)0.025*
N40.4515 (3)0.8628 (3)0.39867 (15)0.0140 (5)
N4A0.0720 (3)0.9031 (3)0.41653 (15)0.0145 (5)
N50.2253 (3)0.6220 (3)0.45392 (15)0.0145 (5)
O10.2775 (3)0.5438 (2)0.29495 (13)0.0222 (5)
O20.2812 (3)0.8190 (3)0.29746 (13)0.0233 (5)
O30.2575 (4)1.0828 (2)0.01981 (14)0.0272 (5)
O40.2269 (4)0.9473 (3)0.11750 (14)0.0288 (6)
O50.2311 (3)0.6037 (2)0.13357 (12)0.0178 (5)
O1W0.2302 (3)0.7318 (3)0.22082 (14)0.0242 (5)
H1W10.234 (5)0.622 (5)0.189 (2)0.028*
H2W10.240 (5)0.796 (5)0.175 (2)0.029*
C10.2629 (4)0.6592 (3)0.15335 (16)0.0127 (5)
C20.2576 (4)0.8054 (3)0.10769 (18)0.0140 (6)
H20.256 (5)0.919 (5)0.140 (2)0.035 (10)*
C30.2473 (4)0.7898 (3)0.01062 (16)0.0115 (5)
C40.2418 (4)0.6288 (3)0.04504 (17)0.0123 (5)
C50.2503 (4)0.4839 (3)0.00912 (18)0.0156 (6)
H5A0.247 (5)0.373 (4)0.020 (2)0.022 (8)*
C60.2602 (4)0.4979 (3)0.10400 (18)0.0136 (5)
H6A0.263 (4)0.404 (4)0.139 (2)0.021 (8)*
C70.2059 (4)0.5831 (3)0.35838 (18)0.0156 (6)
H7B0.069 (5)0.532 (4)0.348 (2)0.020 (8)*
H7A0.322 (5)0.505 (4)0.334 (2)0.024*
C80.4297 (4)0.7033 (3)0.45981 (19)0.0162 (6)
H8B0.554 (5)0.625 (4)0.451 (2)0.022*
H8A0.438 (5)0.727 (4)0.519 (2)0.028 (9)*
C8A0.0584 (4)0.7438 (3)0.47820 (18)0.0152 (6)
H8AB0.084 (5)0.689 (4)0.469 (2)0.022*
H8AA0.072 (5)0.767 (4)0.547 (2)0.027 (8)*
C90.4339 (4)0.8273 (3)0.30282 (18)0.0148 (6)
H9B0.448 (5)0.931 (4)0.259 (2)0.021 (8)*
H9A0.545 (5)0.749 (4)0.283 (2)0.028*
C9A0.0505 (4)0.8664 (3)0.32122 (18)0.0150 (5)
H9AB0.069 (5)0.961 (4)0.278 (2)0.024*
H9AA0.084 (5)0.801 (4)0.314 (2)0.019 (8)*
C100.2787 (4)0.9795 (3)0.42406 (18)0.0149 (6)
H10B0.290 (5)1.087 (4)0.385 (2)0.029*
H10A0.279 (4)1.002 (4)0.486 (2)0.019 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0139 (11)0.0187 (11)0.0140 (11)0.0035 (9)0.0013 (8)0.0036 (9)
N20.0242 (12)0.0093 (10)0.0112 (10)0.0044 (9)0.0043 (8)0.0023 (8)
N30.0184 (12)0.0132 (11)0.0091 (10)0.0033 (8)0.0036 (8)0.0040 (9)
N40.0137 (11)0.0131 (11)0.0158 (11)0.0003 (8)0.0034 (8)0.0029 (9)
N4A0.0141 (11)0.0139 (11)0.0162 (11)0.0024 (8)0.0015 (8)0.0045 (9)
N50.0174 (12)0.0117 (10)0.0145 (11)0.0015 (8)0.0016 (8)0.0020 (9)
O10.0297 (12)0.0217 (11)0.0172 (10)0.0072 (8)0.0035 (8)0.0115 (8)
O20.0368 (13)0.0184 (10)0.0144 (10)0.0032 (8)0.0017 (8)0.0000 (8)
O30.0528 (14)0.0087 (9)0.0203 (11)0.0015 (9)0.0044 (9)0.0005 (8)
O40.0617 (16)0.0135 (10)0.0122 (9)0.0042 (9)0.0043 (9)0.0053 (8)
O50.0334 (12)0.0110 (9)0.0092 (9)0.0013 (8)0.0029 (7)0.0020 (7)
O1W0.0399 (13)0.0158 (10)0.0165 (10)0.0018 (9)0.0022 (8)0.0001 (9)
C10.0142 (13)0.0163 (13)0.0083 (11)0.0035 (10)0.0020 (9)0.0043 (10)
C20.0152 (13)0.0122 (12)0.0148 (12)0.0024 (10)0.0013 (9)0.0021 (10)
C30.0158 (13)0.0074 (11)0.0121 (12)0.0024 (9)0.0043 (9)0.0033 (10)
C40.0137 (12)0.0099 (12)0.0144 (12)0.0022 (9)0.0030 (9)0.0050 (10)
C50.0235 (14)0.0083 (12)0.0155 (13)0.0022 (10)0.0022 (9)0.0026 (10)
C60.0156 (13)0.0120 (12)0.0142 (12)0.0026 (9)0.0017 (9)0.0055 (10)
C70.0207 (14)0.0090 (12)0.0184 (13)0.0021 (10)0.0052 (10)0.0050 (10)
C80.0170 (14)0.0162 (13)0.0155 (12)0.0003 (10)0.0051 (10)0.0007 (11)
C8A0.0165 (13)0.0146 (13)0.0145 (12)0.0020 (10)0.0005 (9)0.0025 (10)
C90.0135 (13)0.0156 (13)0.0150 (12)0.0008 (10)0.0010 (9)0.0018 (11)
C9A0.0128 (13)0.0166 (13)0.0165 (12)0.0045 (10)0.0035 (9)0.0059 (11)
C100.0180 (14)0.0136 (13)0.0141 (12)0.0017 (10)0.0029 (9)0.0057 (11)
Geometric parameters (Å, º) top
N1—O21.230 (3)C1—C21.383 (3)
N1—O11.250 (3)C1—C61.398 (4)
N1—C11.446 (3)C2—C31.389 (3)
N2—O31.232 (3)C2—H20.97 (4)
N2—O41.241 (3)C3—C41.436 (3)
N2—C31.440 (3)C4—C51.446 (3)
N3—C9A1.514 (3)C5—C61.358 (3)
N3—C91.516 (3)C5—H5A0.93 (3)
N3—C71.526 (3)C6—H6A0.94 (3)
N3—H1N30.79 (3)C7—H7B1.00 (3)
N4—C91.447 (3)C7—H7A1.03 (3)
N4—C81.469 (3)C8—H8B1.01 (3)
N4—C101.480 (3)C8—H8A0.90 (3)
N4A—C9A1.446 (3)C8A—H8AB1.03 (3)
N4A—C8A1.468 (3)C8A—H8AA1.03 (3)
N4A—C101.473 (3)C9—H9B0.99 (3)
N5—C71.452 (3)C9—H9A0.98 (3)
N5—C81.473 (3)C9A—H9AB0.93 (3)
N5—C8A1.476 (3)C9A—H9AA1.03 (3)
O5—C41.269 (3)C10—H10B0.97 (3)
O1W—H1W10.94 (3)C10—H10A0.92 (3)
O1W—H2W10.87 (4)
O2—N1—O1122.3 (2)C5—C6—H6A123.3 (19)
O2—N1—C1120.0 (2)C1—C6—H6A117.3 (19)
O1—N1—C1117.8 (2)N5—C7—N3109.75 (19)
O3—N2—O4121.1 (2)N5—C7—H7B113.7 (17)
O3—N2—C3119.2 (2)N3—C7—H7B106.0 (18)
O4—N2—C3119.7 (2)N5—C7—H7A114.4 (18)
C9A—N3—C9108.9 (2)N3—C7—H7A104.7 (17)
C9A—N3—C7108.2 (2)H7B—C7—H7A108 (3)
C9—N3—C7108.6 (2)N4—C8—N5112.3 (2)
C9A—N3—H1N3110 (3)N4—C8—H8B111.7 (17)
C9—N3—H1N3107 (2)N5—C8—H8B114.1 (18)
C7—N3—H1N3115 (2)N4—C8—H8A108 (2)
C9—N4—C8109.0 (2)N5—C8—H8A107 (2)
C9—N4—C10108.4 (2)H8B—C8—H8A102 (3)
C8—N4—C10108.8 (2)N4A—C8A—N5112.07 (19)
C9A—N4A—C8A109.2 (2)N4A—C8A—H8AB107.4 (18)
C9A—N4A—C10109.48 (19)N5—C8A—H8AB107.8 (17)
C8A—N4A—C10108.5 (2)N4A—C8A—H8AA110.5 (18)
C7—N5—C8108.7 (2)N5—C8A—H8AA107.6 (19)
C7—N5—C8A108.8 (2)H8AB—C8A—H8AA112 (2)
C8—N5—C8A108.3 (2)N4—C9—N3110.08 (19)
H1W1—O1W—H2W1102 (3)N4—C9—H9B112.0 (18)
C2—C1—C6121.4 (2)N3—C9—H9B108.9 (18)
C2—C1—N1118.3 (2)N4—C9—H9A111 (2)
C6—C1—N1120.3 (2)N3—C9—H9A108 (2)
C1—C2—C3118.7 (2)H9B—C9—H9A107 (2)
C1—C2—H2123 (2)N4A—C9A—N3109.7 (2)
C3—C2—H2118 (2)N4A—C9A—H9AB113 (2)
C2—C3—C4123.2 (2)N3—C9A—H9AB103.5 (19)
C2—C3—N2115.0 (2)N4A—C9A—H9AA112.2 (16)
C4—C3—N2121.8 (2)N3—C9A—H9AA103.7 (17)
O5—C4—C3127.1 (2)H9AB—C9A—H9AA114 (3)
O5—C4—C5119.0 (2)N4A—C10—N4111.5 (2)
C3—C4—C5113.9 (2)N4A—C10—H10B110 (2)
C6—C5—C4123.3 (2)N4—C10—H10B110.8 (19)
C6—C5—H5A115 (2)N4A—C10—H10A104.1 (18)
C4—C5—H5A122 (2)N4—C10—H10A111.9 (19)
C5—C6—C1119.4 (2)H10B—C10—H10A108 (3)
O2—N1—C1—C20.2 (3)C9A—N3—C7—N559.4 (3)
O1—N1—C1—C2179.2 (2)C9—N3—C7—N558.7 (3)
O2—N1—C1—C6178.7 (2)C9—N4—C8—N560.5 (3)
O1—N1—C1—C61.9 (3)C10—N4—C8—N557.6 (3)
C6—C1—C2—C30.6 (4)C7—N5—C8—N460.6 (3)
N1—C1—C2—C3179.5 (2)C8A—N5—C8—N457.5 (3)
C1—C2—C3—C40.1 (4)C9A—N4A—C8A—N560.4 (3)
C1—C2—C3—N2179.5 (2)C10—N4A—C8A—N558.9 (3)
O3—N2—C3—C22.5 (4)C7—N5—C8A—N4A59.9 (3)
O4—N2—C3—C2177.3 (2)C8—N5—C8A—N4A58.1 (3)
O3—N2—C3—C4177.1 (2)C8—N4—C9—N358.9 (3)
O4—N2—C3—C43.1 (4)C10—N4—C9—N359.5 (3)
C2—C3—C4—O5179.5 (2)C9A—N3—C9—N459.0 (3)
N2—C3—C4—O50.9 (4)C7—N3—C9—N458.5 (3)
C2—C3—C4—C50.7 (4)C8A—N4A—C9A—N359.8 (3)
N2—C3—C4—C5178.9 (2)C10—N4A—C9A—N358.8 (3)
O5—C4—C5—C6179.4 (2)C9—N3—C9A—N4A58.2 (3)
C3—C4—C5—C60.7 (4)C7—N3—C9A—N4A59.6 (3)
C4—C5—C6—C10.1 (4)C9A—N4A—C10—N460.7 (3)
C2—C1—C6—C50.6 (4)C8A—N4A—C10—N458.4 (3)
N1—C1—C6—C5179.5 (2)C9—N4—C10—N4A60.7 (3)
C8—N5—C7—N359.0 (3)C8—N4—C10—N4A57.8 (3)
C8A—N5—C7—N358.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H13N···O50.79 (3)1.91 (3)2.644 (3)155 (3)
O1W—H11W···O5i0.94 (4)1.88 (4)2.821 (3)176 (3)
O1W—H21W···O4ii0.87 (3)2.27 (4)3.064 (3)152 (3)
C5—H5A···O3iii0.93 (3)2.42 (3)3.188 (3)140 (2)
C7—H7B···O1i0.99 (3)2.49 (3)3.462 (3)168 (2)
C9—H9A···O1iv0.98 (3)2.56 (3)3.452 (3)151 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x, y1, z; (iv) x+1, y+1, z.

Experimental details

(Iat300K)(Iat143K)
Crystal data
Chemical formulaC6H13N4+·C6H3N2O5·H2OC6H13N4+·C6H3N2O5·H2O
Mr342.32342.32
Crystal system, space groupMonoclinic, P21/mTriclinic, P1
Temperature (K)300143
a, b, c (Å)7.8610 (5), 6.5980 (4), 14.4339 (9)6.3877 (4), 7.9017 (5), 14.4042 (9)
α, β, γ (°)90, 94.915 (1), 9084.412 (1), 86.367 (1), 89.304 (1)
V3)745.89 (8)722.11 (8)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.120.13
Crystal size (mm)0.42 × 0.24 × 0.200.42 × 0.24 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.9760.948, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
5088, 1900, 1288 4841, 3227, 2201
Rint0.0690.073
(sin θ/λ)max1)0.6610.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.144, 0.95 0.087, 0.206, 0.96
No. of reflections19003227
No. of parameters178281
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.310.54, 0.54

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) for (Iat300K) top
N1—O21.234 (3)N3—C71.519 (3)
N1—O11.243 (3)N4—C91.438 (2)
N1—C11.441 (3)N4—C101.4666 (19)
N2—O41.213 (3)N4—C81.468 (2)
N2—O31.219 (3)N5—C71.446 (3)
N2—C31.440 (3)N5—C81.473 (2)
N3—C91.510 (2)O5—C41.264 (3)
O2—N1—O1122.4 (2)C10—N4—C8108.35 (15)
O4—N2—O3120.4 (2)C7—N5—C8109.10 (12)
C9i—N3—C9108.61 (18)C8i—N5—C8107.76 (19)
C9i—N3—C7108.71 (11)N5—C7—N3109.74 (18)
C9—N3—C7108.71 (11)N4—C8—N5111.82 (13)
C9—N4—C10108.88 (14)N4—C9—N3109.65 (13)
C9—N4—C8109.75 (14)N4—C10—N4i111.77 (18)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) for (Iat300K) top
D—H···AD—HH···AD···AD—H···A
N3—H13N···O5ii0.85 (3)1.85 (3)2.657 (2)159 (3)
O1W—H11W···O5ii0.96 (3)1.86 (3)2.816 (3)177 (3)
O1W—H21W···O4iii0.73 (5)2.35 (5)3.037 (3)159 (5)
C5—H5A···O3iv0.88 (3)2.48 (3)3.164 (3)135 (2)
Symmetry codes: (ii) x+1, y+1/2, z+1; (iii) x, y+1/2, z+1; (iv) x+1, y, z.
Selected geometric parameters (Å, º) for (Iat143K) top
N1—O21.230 (3)N4—C81.469 (3)
N1—O11.250 (3)N4—C101.480 (3)
N1—C11.446 (3)N4A—C9A1.446 (3)
N2—O31.232 (3)N4A—C8A1.468 (3)
N2—O41.241 (3)N4A—C101.473 (3)
N2—C31.440 (3)N5—C71.452 (3)
N3—C9A1.514 (3)N5—C81.473 (3)
N3—C91.516 (3)N5—C8A1.476 (3)
N3—C71.526 (3)O5—C41.269 (3)
N4—C91.447 (3)
O2—N1—O1122.3 (2)C8A—N4A—C10108.5 (2)
O3—N2—O4121.1 (2)C7—N5—C8108.7 (2)
C9A—N3—C9108.9 (2)C7—N5—C8A108.8 (2)
C9A—N3—C7108.2 (2)C8—N5—C8A108.3 (2)
C9—N3—C7108.6 (2)N5—C7—N3109.75 (19)
C9—N4—C8109.0 (2)N4—C8—N5112.3 (2)
C9—N4—C10108.4 (2)N4A—C8A—N5112.07 (19)
C8—N4—C10108.8 (2)N4—C9—N3110.08 (19)
C9A—N4A—C8A109.2 (2)N4A—C9A—N3109.7 (2)
C9A—N4A—C10109.48 (19)N4A—C10—N4111.5 (2)
Hydrogen-bond geometry (Å, º) for (Iat143K) top
D—H···AD—HH···AD···AD—H···A
N3—H13N···O50.79 (3)1.91 (3)2.644 (3)155 (3)
O1W—H11W···O5i0.94 (4)1.88 (4)2.821 (3)176 (3)
O1W—H21W···O4ii0.87 (3)2.27 (4)3.064 (3)152 (3)
C5—H5A···O3iii0.93 (3)2.42 (3)3.188 (3)140 (2)
C7—H7B···O1i0.99 (3)2.49 (3)3.462 (3)168 (2)
C9—H9A···O1iv0.98 (3)2.56 (3)3.452 (3)151 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x, y1, z; (iv) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds