Download citation
Download citation
link to html
The title compound, [ReMnAg(C12H22P)(C18H15P)2(CO)7], is the first crystallographically characterized silver-manganese-rhenium cluster. Due to intramolecular steric repulsion, the central AgMnRe([mu]-P) ring deviates greatly from planarity. Metal-metal distances are Mn-Re 3.1712 (8), Ag-Mn 2.7367 (8) and Ag-Re 2.8485 (6) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101009696/sk1486sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009696/sk1486Isup2.hkl
Contains datablock I

CCDC reference: 173353

Comment top

Compounds of the type M2(M'PR3)(µ-PR'2)(CO)8 (M2 = Mn2, Re2, MnRe; R, R' = organic residue) serve as precursor complexes for the synthesis of metallatetrahedrane structures (Haupt et al., 1999; Petters, 1999). In this context the title compound, (I), is the first crystallographically characterized heteronuclear coin metal-manganese-rhenium cluster. \sch

The basic structural element is the AgMnRe triangle with a µ-PCy2 group which bridges the Mn–Re bond to form a AgMnReP ring. Similar ring patterns are known from related compounds, e.g. Re2(CuPPh3)(µ-PCy2)(CO)8 (Flörke & Haupt, 1992) Mn2(AuPMe2Ph)(µ-PPh2)(CO)8 (Iggo et al., 1984) or Re2(AuPPh3)(µ-PPh2)(CO)7(PHPh2) (Haupt et al., 1999). The manganese atom has four terminal carbonyl groups and the phosphorous atom as non-metal ligands. Its distorted octahedral coordination sphere is completed with the silver atom. The same coordination geometry is valid for the Re atom, but one equatorial CO group is substituted by a PPh3 ligand. These ligands at both metal atoms show ecliptic arrangements with C—Mn—Re—C and C—Mn—Re—P torsion angles from 1.2 (2)° to 7.9 (4)° (absolute values). The central AgMnReP ring is not planar but folded along the Mn—Re bond with a PMnRe/ReMnAg dihedral angle of 24.4 (1)°. This corresponds to a position of the silver atom 0.949 (1) Å above the MnReP1 plane and is in contrast to related but nearly planar ring structures M2(M'PR3)(µ-PR'2)(CO)7L where the coin metal deviations are only 0.011 (1) to 0.260 (2) Å from the M2P-planes (M = Re, M' = Ag, L = CO (Flörke & Haupt, 1999); M' = Cu (Flörke & Haupt, 1992); M' = Au, L = ax-PHPh2 (Haupt et al., 1999); M = Mn, M' = Au, L = CO (Iggo et al., 1984; Haupt et al., 1992, 1995)). This strong folding of the AgMnReP ring is obviously due to endeavours to minimize intramolecular steric repulsions between the PPh3 ligand of the silver atom and the one attached to rhenium which is in equatorial position trans to the µ-P bridge. The P2 atom of this PPh3 ligand lies 0.165 (1) Å below the plane in consideration. Comparison with the related monosubstituted but almost planar compound Re2(AuPPh3)(µ-PPh2)(CO)7(PHPh2) with an axially attached PHPh2 ligand shows the Au atom only 0.011 (1) Å above the Re2P plane. The Mn—Re single bond of (I) measures 3.1712 (8) Å, this is nearly the same as 3.164 (1) Å in MnRe(RhPPh3)(µ-PCy2)(CO)8 (Beckers et al., 1995) but clearly longer than 3.0397 (7) Å in MnRe(µ-H)(µ-PCy2)(CO)8 (Flörke et al., 1995) which represent the only other known µ-P bridged Mn—Re complexes. The M—P1 bond lengths of 2.3193 (14) Å (Mn) and 2.4020 (12) Å (Re) reflect the different metal radii, the enclosed Mn—P—Re angle is 84.37 (4)°. The Ag—Mn and Ag—Re single bond lengths are 2.7367 (8) and 2.8485 (6) Å, respectively. This is the first characterized unsupported Ag—Mn bond as the only other kown Ag—Mn structure units are bridged by µ-CO, µ-H or µ3-H ligands and exhibit metal-metal distances from 2.902 to 3.044 Å (Horton et al., 1988; Carreño et al., 1992; Carreño et al., 1994). Few more Ag—Re interactions have been reported of which the related Re2Ag(µ-P)-type structures show Ag—Re bond lengths of 2.7957 (7) and 2.8235 (7) Å in Re2(AgPPh3)(µ-PCy2)(CO)8 (Flörke & Haupt, 1999) or 2.8199 (9) and 2.8476 (6) Å in Re2(AgPPh3)(µ-S(2-naphthyl))(CO)8 (Egold et al., 1999). The distorted Y-shaped coordination at the silver atom with angles Re—Ag—P3 155.10 (3)°, Mn—Ag—P3 131.20 (4)°, and Re—Ag—Mn 69.16 (2)° is a common structural pattern known from various other M2(M'PR3) units, e.g. Re2(M'(CO)2PPh3)(µ-PR2)(CO)8 with M' = Rh, Ir (Haupt et al., 1994) or the above mentioned coin metal complexes M2(M'PR3)(µ-PR'2)(CO)7L.

Experimental top

A solution of MnRe(µ-H)(µ-PCy2)(CO)8 (0.189 mmol) in 8 ml THF was reacted at 183 K with one equivalent n-BuLi in hexane. After stirring for 15 min the solution was allowed to reach room temperature and one equivalent ClAgPPh3/PPh3 was added. After removal of the solvent the products were separated by thin-layer chromatography (eluant CH2Cl2/n-hexane 1:1). The title compound was recrystallized from CH2Cl2/n-hexane.

Refinement top

Hydrogen atoms were included in the refinement with the riding model approximation with isotropic displacement parameters U(H) = 1.2Ueq(C). Substantial anisotropic displacement parameters of cyclohexyl carbon atoms C11—C16 indicate some degreee of (orientational) disorder which was impossible to resolve. Therefore, the geometric parameters for this cyclohexyl group are less reliable. Additionally, it was not possible to resolve diffuse electron density residuals (enclosed solvent molecules). Treatment with the SQUEEZE facility from PLATON (Spek, 1990), with a localized void of about 215 Å3 at (0, 1/2, 0) and 24 recovered electrons, resulted in smooth refinement. Since a few low order reflections are missing from the data set, the electron count will be underestimated. Thus the values given for D(calc), F000 and Mol. Wght are only valid for the ordered part of the structure.

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Molecular structure with hydrogen atoms omitted. Displacement ellipsoids are drawn at the 50% probability level.
(µ-dicyclohexylphosphine)-heptacarbonyl-eq-triphenylphosphine- triphenylphosphine-silver-manganese-rhenium top
Crystal data top
[ReMnAg(C12H22P)(C18H15P)2(CO)7]Z = 2
Mr = 1266.89F(000) = 1260
Triclinic, P1Dx = 1.531 Mg m3
a = 11.583 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.842 (2) ÅCell parameters from 31 reflections
c = 20.728 (3) Åθ = 7.4–17.5°
α = 96.70 (1)°µ = 2.91 mm1
β = 98.76 (1)°T = 293 K
γ = 113.20 (1)°Prism, orange
V = 2747.4 (6) Å30.42 × 0.22 × 0.08 mm
Data collection top
Bruker P4
diffractometer
8862 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω scansh = 115
Absorption correction: ψ scan
(North et al., 1968)
k = 1615
Tmin = 0.508, Tmax = 0.844l = 2626
14452 measured reflections3 standard reflections every 397 reflections
12576 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0436P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.001
12576 reflectionsΔρmax = 0.74 e Å3
614 parametersΔρmin = 0.92 e Å3
949 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00034 (7)
Crystal data top
[ReMnAg(C12H22P)(C18H15P)2(CO)7]γ = 113.20 (1)°
Mr = 1266.89V = 2747.4 (6) Å3
Triclinic, P1Z = 2
a = 11.583 (1) ÅMo Kα radiation
b = 12.842 (2) ŵ = 2.91 mm1
c = 20.728 (3) ÅT = 293 K
α = 96.70 (1)°0.42 × 0.22 × 0.08 mm
β = 98.76 (1)°
Data collection top
Bruker P4
diffractometer
8862 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.508, Tmax = 0.8443 standard reflections every 397 reflections
14452 measured reflections intensity decay: <1%
12576 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038949 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 0.89Δρmax = 0.74 e Å3
12576 reflectionsΔρmin = 0.92 e Å3
614 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.811522 (17)0.840472 (15)0.283679 (9)0.03726 (6)
Ag10.66809 (3)0.59741 (3)0.240465 (17)0.04515 (9)
Mn10.74397 (7)0.70008 (6)0.13642 (3)0.04315 (17)
P10.90972 (11)0.87641 (10)0.18973 (6)0.0396 (3)
P20.67777 (12)0.78113 (10)0.36323 (6)0.0429 (3)
P30.59006 (12)0.39360 (10)0.25281 (6)0.0450 (3)
O10.9897 (3)1.0594 (3)0.38495 (18)0.0694 (10)
C10.9217 (4)0.9765 (4)0.3462 (2)0.0458 (10)
O21.0004 (3)0.7312 (3)0.32825 (17)0.0591 (9)
C20.9272 (4)0.7669 (4)0.3115 (2)0.0439 (10)
O30.6456 (4)0.9674 (3)0.2350 (2)0.0751 (11)
C30.7035 (4)0.9170 (4)0.2514 (2)0.0489 (11)
O40.8088 (5)0.7159 (4)0.0055 (2)0.0941 (14)
C40.7847 (5)0.7105 (4)0.0572 (3)0.0616 (13)
O50.5562 (4)0.8015 (4)0.1077 (2)0.0940 (14)
C50.6314 (5)0.7657 (5)0.1211 (2)0.0584 (12)
O60.9103 (4)0.5787 (3)0.1726 (2)0.0776 (11)
C60.8473 (5)0.6271 (4)0.1602 (3)0.0576 (12)
O70.5176 (5)0.4791 (4)0.0779 (2)0.1052 (17)
C70.6048 (6)0.5623 (5)0.1046 (3)0.0708 (15)
C110.9160 (6)1.0062 (4)0.1557 (2)0.0628 (14)
H110.82890.99870.15710.075*
C120.9918 (6)1.1195 (4)0.2028 (3)0.0651 (15)
H12A1.08191.13360.21200.078*
H12B0.96341.11490.24450.078*
C130.9785 (9)1.2206 (5)0.1761 (3)0.120 (3)
H13A0.90101.22440.18620.145*
H13B1.05051.29080.20090.145*
C140.9730 (9)1.2217 (6)0.1091 (3)0.130 (3)
H14A1.06001.24890.10180.156*
H14B0.93981.27720.09740.156*
C150.8938 (8)1.1101 (5)0.0634 (3)0.096 (2)
H15A0.91571.11450.02010.115*
H15B0.80381.09580.05790.115*
C160.9124 (10)1.0096 (6)0.0880 (3)0.131 (3)
H16A0.84320.93850.06220.157*
H16B0.99221.01060.07850.157*
C211.0728 (4)0.8798 (4)0.2004 (2)0.0494 (11)
H211.06200.80650.21410.059*
C221.1764 (5)0.9717 (5)0.2575 (3)0.0704 (15)
H22A1.19951.04760.24640.084*
H22B1.14320.97130.29780.084*
C231.2937 (5)0.9463 (5)0.2691 (4)0.0901 (19)
H23A1.27190.87430.28500.108*
H23B1.36051.00710.30340.108*
C241.3456 (6)0.9374 (7)0.2060 (5)0.113 (3)
H24A1.37841.01250.19350.136*
H24B1.41640.91520.21500.136*
C251.2460 (7)0.8529 (7)0.1504 (4)0.103 (2)
H25A1.22330.77600.16000.124*
H25B1.28040.85570.11050.124*
C261.1247 (5)0.8750 (6)0.1376 (3)0.0780 (17)
H26A1.14470.94750.12240.094*
H26B1.05950.81380.10280.094*
C310.6900 (5)0.9056 (4)0.4233 (2)0.0522 (11)
C320.7660 (5)0.9399 (5)0.4867 (3)0.0671 (14)
H320.81120.89790.50070.081*
C330.7764 (7)1.0360 (6)0.5300 (3)0.092 (2)
H330.82621.05670.57300.110*
C340.7127 (8)1.0998 (6)0.5087 (4)0.107 (2)
H340.72101.16550.53690.128*
C350.6354 (8)1.0666 (6)0.4449 (4)0.105 (2)
H350.59021.10870.43080.126*
C360.6261 (7)0.9707 (5)0.4026 (3)0.0817 (18)
H360.57620.94980.35960.098*
C410.5009 (4)0.7103 (4)0.3354 (2)0.0489 (11)
C420.4427 (5)0.6770 (4)0.2689 (3)0.0553 (12)
H420.49310.68750.23720.066*
C430.3088 (5)0.6277 (5)0.2482 (3)0.0699 (15)
H430.27040.60510.20310.084*
C440.2350 (5)0.6129 (5)0.2944 (4)0.0787 (17)
H440.14580.57990.28080.094*
C450.2909 (6)0.6462 (5)0.3606 (4)0.0802 (17)
H450.23930.63580.39170.096*
C460.4228 (5)0.6950 (5)0.3820 (3)0.0673 (14)
H460.45990.71780.42730.081*
C510.7194 (5)0.6917 (4)0.4173 (2)0.0477 (11)
C520.6295 (6)0.5878 (4)0.4277 (2)0.0593 (13)
H520.54260.56210.40850.071*
C530.6712 (7)0.5228 (5)0.4670 (3)0.0749 (16)
H530.61170.45370.47410.090*
C540.7980 (7)0.5598 (6)0.4949 (3)0.0835 (18)
H540.82460.51540.52060.100*
C550.8869 (6)0.6620 (5)0.4855 (3)0.0713 (15)
H550.97330.68690.50530.086*
C560.8490 (5)0.7281 (5)0.4469 (2)0.0578 (12)
H560.90990.79710.44050.069*
C610.7215 (4)0.3638 (4)0.2930 (2)0.0458 (10)
C620.8288 (5)0.4536 (4)0.3321 (3)0.0619 (13)
H620.83230.52780.33740.074*
C630.9312 (5)0.4366 (6)0.3636 (3)0.0774 (17)
H631.00360.49900.38940.093*
C640.9267 (6)0.3274 (6)0.3571 (3)0.0740 (16)
H640.99620.31560.37800.089*
C650.8192 (6)0.2361 (5)0.3197 (3)0.0735 (16)
H650.81510.16180.31640.088*
C660.7168 (5)0.2527 (4)0.2869 (3)0.0647 (14)
H660.64490.19020.26090.078*
C710.5289 (5)0.2922 (4)0.1738 (2)0.0492 (11)
C720.6139 (6)0.2828 (5)0.1365 (3)0.0769 (17)
H720.70170.32570.15320.092*
C730.5717 (8)0.2108 (6)0.0747 (3)0.098 (2)
H730.63050.20510.05010.118*
C740.4420 (8)0.1479 (6)0.0500 (3)0.096 (2)
H740.41260.09810.00890.116*
C750.3569 (7)0.1581 (6)0.0854 (3)0.090 (2)
H750.26910.11650.06810.108*
C760.3996 (6)0.2300 (5)0.1472 (3)0.0692 (15)
H760.34010.23630.17100.083*
C810.4651 (5)0.3408 (4)0.2999 (2)0.0502 (11)
C820.4682 (5)0.2709 (4)0.3452 (3)0.0635 (14)
H820.53400.24630.35130.076*
C830.3733 (6)0.2372 (5)0.3817 (3)0.0835 (18)
H830.37620.19010.41220.100*
C840.2766 (6)0.2717 (5)0.3738 (3)0.0850 (18)
H840.21330.24830.39840.102*
C850.2726 (6)0.3415 (5)0.3290 (4)0.0825 (18)
H850.20640.36550.32320.099*
C860.3673 (5)0.3766 (4)0.2921 (3)0.0659 (14)
H860.36450.42440.26200.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.03497 (10)0.03659 (10)0.03719 (10)0.01198 (7)0.00682 (7)0.00824 (7)
Ag10.0454 (2)0.03743 (18)0.0479 (2)0.01132 (16)0.01097 (17)0.01150 (15)
Mn10.0453 (4)0.0408 (4)0.0354 (4)0.0102 (3)0.0069 (3)0.0089 (3)
P10.0383 (6)0.0402 (6)0.0396 (6)0.0139 (5)0.0094 (5)0.0130 (5)
P20.0437 (7)0.0421 (6)0.0391 (6)0.0135 (5)0.0111 (5)0.0070 (5)
P30.0435 (7)0.0371 (6)0.0501 (7)0.0123 (5)0.0087 (6)0.0111 (5)
O10.060 (2)0.058 (2)0.063 (2)0.0055 (19)0.0041 (19)0.0081 (18)
C10.044 (3)0.045 (2)0.047 (3)0.015 (2)0.013 (2)0.011 (2)
O20.056 (2)0.065 (2)0.064 (2)0.0316 (19)0.0095 (18)0.0229 (18)
C20.043 (2)0.044 (2)0.044 (3)0.013 (2)0.012 (2)0.018 (2)
O30.068 (3)0.082 (3)0.093 (3)0.050 (2)0.013 (2)0.024 (2)
C30.042 (3)0.052 (3)0.054 (3)0.019 (2)0.016 (2)0.014 (2)
O40.140 (4)0.105 (3)0.057 (2)0.061 (3)0.045 (3)0.024 (2)
C40.074 (4)0.058 (3)0.048 (3)0.023 (3)0.017 (3)0.008 (2)
O50.083 (3)0.129 (4)0.080 (3)0.065 (3)0.007 (2)0.013 (3)
C50.052 (3)0.071 (3)0.041 (3)0.017 (3)0.004 (2)0.008 (2)
O60.082 (3)0.071 (3)0.093 (3)0.044 (2)0.024 (2)0.014 (2)
C60.064 (3)0.046 (3)0.057 (3)0.016 (2)0.015 (3)0.008 (2)
O70.101 (3)0.065 (3)0.087 (3)0.009 (2)0.035 (3)0.014 (2)
C70.071 (4)0.060 (3)0.059 (3)0.010 (3)0.004 (3)0.015 (3)
C110.084 (4)0.048 (3)0.050 (3)0.024 (3)0.004 (3)0.017 (2)
C120.086 (4)0.048 (3)0.058 (3)0.024 (3)0.011 (3)0.019 (2)
C130.218 (9)0.050 (3)0.087 (4)0.053 (5)0.017 (6)0.023 (3)
C140.220 (9)0.064 (4)0.089 (5)0.042 (5)0.018 (6)0.042 (4)
C150.152 (7)0.078 (4)0.059 (4)0.048 (4)0.012 (4)0.036 (3)
C160.248 (10)0.072 (4)0.058 (4)0.058 (6)0.004 (5)0.026 (3)
C210.044 (2)0.050 (3)0.057 (3)0.018 (2)0.016 (2)0.018 (2)
C220.045 (3)0.060 (3)0.097 (4)0.019 (3)0.002 (3)0.012 (3)
C230.050 (3)0.073 (4)0.130 (5)0.023 (3)0.016 (3)0.011 (4)
C240.053 (4)0.121 (6)0.186 (7)0.047 (4)0.034 (4)0.062 (5)
C250.081 (4)0.143 (7)0.121 (6)0.067 (5)0.053 (4)0.045 (5)
C260.058 (3)0.113 (5)0.079 (4)0.040 (3)0.039 (3)0.031 (3)
C310.056 (3)0.045 (3)0.049 (3)0.013 (2)0.020 (2)0.004 (2)
C320.075 (4)0.061 (3)0.057 (3)0.023 (3)0.013 (3)0.002 (3)
C330.112 (6)0.080 (4)0.065 (4)0.027 (4)0.021 (4)0.009 (3)
C340.158 (7)0.070 (4)0.091 (5)0.043 (4)0.051 (5)0.007 (4)
C350.150 (7)0.094 (5)0.096 (5)0.079 (5)0.035 (5)0.004 (4)
C360.116 (5)0.079 (4)0.066 (4)0.059 (4)0.020 (4)0.007 (3)
C410.043 (2)0.044 (3)0.058 (3)0.015 (2)0.015 (2)0.010 (2)
C420.050 (3)0.055 (3)0.061 (3)0.022 (2)0.012 (2)0.014 (2)
C430.051 (3)0.071 (4)0.085 (4)0.027 (3)0.002 (3)0.021 (3)
C440.043 (3)0.065 (4)0.126 (5)0.017 (3)0.022 (3)0.022 (4)
C450.056 (3)0.075 (4)0.113 (5)0.024 (3)0.041 (3)0.013 (4)
C460.060 (3)0.070 (4)0.070 (3)0.021 (3)0.027 (3)0.014 (3)
C510.058 (3)0.054 (3)0.035 (2)0.025 (2)0.013 (2)0.010 (2)
C520.074 (3)0.050 (3)0.044 (3)0.018 (3)0.008 (3)0.007 (2)
C530.103 (4)0.053 (3)0.058 (4)0.022 (3)0.015 (3)0.017 (3)
C540.118 (5)0.083 (4)0.055 (4)0.050 (4)0.006 (4)0.026 (3)
C550.075 (4)0.098 (4)0.044 (3)0.041 (3)0.006 (3)0.019 (3)
C560.062 (3)0.072 (3)0.038 (3)0.026 (3)0.012 (2)0.014 (2)
C610.046 (2)0.045 (2)0.044 (3)0.014 (2)0.010 (2)0.012 (2)
C620.058 (3)0.053 (3)0.064 (3)0.015 (2)0.005 (3)0.014 (2)
C630.050 (3)0.084 (4)0.074 (4)0.011 (3)0.004 (3)0.010 (3)
C640.060 (3)0.107 (4)0.063 (4)0.048 (3)0.004 (3)0.015 (3)
C650.081 (4)0.076 (4)0.075 (4)0.051 (3)0.003 (3)0.007 (3)
C660.060 (3)0.053 (3)0.075 (4)0.025 (3)0.001 (3)0.006 (3)
C710.054 (3)0.041 (2)0.046 (3)0.014 (2)0.007 (2)0.010 (2)
C720.074 (4)0.097 (4)0.054 (3)0.038 (3)0.005 (3)0.004 (3)
C730.114 (5)0.115 (6)0.061 (4)0.052 (5)0.019 (4)0.010 (4)
C740.127 (6)0.081 (4)0.052 (4)0.024 (4)0.001 (4)0.002 (3)
C750.090 (4)0.084 (4)0.053 (4)0.001 (4)0.007 (3)0.011 (3)
C760.069 (3)0.063 (3)0.051 (3)0.005 (3)0.008 (3)0.012 (2)
C810.049 (3)0.036 (2)0.056 (3)0.010 (2)0.010 (2)0.005 (2)
C820.058 (3)0.061 (3)0.071 (4)0.018 (3)0.025 (3)0.022 (3)
C830.087 (4)0.077 (4)0.082 (4)0.019 (3)0.036 (4)0.031 (3)
C840.076 (4)0.067 (4)0.092 (5)0.006 (3)0.040 (4)0.003 (3)
C850.066 (4)0.062 (4)0.119 (5)0.023 (3)0.035 (4)0.006 (3)
C860.051 (3)0.053 (3)0.088 (4)0.015 (3)0.017 (3)0.012 (3)
Geometric parameters (Å, º) top
Re1—C11.890 (5)C32—C331.391 (8)
Re1—C31.961 (5)C32—H320.9300
Re1—C21.978 (5)C33—C341.369 (9)
Re1—P12.4020 (12)C33—H330.9300
Re1—P22.4168 (12)C34—C351.393 (10)
Re1—Ag12.8485 (6)C34—H340.9300
Re1—Mn13.1712 (8)C35—C361.383 (8)
Ag1—P32.4688 (12)C35—H350.9300
Ag1—Mn12.7367 (8)C36—H360.9300
Mn1—C41.781 (5)C41—C421.375 (7)
Mn1—C51.820 (6)C41—C461.401 (7)
Mn1—C71.822 (6)C42—C431.396 (7)
Mn1—C61.835 (6)C42—H420.9300
Mn1—P12.3193 (14)C43—C441.360 (8)
P1—C211.851 (5)C43—H430.9300
P1—C111.864 (5)C44—C451.364 (8)
P2—C511.838 (5)C44—H440.9300
P2—C411.845 (5)C45—C461.378 (7)
P2—C311.852 (5)C45—H450.9300
P3—C711.817 (5)C46—H460.9300
P3—C611.817 (5)C51—C561.395 (7)
P3—C811.821 (5)C51—C521.397 (6)
O1—C11.160 (5)C52—C531.397 (7)
O2—C21.142 (5)C52—H520.9300
O3—C31.144 (5)C53—C541.358 (8)
O4—C41.152 (6)C53—H530.9300
O5—C51.148 (6)C54—C551.370 (8)
O6—C61.150 (6)C54—H540.9300
O7—C71.144 (6)C55—C561.378 (7)
C11—C161.405 (7)C55—H550.9300
C11—C121.497 (7)C56—H560.9300
C11—H110.9800C61—C621.371 (6)
C12—C131.523 (7)C61—C661.397 (6)
C12—H12A0.9700C62—C631.373 (7)
C12—H12B0.9700C62—H620.9300
C13—C141.384 (8)C63—C641.372 (8)
C13—H13A0.9700C63—H630.9300
C13—H13B0.9700C64—C651.367 (8)
C14—C151.475 (9)C64—H640.9300
C14—H14A0.9700C65—C661.379 (7)
C14—H14B0.9700C65—H650.9300
C15—C161.519 (8)C66—H660.9300
C15—H15A0.9700C71—C721.373 (7)
C15—H15B0.9700C71—C761.374 (7)
C16—H16A0.9700C72—C731.383 (8)
C16—H16B0.9700C72—H720.9300
C21—C261.521 (7)C73—C741.373 (9)
C21—C221.536 (7)C73—H730.9300
C21—H210.9800C74—C751.352 (9)
C22—C231.509 (7)C74—H740.9300
C22—H22A0.9700C75—C761.381 (8)
C22—H22B0.9700C75—H750.9300
C23—C241.531 (9)C76—H760.9300
C23—H23A0.9700C81—C861.376 (7)
C23—H23B0.9700C81—C821.380 (7)
C24—C251.468 (10)C82—C831.387 (7)
C24—H24A0.9700C82—H820.9300
C24—H24B0.9700C83—C841.353 (9)
C25—C261.530 (8)C83—H830.9300
C25—H25A0.9700C84—C851.372 (9)
C25—H25B0.9700C84—H840.9300
C26—H26A0.9700C85—C861.391 (8)
C26—H26B0.9700C85—H850.9300
C31—C321.379 (7)C86—H860.9300
C31—C361.380 (7)
C1—Re1—C390.2 (2)C25—C24—H24A109.2
C1—Re1—C289.88 (19)C23—C24—H24A109.2
C3—Re1—C2176.10 (18)C25—C24—H24B109.2
C1—Re1—P1100.12 (14)C23—C24—H24B109.2
C3—Re1—P188.51 (14)H24A—C24—H24B107.9
C2—Re1—P187.63 (13)C24—C25—C26112.4 (6)
C1—Re1—P289.50 (14)C24—C25—H25A109.1
C3—Re1—P287.33 (14)C26—C25—H25A109.1
C2—Re1—P296.57 (13)C24—C25—H25B109.1
P1—Re1—P2169.54 (4)C26—C25—H25B109.1
C1—Re1—Ag1154.68 (14)H25A—C25—H25B107.8
C3—Re1—Ag1108.42 (14)C21—C26—C25110.9 (5)
C2—Re1—Ag172.69 (13)C21—C26—H26A109.5
P1—Re1—Ag197.42 (3)C25—C26—H26A109.5
P2—Re1—Ag174.86 (3)C21—C26—H26B109.5
C1—Re1—Mn1146.81 (14)C25—C26—H26B109.5
C3—Re1—Mn188.07 (14)H26A—C26—H26B108.0
C2—Re1—Mn189.72 (13)C32—C31—C36118.6 (5)
P1—Re1—Mn146.71 (3)C32—C31—P2122.7 (4)
P2—Re1—Mn1123.50 (3)C36—C31—P2118.6 (4)
Ag1—Re1—Mn153.757 (17)C31—C32—C33121.5 (6)
P3—Ag1—Mn1131.20 (4)C31—C32—H32119.3
P3—Ag1—Re1155.10 (3)C33—C32—H32119.3
Mn1—Ag1—Re169.16 (2)C34—C33—C32119.3 (7)
C4—Mn1—C593.6 (2)C34—C33—H33120.4
C4—Mn1—C793.2 (2)C32—C33—H33120.4
C5—Mn1—C785.9 (2)C33—C34—C35120.1 (6)
C4—Mn1—C693.2 (2)C33—C34—H34120.0
C5—Mn1—C6172.8 (2)C35—C34—H34120.0
C7—Mn1—C691.5 (2)C36—C35—C34119.7 (7)
C4—Mn1—P194.31 (17)C36—C35—H35120.1
C5—Mn1—P191.81 (17)C34—C35—H35120.1
C7—Mn1—P1172.2 (2)C31—C36—C35120.8 (6)
C6—Mn1—P189.93 (16)C31—C36—H36119.6
C4—Mn1—Ag1157.40 (17)C35—C36—H36119.6
C5—Mn1—Ag1100.55 (16)C42—C41—C46118.4 (5)
C7—Mn1—Ag170.56 (17)C42—C41—P2121.2 (4)
C6—Mn1—Ag172.29 (16)C46—C41—P2120.3 (4)
P1—Mn1—Ag1102.66 (4)C41—C42—C43120.9 (5)
C4—Mn1—Re1142.87 (17)C41—C42—H42119.6
C5—Mn1—Re183.99 (16)C43—C42—H42119.6
C7—Mn1—Re1123.39 (19)C44—C43—C42119.6 (6)
C6—Mn1—Re191.94 (16)C44—C43—H43120.2
P1—Mn1—Re148.92 (3)C42—C43—H43120.2
Ag1—Mn1—Re157.086 (18)C43—C44—C45120.4 (6)
C21—P1—C11107.3 (2)C43—C44—H44119.8
C21—P1—Mn1114.87 (16)C45—C44—H44119.8
C11—P1—Mn1117.16 (17)C44—C45—C46120.9 (6)
C21—P1—Re1115.21 (16)C44—C45—H45119.6
C11—P1—Re1116.90 (19)C46—C45—H45119.6
Mn1—P1—Re184.37 (4)C45—C46—C41119.8 (6)
C51—P2—C41105.5 (2)C45—C46—H46120.1
C51—P2—C31103.1 (2)C41—C46—H46120.1
C41—P2—C3198.1 (2)C56—C51—C52118.9 (5)
C51—P2—Re1115.10 (16)C56—C51—P2117.5 (4)
C41—P2—Re1120.26 (16)C52—C51—P2123.5 (4)
C31—P2—Re1112.26 (15)C51—C52—C53119.4 (5)
C71—P3—C61103.1 (2)C51—C52—H52120.3
C71—P3—C81105.0 (2)C53—C52—H52120.3
C61—P3—C81105.3 (2)C54—C53—C52120.5 (6)
C71—P3—Ag1113.35 (15)C54—C53—H53119.7
C61—P3—Ag1110.78 (15)C52—C53—H53119.7
C81—P3—Ag1117.96 (15)C53—C54—C55120.6 (6)
O1—C1—Re1179.3 (5)C53—C54—H54119.7
O2—C2—Re1175.6 (4)C55—C54—H54119.7
O3—C3—Re1176.0 (5)C54—C55—C56120.3 (6)
O4—C4—Mn1178.8 (6)C54—C55—H55119.8
O5—C5—Mn1175.5 (5)C56—C55—H55119.8
O6—C6—Mn1177.4 (5)C55—C56—C51120.2 (5)
O7—C7—Mn1172.6 (5)C55—C56—H56119.9
C16—C11—C12115.6 (5)C51—C56—H56119.9
C16—C11—P1121.7 (4)C62—C61—C66118.3 (5)
C12—C11—P1115.3 (3)C62—C61—P3118.8 (4)
C16—C11—H1199.1C66—C61—P3122.8 (4)
C12—C11—H1199.1C61—C62—C63121.5 (5)
P1—C11—H1199.1C61—C62—H62119.2
C11—C12—C13113.2 (5)C63—C62—H62119.2
C11—C12—H12A108.9C64—C63—C62119.9 (5)
C13—C12—H12A108.9C64—C63—H63120.0
C11—C12—H12B108.9C62—C63—H63120.0
C13—C12—H12B108.9C65—C64—C63119.6 (5)
H12A—C12—H12B107.8C65—C64—H64120.2
C14—C13—C12118.4 (6)C63—C64—H64120.2
C14—C13—H13A107.7C64—C65—C66120.9 (6)
C12—C13—H13A107.7C64—C65—H65119.6
C14—C13—H13B107.7C66—C65—H65119.6
C12—C13—H13B107.7C65—C66—C61119.8 (5)
H13A—C13—H13B107.1C65—C66—H66120.1
C13—C14—C15115.8 (6)C61—C66—H66120.1
C13—C14—H14A108.3C72—C71—C76118.0 (5)
C15—C14—H14A108.3C72—C71—P3119.2 (4)
C13—C14—H14B108.3C76—C71—P3122.6 (4)
C15—C14—H14B108.3C71—C72—C73121.4 (6)
H14A—C14—H14B107.4C71—C72—H72119.3
C14—C15—C16112.8 (6)C73—C72—H72119.3
C14—C15—H15A109.0C74—C73—C72119.1 (7)
C16—C15—H15A109.0C74—C73—H73120.4
C14—C15—H15B109.0C72—C73—H73120.4
C16—C15—H15B109.0C75—C74—C73120.2 (6)
H15A—C15—H15B107.8C75—C74—H74119.9
C11—C16—C15117.1 (6)C73—C74—H74119.9
C11—C16—H16A108.0C74—C75—C76120.4 (6)
C15—C16—H16A108.0C74—C75—H75119.8
C11—C16—H16B108.0C76—C75—H75119.8
C15—C16—H16B108.0C71—C76—C75120.8 (6)
H16A—C16—H16B107.3C71—C76—H76119.6
C26—C21—C22110.7 (4)C75—C76—H76119.6
C26—C21—P1116.2 (4)C86—C81—C82118.9 (5)
C22—C21—P1116.4 (3)C86—C81—P3118.5 (4)
C26—C21—H21103.9C82—C81—P3122.5 (4)
C22—C21—H21103.9C81—C82—C83120.0 (6)
P1—C21—H21103.9C81—C82—H82120.0
C23—C22—C21109.6 (5)C83—C82—H82120.0
C23—C22—H22A109.8C84—C83—C82121.1 (6)
C21—C22—H22A109.8C84—C83—H83119.4
C23—C22—H22B109.8C82—C83—H83119.4
C21—C22—H22B109.8C83—C84—C85119.4 (6)
H22A—C22—H22B108.2C83—C84—H84120.3
C22—C23—C24112.4 (6)C85—C84—H84120.3
C22—C23—H23A109.1C84—C85—C86120.3 (6)
C24—C23—H23A109.1C84—C85—H85119.8
C22—C23—H23B109.1C86—C85—H85119.9
C24—C23—H23B109.1C81—C86—C85120.3 (6)
H23A—C23—H23B107.9C81—C86—H86119.9
C25—C24—C23111.9 (6)C85—C86—H86119.9

Experimental details

Crystal data
Chemical formula[ReMnAg(C12H22P)(C18H15P)2(CO)7]
Mr1266.89
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.583 (1), 12.842 (2), 20.728 (3)
α, β, γ (°)96.70 (1), 98.76 (1), 113.20 (1)
V3)2747.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.42 × 0.22 × 0.08
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.508, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
14452, 12576, 8862
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 0.89
No. of reflections12576
No. of parameters614
No. of restraints949
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.92

Computer programs: XSCANS (Bruker, 1996), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Re1—P12.4020 (12)Ag1—P32.4688 (12)
Re1—P22.4168 (12)Ag1—Mn12.7367 (8)
Re1—Ag12.8485 (6)Mn1—P12.3193 (14)
Re1—Mn13.1712 (8)
P1—Re1—P2169.54 (4)P3—Ag1—Re1155.10 (3)
P1—Re1—Ag197.42 (3)Mn1—Ag1—Re169.16 (2)
P2—Re1—Ag174.86 (3)P1—Mn1—Ag1102.66 (4)
P1—Re1—Mn146.71 (3)P1—Mn1—Re148.92 (3)
P2—Re1—Mn1123.50 (3)Ag1—Mn1—Re157.086 (18)
Ag1—Re1—Mn153.757 (17)Mn1—P1—Re184.37 (4)
P3—Ag1—Mn1131.20 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds