Download citation
Download citation
link to html
At 160 K, the gluco­pyran­osyl ring of the title compound, C20H28ClIO13, has a near-ideal 4C1 conformation and the fructo­furan­osyl ring has a twist 4T3 conformation. The two hydroxy groups are involved in intra- and intermolecular hydrogen bonds, with the latter interactions linking the mol­ecules into infinite one-dimensional chains. The absolute configuration of the mol­ecule has been determined.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101009994/sk1489sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009994/sk1489Isup2.hkl
Contains datablock I

CCDC reference: 173385

Comment top

The Shallenberger and Acree–Kier AH,B,γ tripartite hypothesis (Shallenberger & Acree, 1967; Kier, 1972) is currently the most widely accepted explanation for sweetness. However, the location of the AH,B,γ glucophore in many classes of high intensity sweeteners is still far from defined (Mathlouthi et al., 1993; Suami et al., 1994). Our studies are aimed at trying to locate this tripartite glucophore and the determination of the sweet conformation of the intensely sweet halodeoxy sucrose sweeteners. As part of this programme, the low-temperature crystal structure of the title compound, (I), has been determined.

The absolute configuration of (I) has been confidently determined by refinement of the absolute structure parameter and is shown in Fig. 1. The bond lengths and angles exhibit normal values and generally agree with those of sucrose (Brown & Levy, 1963, 1973; Hanson et al., 1973) and 3-O-acetyl-1,4,6-trichloro-1,4,6-trideoxy-β-D-tagatofuranosyl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-galactopyranoside (Lee et al., 1999). The torsion angles (Table 1) about the anomeric O1 atom are also very similar to those in sucrose (Brown & Levy, 1973). The acetoxymethyl and hydroxymethyl groups of the two sugar moieties all have the gauche–gauche conformation. In sucrose, however, the hydroxymethyl substituents at C5 and C5' (equivalent to C5 and C10 in Fig. 1) are gauche–gauche, while that at C2' (equivalent to C7 in Fig. 1) is trans–gauche (Brown & Levy, 1973). These gauche–gauche conformations in compound (I) position the respective acetoxy and hydroxy groups so as to avoid possible peri interactions, namely O6 with Cl4, O11 with I9, and O12 with both O8 and O10. Interestingly, in 3-O-acetyl-1,4,6-trichloro-1,4,6-trideoxy-β-D-tagatofuranosyl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-galactopyranoside (Lee et al., 1999), the C5 chloromethyl substituent adopts a gauche–trans conformation. Since the pyranosyl ring in this latter sugar is the galacto isomer, the gauche–trans conformation positions the Cl atom bonded to C6 anti to Cl4.

The glucopyranosyl ring in compound (I) adopts the 4C1 chair conformation. The puckering parameters (Cremer & Pople, 1975) are: Q = 0.592 (3) Å, q2 = 0.020 (2) Å, q3 = 0.592 (3) Å, ϕ2 = 174 (8)° and θ = 1.7 (2)°. The puckering amplitudes (q3 >> q2) of the pyranose ring describe a very slightly distorted chair. Indeed, the total puckering amplitude (Q) is only slightly lower than that of the ideal cyclohexane chair [0.63 Å for d(C—C) = 1.54 Å]. The magnitude of the distortion is significantly smaller than in sucrose (θ = 5.2°; Cremer & Pople, 1975) and peracylated 1,4,6-trichloro-1,4,6-trideoxy-β-D-fructofuranosyl 4-chloro-4-deoxy-α-D-galactopyranoside and 1,4,6-trichloro-1,4,6-trideoxy-β-D-tagatofuranosyl 4-chloro-4-deoxy-α-D-galactopyranoside [θ = 4.7 (5) and 5.0 (3)°, respectively; Lee et al., 1999], but comparable with that of sucralose (θ = 1.9°; Kanters et al., 1988). With ϕ2 being close to 180°, the distortion is towards the inverted boat B3,0 conformation, which is very close to the conformational distortion found in sucrose.

The furanoid ring in compound (I) has a 4T3 twist conformation [θ = 277.1 (3)°], which is the same as in sucrose (Rohrer, 1972) and 3-O-acetyl-1,4,6-trichloro-1,4,6-trideoxy-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-galactopyranoside (Lee et al., 1999). The twist is on C8 and C9, with these atoms being 0.205 (6) and -0.479 (6) Å, respectively, from the plane defined by C7, C10 and O10.

It is now generally believed that the AH,B unit of the Shallenberger and Acree-Kier AH,B,γ glucophore (Shallenberger & Acree, 1967; Kier, 1972) spans the two sugar rings of sucrose (Mathlouthi et al., 1993). From molecular mechanics and dynamics studies, Hooft et al. (1993) suggested that the sweet conformation of the sweet chlorinated sucroses should have values for the torsion angles defined by Φ(C1—O1—C7—O10) and Ψ(C7—O1—C1—O5) of 75 and 95°, respectively. In (I), these torsion angles are -42.5 (3) and 104.7 (2)°, respectively, which are very similar to those of sucrose [-44.75 (11) and 107.82 (10)°, respectively; Brown & Levy, 1973] and two reported chlorinated sucrose analogues, namely 3-O-acetyl-1,4,6-trichloro-1,4,6-trideoxy-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-galactopyranoside [Φ = -25.1 (5)° and Ψ = 99.5 (4)°] and 3-O-acetyl-1,4,6-trichloro-1,4,6-trideoxy-β-D-tagatofuranosyl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-galactopyranoside [Φ = -48.0 (3)° and Ψ = 113.1 (2)°] (Lee et al., 1999), but are very different from those of another chlorinated sucrose analogue, sucralose [Φ = -162.2 (2)° and Ψ = 91.4 (2)°; Kanters et al., 1988].

The hydroxy group at O12, which is part of the hydroxymethyl group adjacent to the bridging O atom, is involved in bifurcated hydrogen bonds. One is a weak intramolecular interaction with the ring O atom of the furanoid ring to form a five-membered loop with a graph-set motif of S(5) (Bernstein et al., 1995), while the other interaction is a stronger intermolecular hydrogen bond with the carbonyl O atom of the acetoxymethyl substituent at C5 of the glucopyranosyl ring of a neighbouring molecule (Table 2). These interactions link the molecules into infinite one-dimensional chains which run parallel to the [100] direction and have a graph-set motif of C(10). The hydroxy group at O11 partakes in an intramolecular hydrogen bond with the ring O atom of the glucopyranosyl ring. This results in the formation of a nine-membered loop with a graph-set motif of S(9).

Experimental top

A solution of 3-O-acetyl-4-deoxy-4-iodo-1,6-di-O-trityl-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-α-D-galactopyranoside (0.7 g) (Muhammad Sofian & Lee, 2001) in dry CH2Cl2/pyridine (15:1, 32 ml) was treated with trifluoromethane sulfonic anhydride (0.2 ml) at 195 K for 15 min and then at 273 K for 2 h. The reaction mixture was worked up in the usual way and treated with LiCl (0.15 g) in acetone to give, after flash chromatography (ether/hexane, 1:1), 3-O-acetyl-4-deoxy-4-iodo-1,6-di-O-trityl-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-glucopyranoside (0.5 g, 70%), m.p. 366–368 K; [α]D +34.9° (c 0.57, CHCl3); 1H NMR (CDCl3, δ, p.p.m.): 1.62, 1.94, 1.96, 2.07 (4 s, 12H, 4 × CH3), 3.06–3.19 (2 × d, 2H, J1'a,1'b = 9.7 Hz, H1'a,b), 3.3–3.4 (m, 2H, H6'a,b), 3.69 (t, 1H, J3,4 = J4,5 = 10.1 Hz, H4), 4.1–4.3 (m, 5H, H4', 5, 5', 6a,b), 4.54 (dd, 1H, J1,2 = 3.8, J2,3 = 10.1 Hz, H2), 5.27 (t, 1H, J2,3 = J3,4 = 10.1 Hz, H3), 5.60 (d, 1H, J1,2 = 3.8 Hz, H1), 5.92 (d, 1H, J3',4' = 9.7 Hz, H3') and 7.1–7.4 (m, 30H, Ar—H); 13C NMR: δ 170.3, 169.5, 169.4, 169.1 (COCH3), 143.6, 143.5 (CPh3), 128.8, 128.7, 127.8, 127.1 (Ar—C), 103.9 (C2'), 88.6 (C1), 83.8 (C5'), 80.1 (C3'), 71.3, 70.4, 70.3 (C2, C3, C5), 65.0, 63.2, 62.2 (C1', C6, C6'), 55.4 (C4), 21.0, 20.6, 20.5, 20.3 (COCH3) and 18.4 (C4'); HRMS-ESI (positive mode): calculated for [M + Na]+: 1145.2352:1147.2322; found: 1145.2370:1147.2375 (3:1). The above 4-chloro-4'-iodo derivative (0.42 g, 0.37 mmol) was dissolved in ice-cold CH2Cl2/AcOH (1:1, 10 ml) and treated with concentrated HCl (0.080 ml) at room temperature for 0.5 h to give, after flash chromatography (ethyl acetate/hexane, 1:1), the title compound, (I) (0.18 g, 75%), m.p. 386–387 K; [α]D +5.92° (c 0.76, CHCl3); 1H NMR (CDCl3, δ, p.p.m., the assignments employ the crystallographic atom numbering used in Fig. 1): 1.99, 2.03, 2.06, 2.20 (4 s, 12H, 4 × CH3), 3.45–3.90 (m, 5H, H4, 12a,b, 11a,b), 4.17–4.44 (m, 5H, H9, 5, 10, 6a,b), 4.75 (dd, 1H, J1,2 = 3.5, J2,3 = 10.2 Hz, H2), 5.40 (d, 1H, J8,9 = 10.4 Hz, H8), 5.41 (t, 1H, J2,3 = J3,4 = 10.2 Hz, H3) and 5.58 (d, 1H, J1,2 = 3.5 Hz, H1); 13C NMR: δ 170.7, 170.4, 170.1, 169.5 (COCH3), 104.3 (C7), 89.5 (C1), 85.4 (C10), 80.5 (C8), 71.1, 70.8, 70.5 (C2, 3, 5), 64.3, 62.2, 58.7 (C12, 6, 11), 54.9 (C4), 20.7, 20.6, 20.5, 20.4 (COCH3) and 16.2 (C9); HRMS-ESI (positive mode): calculated for [M + Na]+: 661.0161:663.0131; found: 661.0164:663.0105 (3: 1). Suitable crystals were obtained by very slow evaporation of a solution of compound (I) in chloroform.

Refinement top

The methyl and hydroxy H atoms were constrained to an ideal geometry (0.98 and 0.84, respectively) with Uiso(H) = 1.5Ueq(parent atom), but were allowed to rotate freely about the C—C and C—O bonds, respectively. All other H atoms were placed in geometrically idealized positions (C—H = 0.99–1.00 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The determined absolute structure agreed with that expected for a natural sucrose derivative. The largest and the most negative peaks of residual electron density were within 0.9 Å of the I atom.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
3-O-acetyl-4-deoxy-4-iodo-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-glucopyranoside top
Crystal data top
C20H28ClIO13Dx = 1.607 Mg m3
Mr = 638.77Melting point = 386–387 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 8.8407 (1) ÅCell parameters from 39653 reflections
b = 10.5562 (1) Åθ = 2.0–30.0°
c = 28.2974 (4) ŵ = 1.38 mm1
V = 2640.83 (5) Å3T = 160 K
Z = 4Prism, colourless
F(000) = 12880.35 × 0.22 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
7621 independent reflections
Horizontally mounted graphite crystal monochromator6659 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.044
ϕ and ω scans with κ offsetsθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1212
Tmin = 0.679, Tmax = 0.786k = 1414
27635 measured reflectionsl = 3839
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0193P)2 + 2.6788P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.03Δρmax = 1.99 e Å3
7621 reflectionsΔρmin = 1.23 e Å3
323 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0015 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 3319 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.021 (14)
Crystal data top
C20H28ClIO13V = 2640.83 (5) Å3
Mr = 638.77Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8407 (1) ŵ = 1.38 mm1
b = 10.5562 (1) ÅT = 160 K
c = 28.2974 (4) Å0.35 × 0.22 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
7621 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
6659 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.786Rint = 0.044
27635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.076Δρmax = 1.99 e Å3
S = 1.03Δρmin = 1.23 e Å3
7621 reflectionsAbsolute structure: Flack (1983), 3319 Friedel pairs
323 parametersAbsolute structure parameter: 0.021 (14)
0 restraints
Special details top

Experimental. Solvent used: chloroform Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.553 (1) Frames collected: 532 Seconds exposure per frame: 20 Degrees rotation per frame: 1.0 Crystal-Detector distance (mm): 44.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

The refinement used 7621 reflections composed of 4302 symmetry-independent reflections, plus 3319 Friedel-related reflections.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.1451 (0.0214) x - 9.5524 (0.0073) y + 6.6108 (0.0644) z = 1.9127 (0.0139)

* 0.0000 (0.0000) C7 * 0.0000 (0.0000) C10 * 0.0000 (0.0000) O10 0.2045 (0.0061) C8 - 0.4791 (0.0063) C9

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I90.345310 (18)0.00019 (2)0.117719 (8)0.04514 (8)
Cl40.61005 (9)0.70258 (7)0.12970 (3)0.04115 (18)
O10.79842 (19)0.28133 (15)0.12348 (6)0.0210 (3)
O21.0626 (2)0.40409 (17)0.15045 (6)0.0253 (4)
O30.9374 (2)0.64732 (17)0.16176 (7)0.0281 (4)
O50.7776 (2)0.40937 (17)0.05674 (6)0.0239 (4)
O60.6474 (2)0.62336 (17)0.01006 (7)0.0323 (4)
O80.6134 (2)0.17177 (18)0.18231 (6)0.0260 (4)
O100.7893 (2)0.10889 (17)0.07114 (6)0.0249 (4)
O110.5706 (3)0.2274 (2)0.01008 (9)0.0458 (6)
H110.65440.26390.01340.069*
O120.9657 (2)0.03530 (16)0.13177 (7)0.0291 (4)
H120.93630.05700.10470.044*
O131.2614 (3)0.4352 (3)0.10247 (9)0.0597 (8)
O150.8306 (4)0.6113 (2)0.23280 (8)0.0549 (7)
O170.4456 (3)0.6479 (2)0.03649 (8)0.0407 (5)
O190.7482 (4)0.0556 (3)0.23337 (9)0.0727 (10)
C10.8785 (3)0.3539 (2)0.08984 (8)0.0212 (5)
H10.95230.29850.07280.025*
C20.9635 (3)0.4583 (2)0.11584 (9)0.0227 (4)
H21.02430.50850.09270.027*
C30.8530 (3)0.5456 (2)0.14094 (9)0.0235 (5)
H30.79540.49820.16570.028*
C40.7463 (3)0.5983 (2)0.10387 (9)0.0254 (5)
H40.80710.64740.08040.030*
C50.6652 (3)0.4908 (3)0.07776 (8)0.0250 (5)
H50.60480.44070.10100.030*
C60.5624 (3)0.5342 (2)0.03854 (11)0.0305 (6)
H610.53000.46110.01910.037*
H620.47120.57550.05180.037*
C70.8045 (3)0.1469 (2)0.11888 (9)0.0201 (4)
C80.6627 (3)0.0960 (2)0.14373 (9)0.0228 (5)
H80.67840.00630.15400.027*
C90.5483 (3)0.1024 (2)0.10397 (10)0.0265 (5)
H90.52200.19320.09810.032*
C100.6410 (3)0.0542 (2)0.06261 (9)0.0285 (5)
H100.64780.04030.06410.034*
C110.5911 (4)0.0946 (3)0.01352 (11)0.0396 (7)
H1110.66810.06750.00980.048*
H1120.49490.05160.00560.048*
C120.9560 (3)0.0981 (2)0.13621 (9)0.0225 (5)
H1211.03810.13800.11770.027*
H1220.96980.12210.16980.027*
C131.2120 (3)0.4003 (3)0.13954 (10)0.0300 (6)
C141.3006 (3)0.3465 (3)0.17968 (11)0.0369 (7)
H1411.40790.34300.17110.055*
H1421.26420.26080.18670.055*
H1431.28780.40020.20760.055*
C150.9139 (4)0.6726 (3)0.20857 (10)0.0335 (6)
C160.9999 (4)0.7875 (3)0.22339 (11)0.0417 (7)
H1610.93940.86330.21700.063*
H1621.09500.79200.20570.063*
H1631.02190.78260.25730.063*
C170.5737 (3)0.6743 (2)0.02664 (10)0.0281 (6)
C180.6719 (4)0.7686 (3)0.05203 (11)0.0373 (7)
H1810.63680.77790.08470.056*
H1820.77690.73880.05200.056*
H1830.66620.85070.03590.056*
C190.6580 (4)0.1383 (4)0.22614 (10)0.0455 (8)
C200.5860 (5)0.2208 (6)0.26226 (13)0.0789 (16)
H2010.47680.20480.26290.118*
H2020.60440.30980.25430.118*
H2030.62920.20210.29340.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I90.01993 (8)0.03466 (10)0.08082 (16)0.00201 (10)0.00215 (8)0.01151 (12)
Cl40.0390 (4)0.0344 (3)0.0501 (4)0.0169 (3)0.0073 (3)0.0037 (3)
O10.0238 (8)0.0161 (7)0.0230 (8)0.0030 (6)0.0060 (7)0.0034 (6)
O20.0222 (8)0.0277 (9)0.0260 (9)0.0037 (7)0.0005 (7)0.0052 (7)
O30.0354 (10)0.0218 (8)0.0271 (9)0.0002 (7)0.0022 (8)0.0000 (7)
O50.0252 (9)0.0222 (8)0.0242 (9)0.0051 (7)0.0001 (7)0.0035 (7)
O60.0312 (10)0.0277 (9)0.0379 (10)0.0024 (9)0.0106 (9)0.0131 (8)
O80.0233 (8)0.0340 (9)0.0207 (8)0.0032 (7)0.0040 (7)0.0037 (7)
O100.0270 (9)0.0270 (9)0.0207 (8)0.0038 (7)0.0014 (7)0.0016 (7)
O110.0604 (16)0.0326 (11)0.0443 (13)0.0090 (11)0.0257 (12)0.0032 (10)
O120.0309 (9)0.0219 (9)0.0345 (10)0.0089 (7)0.0040 (8)0.0002 (7)
O130.0259 (11)0.103 (2)0.0504 (14)0.0114 (12)0.0101 (10)0.0262 (14)
O150.080 (2)0.0542 (14)0.0301 (11)0.0186 (15)0.0169 (13)0.0050 (10)
O170.0367 (12)0.0485 (13)0.0369 (11)0.0053 (10)0.0140 (9)0.0013 (10)
O190.084 (2)0.094 (2)0.0401 (14)0.0432 (18)0.0041 (14)0.0258 (14)
C10.0212 (11)0.0204 (10)0.0219 (11)0.0029 (9)0.0046 (9)0.0057 (9)
C20.0222 (10)0.0220 (9)0.0239 (11)0.0028 (8)0.0019 (10)0.0055 (9)
C30.0250 (11)0.0203 (9)0.0251 (11)0.0006 (9)0.0034 (10)0.0031 (9)
C40.0241 (12)0.0212 (11)0.0309 (13)0.0048 (9)0.0046 (10)0.0033 (10)
C50.0216 (9)0.0239 (11)0.0294 (12)0.0065 (13)0.0037 (9)0.0058 (10)
C60.0237 (12)0.0247 (12)0.0430 (15)0.0003 (9)0.0017 (11)0.0094 (10)
C70.0216 (10)0.0178 (9)0.0208 (10)0.0019 (8)0.0021 (9)0.0006 (9)
C80.0202 (10)0.0202 (10)0.0281 (12)0.0024 (9)0.0016 (10)0.0032 (9)
C90.0189 (11)0.0214 (11)0.0391 (14)0.0010 (9)0.0055 (10)0.0024 (10)
C100.0296 (13)0.0246 (11)0.0311 (13)0.0054 (11)0.0098 (11)0.0051 (10)
C110.055 (2)0.0302 (14)0.0337 (15)0.0074 (14)0.0185 (14)0.0069 (12)
C120.0212 (11)0.0194 (11)0.0268 (12)0.0037 (9)0.0021 (10)0.0014 (9)
C130.0235 (12)0.0324 (14)0.0340 (14)0.0035 (11)0.0013 (11)0.0038 (12)
C140.0300 (14)0.0398 (16)0.0408 (16)0.0082 (12)0.0086 (13)0.0035 (13)
C150.0440 (17)0.0302 (14)0.0263 (13)0.0053 (12)0.0008 (12)0.0016 (11)
C160.061 (2)0.0345 (15)0.0297 (15)0.0009 (15)0.0066 (14)0.0024 (12)
C170.0368 (15)0.0205 (11)0.0272 (13)0.0074 (10)0.0079 (11)0.0021 (10)
C180.0527 (19)0.0242 (13)0.0349 (15)0.0014 (13)0.0049 (14)0.0051 (11)
C190.0413 (17)0.070 (2)0.0253 (14)0.0147 (18)0.0078 (14)0.0116 (14)
C200.057 (2)0.154 (5)0.0258 (17)0.040 (3)0.0066 (16)0.009 (2)
Geometric parameters (Å, º) top
I9—C92.132 (3)C5—C61.506 (4)
Cl4—C41.787 (3)C5—H51.0000
O1—C11.413 (3)C6—H610.9900
O1—C71.426 (3)C6—H620.9900
O2—C131.357 (3)C7—C121.516 (3)
O2—C21.433 (3)C7—C81.535 (3)
O3—C151.367 (3)C8—C91.514 (4)
O3—C31.434 (3)C8—H81.0000
O5—C11.420 (3)C9—C101.517 (4)
O5—C51.442 (3)C9—H91.0000
O6—C171.339 (3)C10—C111.519 (4)
O6—C61.450 (3)C10—H101.0000
O8—C191.348 (3)C11—H1110.9900
O8—C81.422 (3)C11—H1120.9900
O10—C71.416 (3)C12—H1210.9900
O10—C101.453 (3)C12—H1220.9900
O11—C111.417 (4)C13—C141.492 (4)
O11—H110.8400C14—H1410.9800
O12—C121.416 (3)C14—H1420.9800
O12—H120.8400C14—H1430.9800
O13—C131.194 (4)C15—C161.492 (4)
O15—C151.196 (4)C16—H1610.9800
O17—C171.199 (4)C16—H1620.9800
O19—C191.200 (4)C16—H1630.9800
C1—C21.523 (3)C17—C181.504 (4)
C1—H11.0000C18—H1810.9800
C2—C31.519 (3)C18—H1820.9800
C2—H21.0000C18—H1830.9800
C3—C41.517 (4)C19—C201.486 (5)
C3—H31.0000C20—H2010.9800
C4—C51.532 (4)C20—H2020.9800
C4—H41.0000C20—H2030.9800
C1—O1—C7117.35 (18)C10—C9—I9115.16 (17)
C13—O2—C2116.8 (2)C8—C9—H9108.7
C15—O3—C3117.7 (2)C10—C9—H9108.7
C1—O5—C5113.99 (18)I9—C9—H9108.7
C17—O6—C6116.1 (2)O10—C10—C9103.05 (19)
C19—O8—C8118.0 (2)O10—C10—C11107.6 (2)
C7—O10—C10110.92 (19)C9—C10—C11117.0 (2)
C11—O11—H11109.5O10—C10—H10109.6
C12—O12—H12109.5C9—C10—H10109.6
O1—C1—O5110.69 (19)C11—C10—H10109.6
O1—C1—C2108.31 (19)O11—C11—C10112.2 (2)
O5—C1—C2109.31 (19)O11—C11—H111109.2
O1—C1—H1109.5C10—C11—H111109.2
O5—C1—H1109.5O11—C11—H112109.2
C2—C1—H1109.5C10—C11—H112109.2
O2—C2—C3108.4 (2)H111—C11—H112107.9
O2—C2—C1110.05 (18)O12—C12—C7111.3 (2)
C3—C2—C1110.3 (2)O12—C12—H121109.4
O2—C2—H2109.3C7—C12—H121109.4
C3—C2—H2109.3O12—C12—H122109.4
C1—C2—H2109.3C7—C12—H122109.4
O3—C3—C4109.44 (19)H121—C12—H122108.0
O3—C3—C2108.2 (2)O13—C13—O2123.1 (3)
C4—C3—C2107.4 (2)O13—C13—C14126.5 (3)
O3—C3—H3110.6O2—C13—C14110.4 (3)
C4—C3—H3110.6C13—C14—H141109.5
C2—C3—H3110.6C13—C14—H142109.5
C3—C4—C5110.6 (2)H141—C14—H142109.5
C3—C4—Cl4111.24 (18)C13—C14—H143109.5
C5—C4—Cl4109.76 (17)H141—C14—H143109.5
C3—C4—H4108.4H142—C14—H143109.5
C5—C4—H4108.4O15—C15—O3122.9 (3)
Cl4—C4—H4108.4O15—C15—C16126.3 (3)
O5—C5—C6107.0 (2)O3—C15—C16110.7 (3)
O5—C5—C4108.57 (19)C15—C16—H161109.5
C6—C5—C4114.4 (2)C15—C16—H162109.5
O5—C5—H5108.9H161—C16—H162109.5
C6—C5—H5108.9C15—C16—H163109.5
C4—C5—H5108.9H161—C16—H163109.5
O6—C6—C5107.1 (2)H162—C16—H163109.5
O6—C6—H61110.3O17—C17—O6123.2 (3)
C5—C6—H61110.3O17—C17—C18126.0 (3)
O6—C6—H62110.3O6—C17—C18110.8 (2)
C5—C6—H62110.3C17—C18—H181109.5
H61—C6—H62108.6C17—C18—H182109.5
O10—C7—O1111.46 (19)H181—C18—H182109.5
O10—C7—C12107.21 (19)C17—C18—H183109.5
O1—C7—C12110.00 (19)H181—C18—H183109.5
O10—C7—C8105.09 (19)H182—C18—H183109.5
O1—C7—C8106.01 (18)O19—C19—O8122.8 (3)
C12—C7—C8117.0 (2)O19—C19—C20126.4 (3)
O8—C8—C9110.0 (2)O8—C19—C20110.7 (3)
O8—C8—C7113.9 (2)C19—C20—H201109.5
C9—C8—C7100.9 (2)C19—C20—H202109.5
O8—C8—H8110.6H201—C20—H202109.5
C9—C8—H8110.6C19—C20—H203109.5
C7—C8—H8110.6H201—C20—H203109.5
C8—C9—C10101.4 (2)H202—C20—H203109.5
C8—C9—I9113.81 (18)
C7—O1—C1—O5104.7 (2)C1—O1—C7—C1276.3 (3)
C7—O1—C1—C2135.5 (2)C1—O1—C7—C8156.28 (19)
C5—O5—C1—O158.8 (3)C19—O8—C8—C9151.6 (3)
C5—O5—C1—C260.5 (3)C19—O8—C8—C796.0 (3)
C13—O2—C2—C3135.9 (2)O10—C7—C8—O8149.15 (19)
C13—O2—C2—C1103.4 (3)O1—C7—C8—O831.0 (3)
O1—C1—C2—O257.5 (2)C12—C7—C8—O892.1 (2)
O5—C1—C2—O2178.23 (18)O10—C7—C8—C931.4 (2)
O1—C1—C2—C362.0 (2)O1—C7—C8—C986.7 (2)
O5—C1—C2—C358.6 (2)C12—C7—C8—C9150.2 (2)
C15—O3—C3—C4114.7 (2)O8—C8—C9—C10162.63 (19)
C15—O3—C3—C2128.5 (2)C7—C8—C9—C1042.0 (2)
O2—C2—C3—O363.8 (2)O8—C8—C9—I973.1 (2)
C1—C2—C3—O3175.63 (18)C7—C8—C9—I9166.31 (15)
O2—C2—C3—C4178.17 (19)C7—O10—C10—C918.9 (3)
C1—C2—C3—C457.6 (3)C7—O10—C10—C11143.2 (2)
O3—C3—C4—C5174.72 (19)C8—C9—C10—O1038.0 (2)
C2—C3—C4—C557.5 (3)I9—C9—C10—O10161.31 (15)
O3—C3—C4—Cl463.0 (2)C8—C9—C10—C11155.8 (2)
C2—C3—C4—Cl4179.80 (16)I9—C9—C10—C1180.9 (3)
C1—O5—C5—C6176.31 (19)O10—C10—C11—O1164.4 (3)
C1—O5—C5—C459.8 (2)C9—C10—C11—O1150.9 (4)
C3—C4—C5—O557.7 (3)O10—C7—C12—O1258.3 (3)
Cl4—C4—C5—O5179.18 (15)O1—C7—C12—O12179.6 (2)
C3—C4—C5—C6177.1 (2)C8—C7—C12—O1259.4 (3)
Cl4—C4—C5—C659.7 (2)C2—O2—C13—O132.8 (4)
C17—O6—C6—C5179.2 (2)C2—O2—C13—C14177.7 (2)
O5—C5—C6—O671.8 (3)C3—O3—C15—O152.5 (4)
C4—C5—C6—O648.5 (3)C3—O3—C15—C16175.1 (2)
C10—O10—C7—O1106.5 (2)C6—O6—C17—O171.0 (4)
C10—O10—C7—C12133.1 (2)C6—O6—C17—C18177.7 (2)
C10—O10—C7—C87.9 (2)C8—O8—C19—O197.3 (5)
C1—O1—C7—O1042.5 (3)C8—O8—C19—C20175.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O50.842.252.964 (3)143
O12—H12···O100.842.382.773 (2)109
O12—H12···O17i0.842.162.952 (3)158
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC20H28ClIO13
Mr638.77
Crystal system, space groupOrthorhombic, P212121
Temperature (K)160
a, b, c (Å)8.8407 (1), 10.5562 (1), 28.2974 (4)
V3)2640.83 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.35 × 0.22 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.679, 0.786
No. of measured, independent and
observed [I > 2σ(I)] reflections
27635, 7621, 6659
Rint0.044
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.076, 1.03
No. of reflections7621
No. of parameters323
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.99, 1.23
Absolute structureFlack (1983), 3319 Friedel pairs
Absolute structure parameter0.021 (14)

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C11.413 (3)O5—C51.442 (3)
O1—C71.426 (3)O10—C71.416 (3)
O5—C11.420 (3)O10—C101.453 (3)
C1—O1—C7117.35 (18)
C7—O1—C1—O5104.7 (2)C1—O1—C7—C8156.28 (19)
C7—O1—C1—C2135.5 (2)O10—C10—C11—O1164.4 (3)
C17—O6—C6—C5179.2 (2)C9—C10—C11—O1150.9 (4)
O5—C5—C6—O671.8 (3)O10—C7—C12—O1258.3 (3)
C4—C5—C6—O648.5 (3)O1—C7—C12—O12179.6 (2)
C1—O1—C7—O1042.5 (3)C8—C7—C12—O1259.4 (3)
C1—O1—C7—C1276.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O50.842.252.964 (3)143
O12—H12···O100.842.382.773 (2)109
O12—H12···O17i0.842.162.952 (3)158
Symmetry code: (i) x+1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds