Download citation
Download citation
link to html
The title compound, raloxifene hydro­chloride, C28H28NO4S+·Cl-, belongs to the benzo­thio­phene class of antiosteoporotic drugs. In the molecular cation, the 2-phenol ring sustains a dihedral angle of 45.3 (1)° relative to the benzo­[b]­thio­phene system. The benzo­[b]­thio­phene and phenyl ring planes are twisted with respect to the carbonyl plane, with the smallest twist component occurring between the phenyl and carbonyl planes. The N atom bears the positive charge in the molecular cation and the piperidine ring adopts an almost perfect chair conformation. The Cl- anion is involved in the formation of N-H...Cl and O-H...Cl intermolecular hydrogen bonds, which lead to the formation of a layer of molecular cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101009763/sk1487sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009763/sk1487Isup2.hkl
Contains datablock I

CCDC reference: 173383

Comment top

Many non-steroidal compounds (antiestrogens or selective estrogen receptor modulators) are clinically used for the management of osteoporosis in women because they cause estrogen-like effects in a number of physiological systems without an increase in the risk of cancer. They act by binding with high affinity to the estrogen receptor, a nuclear transcription factor which controls the differentiation of the precursors of the macrophage cells that resorb bone tissue, the osteoclasts. The estrogen receptor action has been better understood following novel X-ray crystallographic studies on different ligand/receptor complexes (Brzozowski et al., 1997; Pike et al., 1999, and references therein). The accepted model states that the tissue-selective agonistic and/or antagonistic effects of the antiestrogens depend on the structural feature of each drug and are originated by the conformational change that takes place in the estrogen receptor upon binding of each individual ligand (McDonnell, 2000; Rodan & Martin, 2000). The mixed agonist/antagonist antiosteoporotic Raloxifene hydrochloride is efficacious in preventing bone loss, and exerts beneficial effects on the cardiovascular system and breast tissue in the absence of significant secondary events in mammary tissue and the uterus (Bryant & Dere, 1998; Bryant et al., 1999; Goldstein et al., 2000).

A number of antiestrogens have been crystallographically studied, including the Raloxifene closely related compound [(3-(4-(tetrahydropyrrolyl-ethoxy)benzoyl)-2-p-hydroxyphenyl)-6- hydroxybenzo[b]thiophene acetone solvate] (Kym et al., 1993). Data of the latter compound were retrieved from the Cambridge Structural Database (Allen et al., 1983) [refcode PIDXIJ; Kym et al., 1993], and then used to compare the structures of both antiestrogens.

The X-ray solid-state analysis of Raloxifene hydrochloride was undertaken as a part of our ongoing study on crystal and molecular structures of different chemical compounds that affect osseous metabolism and are used as therapeutic agents to treat a variety of bone disorders (Vega et al., 1996, 1998). \sch

The asymmetric unit of Raloxifene hydrochloride, (I), consists of the benzo[b]thiophene, i.e. the five-membered heterocycle fused across the C4—C9 bond to the benzo ring, which is substituted at the 2-position with the phenol and at the 3-position with the basic arm containing the phenyl and piperidine rings (see figure 1). The molecule bears a net positive charge due to proton transfer from HCl to the N atom of the piperidine ring (N41), so hereinafter it will be referred to as the molecular cation.

The benzo[b]thiophene is essentially planar, the maximum deviation from least-squares plane through S1,C2,C3,C4,C5,C6,C7,O7,C8,C9 occurring at O7 [0.067 (1) Å]. The dihedral angle sustained between least-squares planes of the benzo[b]thiophene and of the 2-phenol [45.3 (1)°] is equal in both Raloxifene and PIDXIJ (Kym et al., 1993), suggesting that the benzo[b]thiophene and the phenol ring arrange in a structural motif which is common to both antiestrogens. As the phenol ring at the 2-position does not show any other interatomic contact than that in which is involved O24 atom, then its orientation relative to benzo[b]thiophene could be the result of minimizing the steric hindrance.

The carbonyl C30 atom assumes sp2 character and has trigonal angle configuration with bond angles sum of 360° (see table 1). The two bond angles made by the five-membered heterocycle with the carbonyl group, C2—C3—C30 124.99 (15) Å and C4—C3—C30 121.60 (15) Å, compare well with those in PIDXIJ (124.2 and 121.7 Å, respectively). Those formed by the phenyl ring and the carbonyl group, C32—C31—C30 122.77 (15) Å and C36—C31—C30 118.70 (16) Å, differ from the correspondent ones in PIDXIJ (121.2 and 119.6 Å), suggesting that the attractive interaction involving C36—H36···O30 in Raloxifene hydrochloride is higher than the one present in PIDXIJ.

According to Benassi et al. (1987), the five-membered heterocycle in benzo[b]thiophene derivatives possesses higher degree of conjugative ability than the phenyl ring, so the former is less twisted than the latter from the carbonyl plane. Besides, the same authors showed that the exocyclic C(thiophene)—C(carbonyl) bond [1.476 (2) Å] is shorter than the C(phenyl)—C(carbonyl) one [1.483 (2) Å], in direct correspondence with was observed about the bond shortening as the twist of the plane with respect to the carbonyl plane decreases (Benassi et al., 1987). However, a very different conjugative ability is observed in PIDXIJ and in Raloxifene hydrochloride. In PIDXIJ, the five-membered heterocycle is more twisted from the carbonyl plane than the phenyl ring, as can be assessed by the values of the dihedral angles 69 and 12°, respectively. Moreover, the C(thiophene)—C(carbonyl) bond (1.492 Å) is larger than the C(phenyl)—C(carbonyl) one (1.476 Å), clearly showing that the conjugative ability was transferred from the five-membered heterocycle to the phenyl ring. An intermediate situation occurs in this work, where the angular relationships involving the benzo[b]thiophene, the phenyl ring and the carbonyl planes (dihedral angles 16.9 (1) and 53.4 (1)°, respectively) indicate that the phenyl ring plane is slightly more twisted from the carbonyl plane and the five-membered heterocycle is less than 15° twisted than the correspondent ones in PIDXIJ. Although the exocyclic C(thiophene)—C(carbonyl) bond [C3—C30 1.490 (2) Å] compares well with that of PIDXIJ, the C(phenyl)—C(carbonyl) bond [C30—C31 1.487 (2) Å] is not significantly shorter than the previous one. By another way, the carbonyl group is able to rotate around the C(thiophene)—C(carbonyl) bond and the torsion angle C2—C3—C30—O30, which in Raloxifene has a value of 124.0 (2)°, in PIDXIJ is -66.2°.

The O34—C37—C38—N41 chain of atoms linking the phenyl to the terminal ring, assumes, as in PIDXIJ, a gauche conformation, the torsion angles being 67.5 (2)° and 59°, respectively. Bond lengths and angles about the atoms component of the O34—C37—C38—N41 chain show differences when comparing both structures. In Raloxifene hydrochloride the geometry of the atoms within the chain could significantly be affected by the ability of the C42 atom of the piperidine ring to be a hydrogen-bond donor to O34, in such a way that the C42—H421···O34 intramolecular contact forms a six-membered ring as is apparent in figure 1. The terminal piperidine ring suffers considerable deviation from planarity and adopts an almost perfect chair conformation, the ring puckering parameters (Cremer & Pople, 1975) being QT 0.578 (2) Å, θ 175.6 (2) Å and ϕ 221 (3)°. Asymmetry parameters (Nardelli, 1983) show the ring is close to D3 d local pseudo-symmetry.

Hydrogen bonding determines the packing of the crystal of Raloxifene hydrochloride, which comprises stacking of layers (the hydrogen-bond geometry is given in Table 2). Within a layer, the molecular cations are arranged in a chain running along crystallographic b axis due to the N41—H41···Cl1 and the O7—H7···Cl1i hydrogen bonds, and, at the same time, parallel chains are held together via the O24—H24···Cl1ii hydrogen bonds. As shown in Table 2, the intermolecular C38—H381···O30iii contacts seem to contribute to the structure interlayer stability.

Experimental top

The compound was obtained from LABORATORIOS GADOR S·A., Buenos Aires, Argentina. Crystals suitable for X-ray diffraction were obtained through slow evaporation from a water solution.

Refinement top

All H atoms were located in a Fourier difference map and were refined freely with individual isotropic displacement parameters. C—H bond distances range from 0.88 (3) Å for C26—H26 to 1.02 (2) Å for C46—H462. Data collection was performed at the Instituto de Física de São Carlos, Universidade de São Paulo, SP, Brazil.

Computing details top

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and Scalepak; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995), CSD (Allen et al., 1983) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the structure showing the numbering scheme used and displacement ellipsoids drawn at 50% probability level. Intramolecular C—H···O contacts are shown as dashed lines.
(I) top
Crystal data top
C28H28NO4S+·ClDx = 1.335 Mg m3
Mr = 510.02Melting point: 531 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.4836 (3) ÅCell parameters from 42516 reflections
b = 13.1345 (3) Åθ = 1.0–27.5°
c = 14.6532 (3) ŵ = 0.27 mm1
β = 102.0570 (13)°T = 120 K
V = 2537.84 (10) Å3Prism, yellow
Z = 40.36 × 0.18 × 0.08 mm
F(000) = 1072
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.1
ϕ scans and ω scans with κ offsetsθmax = 27.5°, θmin = 1.5°
55970 measured reflectionsh = 1717
5835 independent reflectionsk = 1517
4580 reflections with I > 2σ(I)l = 1919
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.081P)2 + 0.3926P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.044(Δ/σ)max = 0.002
wR(F2) = 0.142Δρmax = 0.30 e Å3
S = 1.09Δρmin = 0.35 e Å3
5835 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
429 parametersExtinction coefficient: 0.017 (2)
0 restraints
Crystal data top
C28H28NO4S+·ClV = 2537.84 (10) Å3
Mr = 510.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4836 (3) ŵ = 0.27 mm1
b = 13.1345 (3) ÅT = 120 K
c = 14.6532 (3) Å0.36 × 0.18 × 0.08 mm
β = 102.0570 (13)°
Data collection top
Nonius KappaCCD
diffractometer
4580 reflections with I > 2σ(I)
55970 measured reflectionsRint = 0.1
5835 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.142All H-atom parameters refined
S = 1.09Δρmax = 0.30 e Å3
5835 reflectionsΔρmin = 0.35 e Å3
429 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44561 (3)0.64332 (4)0.46501 (3)0.04437 (16)
O70.07769 (11)0.50024 (14)0.36978 (12)0.0634 (4)
H70.072 (3)0.541 (3)0.315 (3)0.116 (12)*
O240.83901 (11)0.88169 (13)0.74108 (12)0.0627 (4)
H240.895 (2)0.855 (2)0.719 (2)0.090 (10)*
O300.36514 (11)0.67186 (13)0.76953 (10)0.0610 (4)
O340.73883 (11)0.41684 (12)0.98063 (9)0.0568 (4)
N410.91353 (11)0.32103 (12)1.11867 (10)0.0386 (3)
H410.9376 (16)0.2724 (18)1.1633 (16)0.054 (6)*
C20.48797 (13)0.65797 (13)0.58553 (12)0.0387 (4)
C30.41872 (12)0.62382 (14)0.63359 (12)0.0382 (4)
C40.32688 (12)0.58570 (13)0.57403 (12)0.0385 (4)
C50.23879 (13)0.54647 (15)0.59754 (13)0.0438 (4)
H50.2318 (16)0.5433 (16)0.6642 (16)0.050 (5)*
C60.15817 (14)0.51699 (15)0.52846 (14)0.0472 (4)
H60.0942 (18)0.4900 (18)0.5428 (15)0.059 (6)*
C70.16299 (13)0.52634 (14)0.43429 (13)0.0457 (4)
C80.24937 (14)0.56207 (14)0.40810 (13)0.0441 (4)
H80.2540 (16)0.5658 (17)0.3412 (17)0.057 (6)*
C90.33121 (13)0.59141 (13)0.47930 (12)0.0390 (4)
C210.58223 (12)0.71454 (13)0.62272 (12)0.0398 (4)
C220.67246 (14)0.69809 (16)0.59332 (13)0.0451 (4)
H220.6778 (17)0.6503 (17)0.5508 (17)0.054 (6)*
C230.75932 (13)0.75253 (16)0.63245 (14)0.0479 (4)
H230.8224 (17)0.7391 (17)0.6122 (15)0.052 (6)*
C240.75702 (14)0.82442 (15)0.70058 (14)0.0473 (4)
C250.66721 (16)0.84238 (17)0.72918 (18)0.0577 (5)
H250.6681 (18)0.8917 (19)0.7756 (17)0.063 (7)*
C260.58129 (15)0.78839 (16)0.69039 (16)0.0526 (5)
H260.5252 (19)0.8033 (19)0.7090 (17)0.063 (7)*
C300.43037 (13)0.62908 (14)0.73686 (12)0.0411 (4)
C310.51762 (13)0.57844 (14)0.79920 (12)0.0394 (4)
C320.57643 (14)0.50452 (15)0.76778 (13)0.0452 (4)
H320.5682 (17)0.4927 (18)0.7031 (17)0.060 (6)*
C330.65047 (15)0.45243 (16)0.82973 (13)0.0489 (5)
H330.6897 (18)0.4005 (19)0.8076 (17)0.061 (6)*
C340.66709 (13)0.47447 (15)0.92428 (12)0.0436 (4)
C350.61256 (15)0.55134 (16)0.95638 (13)0.0493 (5)
H350.6234 (19)0.567 (2)1.0228 (19)0.071 (7)*
C360.53708 (15)0.60061 (16)0.89394 (13)0.0475 (4)
H360.498 (2)0.6509 (18)0.9163 (18)0.067 (7)*
C370.75367 (16)0.43115 (17)1.07855 (13)0.0484 (5)
H3710.6903 (19)0.4372 (18)1.0996 (17)0.063 (7)*
H3720.7918 (17)0.4951 (18)1.0935 (15)0.056 (6)*
C380.80592 (15)0.33923 (17)1.12753 (14)0.0474 (4)
H3810.8080 (18)0.3458 (17)1.1962 (18)0.060 (7)*
H3820.7686 (18)0.280 (2)1.1055 (17)0.062 (7)*
C420.92441 (16)0.27960 (17)1.02585 (13)0.0473 (4)
H4210.9118 (17)0.3346 (16)0.9804 (16)0.051 (6)*
H4220.8745 (19)0.225 (2)1.0106 (17)0.068 (7)*
C431.03302 (18)0.24586 (18)1.03217 (17)0.0579 (5)
H4311.052 (2)0.199 (2)1.077 (2)0.074 (8)*
H4321.0379 (18)0.217 (2)0.9706 (18)0.069 (7)*
C441.10570 (19)0.3332 (2)1.0600 (2)0.0686 (7)
H4411.094 (2)0.388 (2)1.012 (2)0.077 (8)*
H4421.173 (2)0.310 (2)1.0627 (19)0.081 (8)*
C451.09063 (17)0.3810 (2)1.15027 (19)0.0641 (6)
H4511.110 (2)0.337 (2)1.197 (2)0.076 (9)*
H4521.132 (2)0.443 (2)1.164 (2)0.083 (8)*
C460.98120 (15)0.41034 (16)1.14587 (16)0.0523 (5)
H4610.9703 (19)0.433 (2)1.2073 (19)0.071 (7)*
H4620.9579 (17)0.4633 (18)1.0950 (17)0.055 (6)*
Cl10.94827 (4)0.16604 (4)1.28512 (3)0.05178 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0425 (3)0.0548 (3)0.0352 (2)0.00617 (19)0.00673 (18)0.00249 (18)
O70.0500 (8)0.0718 (10)0.0578 (9)0.0174 (7)0.0130 (7)0.0029 (8)
O240.0410 (8)0.0669 (10)0.0755 (11)0.0123 (7)0.0012 (7)0.0084 (8)
O300.0432 (7)0.0972 (12)0.0416 (8)0.0216 (7)0.0062 (6)0.0008 (7)
O340.0597 (8)0.0715 (9)0.0352 (7)0.0275 (7)0.0008 (6)0.0024 (6)
N410.0414 (8)0.0400 (8)0.0330 (7)0.0037 (6)0.0048 (6)0.0046 (6)
C20.0358 (8)0.0430 (9)0.0355 (8)0.0008 (7)0.0032 (6)0.0018 (7)
C30.0332 (8)0.0441 (9)0.0347 (8)0.0021 (7)0.0010 (6)0.0023 (7)
C40.0352 (8)0.0407 (9)0.0365 (8)0.0014 (7)0.0006 (6)0.0058 (7)
C50.0393 (9)0.0488 (10)0.0414 (10)0.0015 (7)0.0043 (7)0.0099 (8)
C60.0381 (9)0.0477 (10)0.0526 (11)0.0056 (8)0.0021 (8)0.0099 (8)
C70.0404 (9)0.0420 (10)0.0477 (10)0.0033 (7)0.0066 (7)0.0001 (8)
C80.0449 (9)0.0467 (10)0.0369 (9)0.0007 (8)0.0000 (7)0.0017 (7)
C90.0378 (8)0.0386 (9)0.0387 (9)0.0002 (7)0.0033 (7)0.0026 (7)
C210.0336 (8)0.0425 (9)0.0414 (9)0.0003 (7)0.0037 (7)0.0028 (7)
C220.0426 (9)0.0513 (11)0.0416 (10)0.0008 (8)0.0095 (7)0.0024 (8)
C230.0332 (8)0.0604 (12)0.0495 (10)0.0003 (8)0.0076 (7)0.0062 (9)
C240.0352 (9)0.0494 (10)0.0530 (11)0.0051 (7)0.0005 (7)0.0057 (8)
C250.0466 (11)0.0553 (12)0.0710 (14)0.0069 (9)0.0118 (10)0.0206 (10)
C260.0373 (9)0.0527 (11)0.0690 (13)0.0017 (8)0.0139 (9)0.0129 (10)
C300.0340 (8)0.0518 (10)0.0355 (9)0.0001 (7)0.0027 (7)0.0012 (7)
C310.0361 (8)0.0464 (9)0.0332 (8)0.0002 (7)0.0017 (6)0.0000 (7)
C320.0489 (10)0.0548 (11)0.0301 (8)0.0077 (8)0.0043 (7)0.0018 (7)
C330.0526 (11)0.0563 (11)0.0372 (9)0.0148 (9)0.0082 (8)0.0017 (8)
C340.0393 (9)0.0523 (11)0.0361 (9)0.0074 (8)0.0013 (7)0.0017 (7)
C350.0539 (11)0.0569 (11)0.0325 (9)0.0123 (9)0.0015 (8)0.0065 (8)
C360.0484 (10)0.0525 (11)0.0376 (9)0.0128 (9)0.0000 (7)0.0068 (8)
C370.0465 (10)0.0609 (12)0.0351 (9)0.0135 (9)0.0021 (7)0.0012 (8)
C380.0426 (10)0.0583 (12)0.0405 (10)0.0068 (9)0.0071 (8)0.0083 (8)
C420.0540 (11)0.0505 (11)0.0372 (9)0.0007 (9)0.0091 (8)0.0029 (8)
C430.0657 (13)0.0612 (13)0.0501 (12)0.0170 (11)0.0191 (10)0.0024 (10)
C440.0494 (12)0.0839 (18)0.0765 (17)0.0072 (12)0.0221 (11)0.0132 (13)
C450.0436 (11)0.0716 (15)0.0721 (16)0.0056 (11)0.0010 (10)0.0044 (13)
C460.0482 (11)0.0490 (11)0.0565 (12)0.0029 (9)0.0036 (9)0.0094 (9)
Cl10.0514 (3)0.0605 (3)0.0406 (3)0.0017 (2)0.00322 (19)0.00827 (19)
Geometric parameters (Å, º) top
S1—C91.7387 (18)C25—C261.376 (3)
S1—C21.7496 (18)C25—H250.94 (3)
O7—C71.371 (2)C26—H260.88 (3)
O7—H70.95 (4)C30—C311.487 (2)
O24—C241.366 (2)C31—C361.389 (2)
O24—H240.95 (3)C31—C321.391 (3)
O30—C301.222 (2)C32—C331.382 (3)
O34—C341.363 (2)C32—H320.94 (2)
O34—C371.419 (2)C33—C341.387 (3)
N41—C461.489 (3)C33—H330.96 (2)
N41—C421.500 (2)C34—C351.388 (3)
N41—C381.503 (2)C35—C361.379 (3)
N41—H410.92 (2)C35—H350.98 (3)
C2—C31.358 (2)C36—H360.95 (3)
C2—C211.475 (2)C37—C381.503 (3)
C3—C41.447 (2)C37—H3710.97 (3)
C3—C301.490 (2)C37—H3720.99 (2)
C4—C51.402 (2)C38—H3811.00 (3)
C4—C91.403 (2)C38—H3820.95 (3)
C5—C61.377 (3)C42—C431.514 (3)
C5—H51.00 (2)C42—H4210.97 (2)
C6—C71.400 (3)C42—H4220.98 (3)
C6—H60.99 (2)C43—C441.509 (4)
C7—C81.382 (3)C43—H4310.90 (3)
C8—C91.405 (2)C43—H4321.00 (3)
C8—H81.00 (2)C44—C451.516 (4)
C21—C261.389 (3)C44—H4411.00 (3)
C21—C221.390 (3)C44—H4420.95 (3)
C22—C231.390 (3)C45—C461.513 (3)
C22—H220.90 (2)C45—H4510.90 (3)
C23—C241.379 (3)C45—H4520.98 (3)
C23—H230.97 (2)C46—H4610.99 (3)
C24—C251.382 (3)C46—H4621.02 (2)
C9—S1—C291.85 (8)C33—C32—C31120.77 (17)
C7—O7—H7110 (2)C33—C32—H32119.7 (14)
C24—O24—H24105.9 (19)C31—C32—H32119.4 (14)
C34—O34—C37118.13 (14)C32—C33—C34119.77 (18)
C46—N41—C42110.98 (16)C32—C33—H33120.2 (14)
C46—N41—C38113.61 (16)C34—C33—H33120.0 (15)
C42—N41—C38114.52 (15)O34—C34—C33115.82 (16)
C46—N41—H41104.5 (14)O34—C34—C35123.92 (16)
C42—N41—H41107.7 (14)C33—C34—C35120.26 (17)
C38—N41—H41104.6 (14)C36—C35—C34119.09 (17)
C3—C2—C21127.42 (16)C36—C35—H35119.7 (15)
C3—C2—S1111.86 (13)C34—C35—H35121.1 (15)
C21—C2—S1120.19 (13)C35—C36—C31121.59 (18)
C2—C3—C4113.33 (15)C35—C36—H36119.1 (16)
C2—C3—C30124.99 (15)C31—C36—H36119.3 (16)
C4—C3—C30121.60 (15)O34—C37—C38109.24 (16)
C5—C4—C9118.36 (16)O34—C37—H371112.6 (14)
C5—C4—C3129.87 (16)C38—C37—H371105.7 (14)
C9—C4—C3111.77 (15)O34—C37—H372107.2 (13)
C6—C5—C4120.13 (17)C38—C37—H372114.1 (13)
C6—C5—H5119.0 (12)H371—C37—H372108.2 (19)
C4—C5—H5120.8 (12)C37—C38—N41116.83 (17)
C5—C6—C7120.51 (18)C37—C38—H381108.8 (13)
C5—C6—H6122.1 (13)N41—C38—H381106.0 (14)
C7—C6—H6117.4 (13)C37—C38—H382109.6 (14)
O7—C7—C8121.84 (18)N41—C38—H382107.1 (14)
O7—C7—C6116.91 (18)H381—C38—H382108.3 (19)
C8—C7—C6121.23 (16)N41—C42—C43109.10 (16)
C7—C8—C9117.62 (17)N41—C42—H421108.4 (13)
C7—C8—H8121.3 (13)C43—C42—H421106.7 (13)
C9—C8—H8121.1 (13)N41—C42—H422106.3 (15)
C4—C9—C8122.10 (16)C43—C42—H422114.1 (15)
C4—C9—S1111.18 (12)H421—C42—H422112.1 (19)
C8—C9—S1126.66 (14)C44—C43—C42111.06 (19)
C26—C21—C22117.96 (17)C44—C43—H431104.6 (18)
C26—C21—C2118.68 (16)C42—C43—H431111.8 (18)
C22—C21—C2123.36 (17)C44—C43—H432112.1 (15)
C21—C22—C23120.60 (18)C42—C43—H432107.7 (14)
C21—C22—H22121.8 (15)H431—C43—H432110 (2)
C23—C22—H22117.6 (15)C43—C44—C45110.7 (2)
C24—C23—C22120.43 (18)C43—C44—H441111.1 (16)
C24—C23—H23119.9 (13)C45—C44—H441106.3 (16)
C22—C23—H23119.7 (13)C43—C44—H442109.0 (18)
O24—C24—C23123.57 (18)C45—C44—H442113.5 (17)
O24—C24—C25117.08 (19)H441—C44—H442106 (2)
C23—C24—C25119.34 (18)C46—C45—C44112.1 (2)
C26—C25—C24120.2 (2)C46—C45—H451108.4 (19)
C26—C25—H25122.6 (15)C44—C45—H451109.5 (18)
C24—C25—H25117.3 (15)C46—C45—H452108.0 (17)
C25—C26—C21121.49 (19)C44—C45—H452110.0 (17)
C25—C26—H26117.5 (17)H451—C45—H452109 (2)
C21—C26—H26121.0 (17)N41—C46—C45110.40 (18)
O30—C30—C31120.43 (16)N41—C46—H461106.3 (15)
O30—C30—C3119.15 (15)C45—C46—H461111.5 (15)
C31—C30—C3120.34 (15)N41—C46—H462105.3 (13)
C36—C31—C32118.38 (16)C45—C46—H462110.7 (13)
C36—C31—C30118.70 (16)H461—C46—H462112 (2)
C32—C31—C30122.77 (15)
C9—S1—C2—C30.71 (14)C24—C25—C26—C210.5 (4)
C9—S1—C2—C21171.56 (14)C22—C21—C26—C251.5 (3)
C21—C2—C3—C4170.53 (16)C2—C21—C26—C25178.7 (2)
S1—C2—C3—C41.1 (2)C2—C3—C30—O30124.1 (2)
C21—C2—C3—C306.1 (3)C4—C3—C30—O3052.3 (3)
S1—C2—C3—C30177.67 (14)C2—C3—C30—C3158.9 (3)
C2—C3—C4—C5178.71 (18)C4—C3—C30—C31124.70 (19)
C30—C3—C4—C52.0 (3)O30—C30—C31—C3615.2 (3)
C2—C3—C4—C90.9 (2)C3—C30—C31—C36167.90 (17)
C30—C3—C4—C9177.68 (16)O30—C30—C31—C32160.3 (2)
C9—C4—C5—C61.6 (3)C3—C30—C31—C3216.6 (3)
C3—C4—C5—C6178.01 (19)C36—C31—C32—C331.8 (3)
C4—C5—C6—C70.4 (3)C30—C31—C32—C33173.67 (19)
C5—C6—C7—O7176.73 (18)C31—C32—C33—C340.5 (3)
C5—C6—C7—C82.1 (3)C37—O34—C34—C33175.51 (19)
O7—C7—C8—C9177.03 (17)C37—O34—C34—C354.7 (3)
C6—C7—C8—C91.8 (3)C32—C33—C34—O34177.60 (19)
C5—C4—C9—C81.9 (3)C32—C33—C34—C352.6 (3)
C3—C4—C9—C8177.74 (16)O34—C34—C35—C36175.9 (2)
C5—C4—C9—S1179.31 (14)C33—C34—C35—C364.4 (3)
C3—C4—C9—S10.37 (19)C34—C35—C36—C313.1 (3)
C7—C8—C9—C40.3 (3)C32—C31—C36—C350.0 (3)
C7—C8—C9—S1177.21 (14)C30—C31—C36—C35175.67 (19)
C2—S1—C9—C40.17 (14)C34—O34—C37—C38160.14 (18)
C2—S1—C9—C8177.05 (17)O34—C37—C38—N4167.5 (2)
C3—C2—C21—C2639.1 (3)C46—N41—C38—C3753.5 (2)
S1—C2—C21—C26131.89 (17)C42—N41—C38—C3775.4 (2)
C3—C2—C21—C22141.2 (2)C46—N41—C42—C4360.5 (2)
S1—C2—C21—C2247.9 (2)C38—N41—C42—C43169.18 (17)
C26—C21—C22—C231.5 (3)N41—C42—C43—C4458.8 (2)
C2—C21—C22—C23178.71 (17)C42—C43—C44—C4555.2 (3)
C21—C22—C23—C240.6 (3)C43—C44—C45—C4652.9 (3)
C22—C23—C24—O24179.02 (19)C42—N41—C46—C4558.5 (2)
C22—C23—C24—C250.4 (3)C38—N41—C46—C45170.78 (18)
O24—C24—C25—C26179.1 (2)C44—C45—C46—N4154.5 (3)
C23—C24—C25—C260.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N41—H41···Cl10.92 (2)2.25 (2)3.136 (2)161 (2)
O7—H7···Cl1i0.95 (4)2.19 (4)3.112 (2)165 (3)
O24—H24···Cl1ii0.95 (4)2.15 (3)3.038 (2)156 (3)
C36—H36···O300.95 (3)2.51 (2)2.794 (2)97 (2)
C38—H381···O30iii1.00 (3)2.50 (3)3.012 (3)111 (2)
C42—H421···O340.97 (2)2.57 (2)3.043 (3)110 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC28H28NO4S+·Cl
Mr510.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)13.4836 (3), 13.1345 (3), 14.6532 (3)
β (°) 102.0570 (13)
V3)2537.84 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.36 × 0.18 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
55970, 5835, 4580
Rint0.1
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.142, 1.09
No. of reflections5835
No. of parameters429
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.30, 0.35

Computer programs: COLLECT (Nonius, 1997-2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and Scalepak, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PARST (Nardelli, 1995), CSD (Allen et al., 1983) and WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
S1—C91.7387 (18)N41—C421.500 (2)
S1—C21.7496 (18)N41—C381.503 (2)
O7—C71.371 (2)C2—C31.358 (2)
O24—C241.366 (2)C2—C211.475 (2)
O30—C301.222 (2)C3—C301.490 (2)
O34—C341.363 (2)C30—C311.487 (2)
O34—C371.419 (2)C37—C381.503 (3)
N41—C461.489 (3)
C9—S1—C291.85 (8)C36—C31—C30118.70 (16)
C34—O34—C37118.13 (14)C32—C31—C30122.77 (15)
C46—N41—C42110.98 (16)O34—C37—C38109.24 (16)
C46—N41—C38113.61 (16)C37—C38—N41116.83 (17)
C42—N41—C38114.52 (15)N41—C42—C43109.10 (16)
C2—C3—C30124.99 (15)C44—C43—C42111.06 (19)
C4—C3—C30121.60 (15)C43—C44—C45110.7 (2)
O30—C30—C31120.43 (16)C46—C45—C44112.1 (2)
O30—C30—C3119.15 (15)N41—C46—C45110.40 (18)
C31—C30—C3120.34 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N41—H41···Cl10.92 (2)2.25 (2)3.136 (2)161 (2)
O7—H7···Cl1i0.95 (4)2.19 (4)3.112 (2)165 (3)
O24—H24···Cl1ii0.95 (4)2.15 (3)3.038 (2)156 (3)
C36—H36···O300.95 (3)2.51 (2)2.794 (2)97 (2)
C38—H381···O30iii1.00 (3)2.50 (3)3.012 (3)111 (2)
C42—H421···O340.97 (2)2.57 (2)3.043 (3)110 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds