Download citation
Download citation
link to html
The title dinuclear di-[mu]-oxo-bis­[(1,4,8,11-tetra­aza­cyclo­tetra­decane-[kappa]4N)­manganese(III,IV)] diperchlorate nitrate complex, [Mn2O2(C10H24N4)2](ClO4)2(NO3) or [(cyclam)Mn­O]2(ClO4)2(NO3), was self-assembled by the reaction of Mn2+ with 1,4,8,11-tetra­aza­cyclo­tetra­decane in aqueous media. The structure of this compound consists of a centrosymmetric binuclear [(cyclam)MnO]3+ unit, two perchlorate anions and one nitrate anion. While the low-temperature electron paramagnetic resonance spectra show a typical 16-line signal for a di-[mu]-oxo MnIII/MnIV dimer, the magnetic susceptibility studies also confirm a characteristic antiferromagnetic coupling between the electronic spins of the MnIV and MnIII ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101008617/sk1485sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101008617/sk1485Isup2.hkl
Contains datablock I

CCDC reference: 170174

Comment top

The tetranuclear manganese center in photosystem II (PSII) in green plants has been shown to play an essential role in the oxidation of water to molecular oxygen (Sauer, 1980). Recent EPR studies of the S2 state in PSII suggested that the S2 state exhibits an unusual sixteen-line EPR spectrum, which is in the mixed balance state of manganese(III) and manganese(IV) ions, and consists of two dinuclear di-µ-oxo-dimanganese cores (2[Mn2(O)2]) (Paula et al., 1986; Brudvig et al., 1986). In addition, EXAFS studies pointed out that nitrogen and/or oxygen atoms participate in acting as terminal ligand around the [Mn2(O)2] core (Cole et al., 1987; Yachandra et al., 1987). Recently several di-µ-oxo-dimanganese(III,IV) complexes with a terminal N4 donor set have been reported as model complexes for the S2 state (Cooper et al., 1978; Stebler et al., 1986; Collins et al., 1987; Towle et al., 1988; Suzuki et al., 1988; Hagen et al., 1988; Sheat et al., 1987). Interests in complexes of this general type stems more from their potential use as two-electron oxidation electrocatalysts. Gilbert et al. (1998) have electrochemically oxidized alcohols and ethers in the presence of both the bpy and phen complexes (bpy = 2,2'-bipyridine, phen = 1, 10-phenanthroline), and Brewer et al. (1989) have shown that the bpy complex oxidizes water in the presence of a chemical oxidant such as cerium(IV) ion. Consequently, various synthetic efforts have been made to obtain di-µ-oxo-dimanganese compounds with desired electrochemical properties, in the expectation of producing useful catalytic complexes. But most of the synthetic methods involve the oxidation of MnII precursors using persulfate, permanganate, hydrogen peroxide or dioxygen (Bruckner et al., 1998; Sam et al., 1994; Kim et al., 1997; Feichtinger et al., 1997). Here we reported a new mixed-valence MnIII—MnIV bis(µ-oxo) compound [(cyclam)MnO]2(ClO4)2NO3 obtained through self-assembly from aqueous solution.

The structure of the title compound, (I), consists of an apparently centrosymmetric binuclear [(cyclam)MnO]3+ unit, two perchlorate and one nitrate anions. The geometry about each manganese center is a slightly distorted octahedron, the ligating atoms being two cis oxo-bridges and four nitrogen atoms from the cyclam ligand. Referring to Table 1, the trans angles at Mn fall in the range 158.6 (1)–174.3 (1)°, with the greatest deviation from linearity occurring at the intra-ligand N4—Mn—N2 angle defined by the two axial nitrogen atoms. The four chelating N—Mn—N angles fall in the range 80.2 (1) to 85.7 (1)°, with an average value of 82.2 (3)°. The Mn—Mn separation of 2.7398 (7) Å is comparable with the values for other di-µ-oxo dimanganese complexes. The Mn—O—Mn bond angle is slightly larger than other reported values, which range from 94.0 to 96.6°. The presence of the crystallographic inversion center in the middle of the dimer causes the two manganese centers to be crystallographically equivalent. While this could indicate that the two manganese centers are chemically equivalent, and that the complex is delocalized, it could also be due to a static disorder resulting from the crystallographic superposition of an equal number of MnIII—MnIV and MnIV—MnIII cations, or from a dynamic disorder due to rapid (on the crystallographic time scale) electron transfer between the two manganese centers. Burgi and coworkers (Stebler et al., 1986) noted an analogous crystallographic symmetry in the phen complex, where the dimer has an apparent C2 symmetry leading to crystallographically equivalent manganese centers, and their excellent and detailed analysis need not be repeated here. The EPR spectrum at 110 K exhibits a sixteen-line pattern centered near g = 2.0, which is expected for an antiferromagnetically coupled MnIII, IV dimer with a spin state of 1/2 where two manganese ions are not equivalent. Magnetic susceptibility shows a characteristic antiferromagnetic interaction between MnIV and MnIII ions. Hence, we conclude that the complex is in a trapped mixed-valence state. \sch

The packing diagram of [(cyclam)MnO]2(ClO4)2NO3 in the unit cell viewed down the b axis is shown in Fig. 2. There are intermolecular and intramolcular N—H···O hydrogen bonds and weak C—H.·O interactions (Table 2).

Related literature top

For related literature, see: Brewer et al. (1989); Bruckner et al. (1998); Brudvig & Crabtree (1986); Cole et al. (1987); Collins et al. (1987); Cooper et al. (1978); Feichtinger & Plattner (1997); Gilbert et al. (1998); Hagen et al. (1988); Kim et al. (1997); Paula et al. (1986); Sam et al. (1994); Sauer (1980); Sheat et al. (1987); Stebler et al. (1986); Suzuki et al. (1988); Towle et al. (1988); Yachandra et al. (1987).

Experimental top

The title complex was prepared by adding a solution of Mn(NO3)2·6H2O (0.574 g, 2.0 mmol) in water (8 ml) to a solution of cyclam (cyclam = 1, 4, 8, 11-tetraazacyclotetradecane) (0.42 g, 2.1 mmol) in CH3OH (10 ml). The solution changed quickly from colorless to red-brown and lastly dark blue. To the resultant dark blue solution was added a solution of NaClO4 (0.37 g, 3.0 mmol) in water (5 ml). The solution was left standing undisturbed for one day and plate-type dark green crystals suitable for X-ray analysis appeared. The crystals were stable in the air. Analytical calculation for C20H48Cl2Mn2N9O13: Mn 13.72, C 29.92, H 5.99, N 15.71%. Found: Mn 14.00, C 29.65, H 5.78, N 15.47%.

Refinement top

After checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on their attached atoms with Uiso = 1.2Ueq for the attached atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of the title complex showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of [(cyclam)MnO]2(ClO4)2NO3 in the unit cell viewed down the b axis.
(I) top
Crystal data top
[Mn2O2(C10H24N4)2](ClO4)2(NO3)F(000) = 1676
Mr = 803.45Dx = 1.594 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.9616 (4) ÅCell parameters from 8192 reflections
b = 13.8047 (4) Åθ = 2.5–38.6°
c = 12.1531 (3) ŵ = 0.99 mm1
β = 90.508 (1)°T = 293 K
V = 3348.8 (1) Å3Plate, black
Z = 40.38 × 0.36 × 0.12 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
3823 independent reflections
Radiation source: fine-focus sealed tube3292 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 2525
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.706, Tmax = 0.891l = 1115
11565 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0856P)2 + 5.1838P]
where P = (Fo2 + 2Fc2)/3
3823 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Mn2O2(C10H24N4)2](ClO4)2(NO3)V = 3348.8 (1) Å3
Mr = 803.45Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.9616 (4) ŵ = 0.99 mm1
b = 13.8047 (4) ÅT = 293 K
c = 12.1531 (3) Å0.38 × 0.36 × 0.12 mm
β = 90.508 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
3823 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3292 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.891Rint = 0.034
11565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.07Δρmax = 0.80 e Å3
3823 reflectionsΔρmin = 0.54 e Å3
209 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0,88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4.023 cm and the detector swing angle was -35°. Coverage of the unit set is 99.4% complete.

Crystal decay was monitored by SAINT (Siemens, 1996) and was found to be negligible.

The structure was solved by direct methods and refined by full-matrix least-squares techniques.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.189880 (18)0.22114 (2)0.54249 (3)0.02750 (15)
Cl10.13098 (5)0.32042 (7)0.60477 (7)0.0610 (3)
O10.25052 (10)0.17943 (12)0.44098 (15)0.0353 (4)
O20.1745 (2)0.3858 (3)0.5522 (4)0.1151 (15)
O30.0783 (3)0.3726 (3)0.6643 (4)0.1291 (17)
O40.0985 (2)0.2570 (4)0.5316 (3)0.1083 (13)
O50.16517 (19)0.2648 (2)0.6878 (3)0.0834 (9)
O60.0258 (3)0.0677 (5)0.6761 (5)0.181 (3)
O70.00000.1880 (7)0.75000.209 (5)
N10.12741 (13)0.10071 (17)0.5098 (2)0.0428 (5)
H1N10.09580.09970.56450.051*
N20.22631 (13)0.1378 (2)0.6836 (3)0.0515 (6)
H1N20.26230.17270.70730.062*
N30.12711 (12)0.27825 (16)0.6671 (2)0.0372 (5)
H1N30.08850.24150.67740.045*
N40.11726 (14)0.28913 (19)0.4270 (2)0.0459 (6)
H1N40.14000.28680.36170.055*
N50.00000.1047 (3)0.75000.0468 (8)
C10.1615 (2)0.0048 (2)0.5111 (3)0.0621 (10)
H1A0.20010.00750.46320.075*
H1B0.13110.04380.48200.075*
C20.1842 (3)0.0251 (3)0.6245 (4)0.0787 (13)
H2A0.14650.02030.67390.094*
H2B0.19770.09260.62220.094*
C30.2409 (3)0.0331 (3)0.6710 (6)0.0955 (17)
H3A0.25300.00680.74250.115*
H3B0.27930.02580.62350.115*
C40.18229 (18)0.1583 (3)0.7791 (3)0.0542 (8)
H4A0.20630.14610.84740.065*
H4B0.14320.11660.77650.065*
C50.16138 (18)0.2623 (3)0.7731 (2)0.0516 (8)
H5A0.13140.27730.83320.062*
H5B0.20030.30400.77910.062*
C60.10758 (17)0.3812 (2)0.6551 (3)0.0517 (8)
H6A0.14750.41980.64350.062*
H6B0.08710.40290.72290.062*
C70.05933 (19)0.3977 (3)0.5610 (3)0.0611 (9)
H7A0.02260.35200.56710.073*
H7B0.04080.46240.56730.073*
C80.0900 (3)0.3871 (3)0.4497 (4)0.0741 (12)
H8A0.05640.40230.39420.089*
H8B0.12590.43400.44280.089*
C90.06320 (17)0.2175 (3)0.4059 (3)0.0570 (9)
H9A0.04120.23120.33620.068*
H9B0.03000.22090.46360.068*
C100.09397 (18)0.1185 (3)0.4034 (3)0.0585 (9)
H10A0.05960.07010.39050.070*
H10B0.12620.11450.34430.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0311 (2)0.0274 (2)0.0241 (2)0.00018 (13)0.00365 (14)0.00031 (12)
Cl10.0706 (6)0.0650 (5)0.0471 (5)0.0029 (4)0.0096 (4)0.0052 (4)
O10.0455 (10)0.0300 (8)0.0305 (9)0.0002 (7)0.0051 (8)0.0048 (7)
O20.105 (3)0.118 (3)0.122 (3)0.022 (2)0.005 (2)0.050 (3)
O30.158 (4)0.111 (3)0.119 (3)0.053 (3)0.037 (3)0.010 (3)
O40.094 (3)0.167 (4)0.064 (2)0.032 (3)0.0111 (19)0.019 (2)
O50.100 (2)0.079 (2)0.071 (2)0.0031 (17)0.0210 (18)0.0056 (15)
O60.135 (4)0.266 (7)0.145 (4)0.097 (5)0.100 (4)0.102 (5)
O70.072 (4)0.126 (6)0.431 (18)0.0000.059 (7)0.000
N10.0480 (13)0.0393 (12)0.0415 (13)0.0120 (10)0.0130 (10)0.0095 (10)
N20.0401 (13)0.0494 (14)0.0651 (18)0.0004 (11)0.0018 (12)0.0016 (12)
N30.0351 (11)0.0426 (12)0.0342 (12)0.0011 (9)0.0059 (9)0.0061 (9)
N40.0423 (13)0.0575 (15)0.0381 (13)0.0016 (11)0.0060 (10)0.0007 (11)
N50.0282 (16)0.057 (2)0.056 (2)0.0000.0168 (15)0.000
C10.075 (2)0.0346 (15)0.077 (2)0.0119 (15)0.028 (2)0.0136 (15)
C20.100 (3)0.0345 (16)0.102 (3)0.0002 (19)0.011 (3)0.0141 (18)
C30.081 (3)0.058 (2)0.147 (5)0.027 (2)0.021 (3)0.000 (3)
C40.0532 (18)0.071 (2)0.0388 (16)0.0067 (16)0.0022 (13)0.0216 (15)
C50.0561 (18)0.073 (2)0.0263 (13)0.0011 (16)0.0069 (13)0.0059 (13)
C60.0516 (17)0.0452 (16)0.0584 (19)0.0084 (13)0.0060 (15)0.0147 (14)
C70.0547 (19)0.0537 (18)0.075 (2)0.0235 (16)0.0002 (17)0.0033 (17)
C80.098 (3)0.058 (2)0.066 (2)0.017 (2)0.004 (2)0.0180 (18)
C90.0379 (16)0.085 (3)0.0476 (18)0.0066 (15)0.0090 (14)0.0048 (16)
C100.058 (2)0.069 (2)0.0478 (18)0.0215 (17)0.0015 (15)0.0198 (16)
Geometric parameters (Å, º) top
Mn1—O1i1.8263 (19)C1—C21.505 (6)
Mn1—O11.8291 (18)C1—H1A0.9700
Mn1—N12.114 (2)C1—H1B0.9700
Mn1—N32.125 (2)C2—C31.494 (7)
Mn1—N22.185 (3)C2—H2A0.9700
Mn1—N42.217 (3)C2—H2B0.9700
Mn1—Mn1i2.7398 (7)C3—H3A0.9700
Cl1—O41.403 (4)C3—H3B0.9700
Cl1—O21.410 (4)C4—C51.497 (5)
Cl1—O51.436 (3)C4—H4A0.9700
Cl1—O31.469 (4)C4—H4B0.9700
O1—Mn1i1.8263 (18)C5—H5A0.9700
O6—N51.158 (5)C5—H5B0.9700
O7—N51.150 (9)C6—C71.506 (5)
N1—C101.471 (4)C6—H6A0.9700
N1—C11.489 (4)C6—H6B0.9700
N1—H1N10.9213C7—C81.497 (6)
N2—C31.482 (5)C7—H7A0.9700
N2—C41.488 (4)C7—H7B0.9700
N2—H1N20.9095C8—H8A0.9700
N3—C51.471 (4)C8—H8B0.9700
N3—C61.480 (4)C9—C101.498 (6)
N3—H1N30.9311C9—H9A0.9700
N4—C81.484 (5)C9—H9B0.9700
N4—C91.485 (4)C10—H10A0.9700
N4—H1N40.9182C10—H10B0.9700
N5—O6ii1.158 (5)
O1i—Mn1—O182.90 (8)N1—C1—H1B109.0
O1i—Mn1—N1173.95 (9)C2—C1—H1B109.0
O1—Mn1—N191.07 (9)H1A—C1—H1B107.8
O1i—Mn1—N391.74 (9)C3—C2—C1114.8 (4)
O1—Mn1—N3174.34 (9)C3—C2—H2A108.6
N1—Mn1—N394.30 (9)C1—C2—H2A108.6
O1i—Mn1—N295.60 (9)C3—C2—H2B108.6
O1—Mn1—N298.40 (10)C1—C2—H2B108.6
N1—Mn1—N285.69 (10)H2A—C2—H2B107.6
N3—Mn1—N280.24 (10)N2—C3—C2114.5 (3)
O1i—Mn1—N499.97 (9)N2—C3—H3A108.6
O1—Mn1—N498.00 (9)C2—C3—H3A108.6
N1—Mn1—N480.37 (10)N2—C3—H3B108.6
N3—Mn1—N484.70 (10)C2—C3—H3B108.6
N2—Mn1—N4158.61 (10)H3A—C3—H3B107.6
O1i—Mn1—Mn1i41.49 (6)N2—C4—C5108.1 (2)
O1—Mn1—Mn1i41.41 (6)N2—C4—H4A110.1
N1—Mn1—Mn1i132.48 (7)C5—C4—H4A110.1
N3—Mn1—Mn1i133.21 (7)N2—C4—H4B110.1
N2—Mn1—Mn1i99.36 (7)C5—C4—H4B110.1
N4—Mn1—Mn1i102.02 (7)H4A—C4—H4B108.4
O4—Cl1—O2113.3 (3)N3—C5—C4108.3 (3)
O4—Cl1—O5109.0 (3)N3—C5—H5A110.0
O2—Cl1—O5111.7 (2)C4—C5—H5A110.0
O4—Cl1—O3106.8 (3)N3—C5—H5B110.0
O2—Cl1—O3110.8 (3)C4—C5—H5B110.0
O5—Cl1—O3104.7 (3)H5A—C5—H5B108.4
Mn1i—O1—Mn197.10 (8)N3—C6—C7112.7 (3)
C10—N1—C1111.2 (3)N3—C6—H6A109.1
C10—N1—Mn1107.22 (19)C7—C6—H6A109.1
C1—N1—Mn1115.3 (2)N3—C6—H6B109.1
C10—N1—H1N1109.2C7—C6—H6B109.1
C1—N1—H1N1107.2H6A—C6—H6B107.8
Mn1—N1—H1N1106.5C8—C7—C6114.0 (3)
C3—N2—C4112.6 (4)C8—C7—H7A108.7
C3—N2—Mn1119.8 (3)C6—C7—H7A108.7
C4—N2—Mn1108.47 (19)C8—C7—H7B108.7
C3—N2—H1N2113.3C6—C7—H7B108.7
C4—N2—H1N297.0H7A—C7—H7B107.6
Mn1—N2—H1N2103.0N4—C8—C7114.2 (3)
C5—N3—C6110.5 (2)N4—C8—H8A108.7
C5—N3—Mn1107.23 (19)C7—C8—H8A108.7
C6—N3—Mn1116.3 (2)N4—C8—H8B108.7
C5—N3—H1N3100.3C7—C8—H8B108.7
C6—N3—H1N3108.6H8A—C8—H8B107.6
Mn1—N3—H1N3112.8N4—C9—C10108.3 (3)
C8—N4—C9111.9 (3)N4—C9—H9A110.0
C8—N4—Mn1120.4 (2)C10—C9—H9A110.0
C9—N4—Mn1107.3 (2)N4—C9—H9B110.0
C8—N4—H1N4112.1C10—C9—H9B110.0
C9—N4—H1N4101.1H9A—C9—H9B108.4
Mn1—N4—H1N4101.9N1—C10—C9108.5 (3)
O7—N5—O6116.2 (4)N1—C10—H10A110.0
O7—N5—O6ii116.2 (4)C9—C10—H10A110.0
O6—N5—O6ii127.6 (8)N1—C10—H10B110.0
N1—C1—C2112.8 (3)C9—C10—H10B110.0
N1—C1—H1A109.0H10A—C10—H10B108.4
C2—C1—H1A109.0
O1i—Mn1—O1—Mn1i0.0O1—Mn1—N4—C8133.5 (3)
N1—Mn1—O1—Mn1i179.56 (10)N1—Mn1—N4—C8136.8 (3)
N2—Mn1—O1—Mn1i94.65 (10)N3—Mn1—N4—C841.5 (3)
N4—Mn1—O1—Mn1i99.13 (10)N2—Mn1—N4—C886.8 (4)
O1—Mn1—N1—C1074.9 (2)Mn1i—Mn1—N4—C891.6 (3)
N3—Mn1—N1—C10106.9 (2)O1i—Mn1—N4—C9178.8 (2)
N2—Mn1—N1—C10173.3 (2)O1—Mn1—N4—C997.1 (2)
N4—Mn1—N1—C1023.0 (2)N1—Mn1—N4—C97.4 (2)
Mn1i—Mn1—N1—C1074.5 (2)N3—Mn1—N4—C987.9 (2)
N3—Mn1—N1—C1128.7 (2)N2—Mn1—N4—C942.7 (4)
N2—Mn1—N1—C148.8 (2)Mn1i—Mn1—N4—C9139.0 (2)
N4—Mn1—N1—C1147.5 (2)C10—N1—C1—C2168.3 (3)
Mn1i—Mn1—N1—C149.9 (3)Mn1—N1—C1—C269.3 (3)
O1i—Mn1—N2—C3131.1 (3)N1—C1—C2—C369.6 (5)
O1—Mn1—N2—C347.4 (3)C4—N2—C3—C275.4 (6)
N1—Mn1—N2—C343.0 (3)Mn1—N2—C3—C253.9 (6)
N3—Mn1—N2—C3138.1 (3)C1—C2—C3—N260.7 (6)
N4—Mn1—N2—C392.3 (4)C3—N2—C4—C5170.5 (3)
Mn1i—Mn1—N2—C389.4 (3)Mn1—N2—C4—C535.6 (3)
O1i—Mn1—N2—C497.8 (2)C6—N3—C5—C4177.9 (3)
O1—Mn1—N2—C4178.5 (2)Mn1—N3—C5—C450.2 (3)
N1—Mn1—N2—C488.1 (2)N2—C4—C5—N358.0 (3)
N3—Mn1—N2—C47.0 (2)C5—N3—C6—C7167.2 (3)
N4—Mn1—N2—C438.8 (4)Mn1—N3—C6—C770.3 (3)
Mn1i—Mn1—N2—C4139.5 (2)N3—C6—C7—C871.2 (4)
N1—Mn1—N3—C5108.0 (2)C9—N4—C8—C773.9 (4)
N2—Mn1—N3—C523.1 (2)Mn1—N4—C8—C753.5 (5)
N4—Mn1—N3—C5172.1 (2)C6—C7—C8—N461.5 (5)
Mn1i—Mn1—N3—C570.6 (2)C8—N4—C9—C10170.3 (3)
N1—Mn1—N3—C6127.9 (2)Mn1—N4—C9—C1036.2 (3)
N2—Mn1—N3—C6147.2 (2)C1—N1—C10—C9177.7 (3)
N4—Mn1—N3—C648.0 (2)Mn1—N1—C10—C950.7 (3)
Mn1i—Mn1—N3—C653.5 (2)N4—C9—C10—N159.1 (4)
O1i—Mn1—N4—C849.3 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O60.922.012.912 (7)168
N2—H12N···O5iii0.912.112.980 (5)161
N3—H13N···O70.932.123.008 (5)160
N4—H14N···O5iv0.922.203.087 (4)163
C1—H1A···O10.972.593.118 (4)114
C2—H2B···O50.972.593.419 (5)143
C5—H5A···O4v0.972.523.394 (5)150
Symmetry codes: (iii) x+1/2, y+1/2, z+3/2; (iv) x, y, z1/2; (v) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn2O2(C10H24N4)2](ClO4)2(NO3)
Mr803.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.9616 (4), 13.8047 (4), 12.1531 (3)
β (°) 90.508 (1)
V3)3348.8 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.38 × 0.36 × 0.12
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.706, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
11565, 3823, 3292
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.150, 1.07
No. of reflections3823
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.54

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Mn1—O1i1.8263 (19)Mn1—N22.185 (3)
Mn1—O11.8291 (18)Mn1—N42.217 (3)
Mn1—N12.114 (2)Mn1—Mn1i2.7398 (7)
Mn1—N32.125 (2)
O1i—Mn1—O182.90 (8)N1—Mn1—N285.69 (10)
O1i—Mn1—N1173.95 (9)N3—Mn1—N280.24 (10)
O1—Mn1—N191.07 (9)O1i—Mn1—N499.97 (9)
O1i—Mn1—N391.74 (9)O1—Mn1—N498.00 (9)
O1—Mn1—N3174.34 (9)N1—Mn1—N480.37 (10)
N1—Mn1—N394.30 (9)N3—Mn1—N484.70 (10)
O1i—Mn1—N295.60 (9)N2—Mn1—N4158.61 (10)
O1—Mn1—N298.40 (10)Mn1i—O1—Mn197.10 (8)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O60.922.00522.912 (7)168
N2—H12N···O5ii0.912.10552.980 (5)161
N3—H13N···O70.932.11483.008 (5)160
N4—H14N···O5iii0.922.19773.087 (4)163
C1—H1A···O10.972.59313.118 (4)114
C2—H2B···O50.972.59183.419 (5)143
C5—H5A···O4iv0.972.52033.394 (5)150
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (iii) x, y, z1/2; (iv) x, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds