Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of tris(2-methyl­quinolin-8-olato-N,O)­iron(III), [Fe­(C10­H8­NO)3], (I), and aqua­bis(2-methyl­quinolin-8-olato-N,O)­copper(II), [Cu­(C10­H8NO)2­(H2O)], (II), have been determined. Compound (I) has a distorted octahedral configuration, in which the central Fe atom is coordinated by three N atoms and three O atoms from three 2-methylquinolin-8-olate ligands. The three Fe-O bond distances are in the range 1.934 (2)-1.947 (2) Å, while the three Fe-N bond distances range from 2.204 (2) to 2.405 (2) Å. In compound (II), the central CuII atom and H2O group lie on the crystallographic twofold axis and the coordination geometry of the CuII atom is close to trigonal bipyramidal, with the three O atoms in the basal plane and the two N atoms in apical positions. The Cu-N bond length is 2.018 (5) Å. The Cu-O bond length in the basal positions is 1.991 (4) Å, while the Cu-O bond length in the apical position is 2.273 (6) Å. There is an intermolecular OW-H...O hydrogen bond which links the mol­ecules into a linear chain along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101005534/sk1467sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101005534/sk1467Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101005534/sk1467IIsup3.hkl
Contains datablock II

CCDC references: 166975; 166976

Comment top

8-Quinolinol and its substituted analogues have been widely used as an extracting agent for transition metals and for the fluorescence analysis of 3 A group elements as well as in the preparation of non-linear optical materials with second harmonic generation at high intensity and stability at room temperature (Sanz-Medel et al., 1987; Sugiyama et al., 1991; Kato et al., 1988). Its complexes with transition metals have also found extensive applications. For example, bis(8-quinolinolato-N,O)nickel(II) has been used as a free-resistant additive for olefin polymers and as a fungicide for leather (Uma & Krishnamurthi, 1984). Also, tri(8-quinolinolato)cobalt(III) has been synthesized and used to assist in the metal-ligand assignments which are further based on Zn labelling of the Zn complex, and on the effects of metal ion substitution in relation to expectations based on crystal field theory (Nakamoto & Ohkaku, 1971). In this paper, we report the crystal structures of compounds (I) and (II). \sch

The molecular structures of compounds (I) and (II) are illustrated in Figs. 1 and 2, respectively. Selected bond lengths and angles are listed in Tables 1 and 2. In compound (I), the three 2-methyl-8-quinolinol ligands are coordinated to the central Fe atom by their oxygen and nitrogen atoms, forming five-membered chelate rings. The iron(III) atom has a slightly distorted octahedral configuration because of the result of the forced configuration of the five-membered chelate rings. Its structure is similar to that of tris(8-quinolinolate)chromium(III) (Folting et al., 1968) and tris(8-quinolinolate)manganese(III) (Xiong et al., 1995). The Fe—O bond distances in compound (I) are normal (Table 1), which are shorter than those in [Fe(OCH3)6(acac)4(N3)2] [1.986 (5) Å; Li et al. (1997)]. The Fe—N bond distances are in agreement with those in [Fe(phen)2(PhCOO)2]4+ [2.200 (4) Å; Li et al. (1995)]. Because of the methyl group steric effect, the Fe—N3 bond length is apparently longer than Fe—N1 and Fe—N2. Also, the chelate angle Fe—O3—C12 is the largest, Fe—N3—C11 being intermediate and the bite angle O3—Fe—N3 is the smallest.

In compound (II), the central pentacoordinated CuII atom and H2O group lie on a crystallographic twofold axis and its geometry is is close to trigonal bipyramidal. The basal coordination positions are occupied by three O atoms, and the apical positions are occupied by the two N atoms. The Cu—O1 and Cu—N1 distances fall within the normal range (Table 2), corresponding to the bond lengths in other five coordinative Cu complexes [Cu—O 1.910 (9)–1.997 (8) Å (Chen et al., 1997); Cu—N 1.979 (2)–2.029 (2) Å, (Liu et al., 1997); Cu—O 2.01 (1) Å and Cu—N 1.95–2.01 Å (Chen et al., 1995); Cu—O 1.942–1.958 Å and Cu—N 2.016–2.019 Å (Bu et al., 1990)]. The axial Cu—O1W bond, however, is significantly longer than the equatorial Cu—O1 bond, and is agreement with that found in a similar Cu—O1w bond compound (Liu et al., 1997). The five-membered chelate ring (Cu, O1, N1, C1 and C2) with 2-methyl-8-quinolinolate ligand are coplanar, with the maximum deviation of atoms being 0.039 (4) Å. The dihedral angle between the two quinolinolate ligand planes is 48.5 (1)°. The structure of CuO2N2 is obviously a distorted tetrahedron. The coordination plane composing of Cu, O1, O1i (i = -x, y, 1/2 - z) and O1W has a dihedral angle of 81.8 (2)° with the Cu, N1, N1i (i = -x, y, 1/2 - z) and O1W plane. They form a dihedral angle of 85.0 (2) and 66.9 (2)° with chelate ring plane, respectively.

For the compound (II), there is an intermolecular hydrogen bond, O1W—H···O1, with a separation of 2.752 (5) Å. This hydrogen bond links the molecules into a linear chain along the b axis.

Related literature top

For related literature, see: Bu et al. (1990); Chen et al. (1995, 1997); Kato et al. (1988); Li et al. (1995, 1997); Liu et al. (1997); Sanz-Medel, Fernandez & Garcia (1987); Sugiyama et al. (1991); Uma & Krishnamurthi (1984); Xiong et al. (1995).

Experimental top

The title complexes were prepared by mixing an aqueous solution of metal nitrate [M = FeIII and CuII] and 2-methyl-8-hydroxyquinoline with heating. The deposits were collected by filtration, washed with water and dried overnight. Deep red compound (I) and blue-green compound (II) were subsequently obtained. Single crystals suitable for X-ray analysis were obtained by recrystallization from EtOH solution at room temperature. It is very difficult to get good quality crystals of compound (II) though many attempts have been made. The crystal used for this report was the best attained after several attempts.

Refinement top

For both compounds, after checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on their attached atoms with Uiso = 1.2Ueq for the attached atoms (except for the CH3 moieties where Uiso = 1.5Ueq). The H atoms of the CH3 moieties were refined as rigid rotators.

For compound (II), restraints on the displacement parameters of atoms C1, N1 and O1W were applied.

Computing details top

For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. Compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Compound (II) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
(I) top
Crystal data top
[Fe(C10H8NO)3]F(000) = 2200
Mr = 530.37Dx = 1.407 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.8220 (3) ÅCell parameters from 8192 reflections
b = 16.0839 (3) Åθ = 1.6–29.5°
c = 15.6819 (3) ŵ = 0.64 mm1
β = 123.571 (1)°T = 293 K
V = 5006.31 (15) Å3Block, dark purple
Z = 80.48 × 0.40 × 0.08 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
5734 independent reflections
Radiation source: fine-focus sealed tube3729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 8.33 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω scansh = 3030
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 2011
Tmin = 0.749, Tmax = 0.951l = 2020
16629 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0718P)2]
where P = (Fo2 + 2Fc2)/3
5734 reflections(Δ/σ)max = 0.002
337 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
[Fe(C10H8NO)3]V = 5006.31 (15) Å3
Mr = 530.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.8220 (3) ŵ = 0.64 mm1
b = 16.0839 (3) ÅT = 293 K
c = 15.6819 (3) Å0.48 × 0.40 × 0.08 mm
β = 123.571 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
5734 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3729 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.951Rint = 0.072
16629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.45 e Å3
5734 reflectionsΔρmin = 0.96 e Å3
337 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Coverage of the unique set is over 99% complete. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible.

The structure was solved by direct methods and refined by full-matrix least-squares techniques.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.199035 (19)0.04925 (2)0.28179 (3)0.03340 (14)
O10.13359 (9)0.13849 (12)0.23414 (14)0.0407 (5)
O20.14913 (10)0.03845 (11)0.29759 (14)0.0380 (5)
O30.26680 (9)0.11650 (11)0.28312 (15)0.0411 (5)
N10.22357 (11)0.09900 (14)0.43075 (16)0.0351 (5)
N20.13879 (11)0.00065 (13)0.12414 (16)0.0303 (5)
N30.29125 (12)0.04454 (14)0.33399 (17)0.0361 (5)
C10.17811 (13)0.16089 (16)0.4100 (2)0.0336 (6)
C20.13053 (13)0.18037 (17)0.3042 (2)0.0335 (6)
C30.08407 (14)0.24217 (18)0.2805 (2)0.0444 (7)
H3A0.05220.25500.21230.053*
C40.08397 (15)0.2866 (2)0.3584 (3)0.0509 (8)
H4A0.05220.32820.34030.061*
C50.12908 (16)0.2696 (2)0.4586 (3)0.0498 (8)
H5A0.12820.29970.50840.060*
C60.17746 (14)0.20647 (17)0.4877 (2)0.0393 (7)
C70.22732 (16)0.1848 (2)0.5892 (2)0.0495 (8)
H7A0.22950.21240.64310.059*
C80.27208 (17)0.1240 (2)0.6088 (2)0.0498 (8)
H8A0.30500.11050.67630.060*
C90.26995 (15)0.08046 (19)0.5285 (2)0.0411 (7)
C100.32054 (17)0.0144 (2)0.5527 (2)0.0597 (9)
H10A0.29770.03590.51770.090*
H10B0.34730.00460.62520.090*
H10C0.34910.03200.53080.090*
C110.34102 (14)0.00092 (17)0.3366 (2)0.0372 (6)
C120.32562 (14)0.08696 (18)0.3078 (2)0.0390 (7)
C130.37372 (16)0.1341 (2)0.3071 (3)0.0557 (9)
H13A0.36500.18980.28820.067*
C140.43570 (18)0.0996 (3)0.3343 (3)0.0702 (11)
H14A0.46690.13290.33240.084*
C150.45130 (17)0.0186 (2)0.3634 (3)0.0636 (10)
H15A0.49260.00320.38110.076*
C160.40397 (15)0.0317 (2)0.3663 (2)0.0469 (8)
C170.41534 (17)0.1161 (2)0.3965 (3)0.0593 (9)
H17A0.45670.14050.41910.071*
C180.36608 (17)0.1613 (2)0.3926 (3)0.0583 (9)
H18A0.37340.21720.41060.070*
C190.30353 (16)0.12441 (19)0.3612 (2)0.0469 (8)
C200.25091 (19)0.1774 (2)0.3593 (3)0.0709 (11)
H20A0.21020.17600.29210.106*
H20B0.24210.15640.40810.106*
H20C0.26680.23360.37660.106*
C210.09568 (13)0.05858 (15)0.1188 (2)0.0300 (6)
C220.10259 (13)0.07881 (16)0.2131 (2)0.0326 (6)
C230.06036 (14)0.13837 (18)0.2113 (2)0.0429 (7)
H23A0.06460.15330.27190.051*
C240.01104 (15)0.17676 (18)0.1192 (3)0.0464 (8)
H24A0.01700.21650.12010.056*
C250.00300 (15)0.15718 (18)0.0275 (2)0.0451 (7)
H25A0.03040.18280.03270.054*
C260.04579 (13)0.09809 (17)0.0262 (2)0.0353 (6)
C270.04210 (15)0.07264 (18)0.0633 (2)0.0437 (7)
H27A0.01030.09630.12620.052*
C280.08503 (15)0.01364 (18)0.0573 (2)0.0418 (7)
H28A0.08280.00220.11610.050*
C290.13316 (14)0.02407 (17)0.0377 (2)0.0343 (6)
C300.17693 (17)0.0923 (2)0.0415 (2)0.0522 (8)
H30A0.22340.07840.09010.078*
H30B0.16640.14310.06190.078*
H30C0.16930.09930.02490.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0355 (2)0.0339 (2)0.0261 (2)0.00149 (17)0.01408 (18)0.00396 (17)
O10.0433 (11)0.0450 (12)0.0265 (10)0.0090 (9)0.0146 (9)0.0055 (9)
O20.0437 (11)0.0426 (11)0.0279 (10)0.0059 (9)0.0198 (9)0.0037 (8)
O30.0413 (11)0.0343 (11)0.0440 (12)0.0009 (9)0.0213 (10)0.0017 (9)
N10.0363 (12)0.0343 (13)0.0263 (12)0.0063 (10)0.0120 (11)0.0045 (10)
N20.0340 (12)0.0295 (12)0.0282 (11)0.0006 (9)0.0175 (10)0.0027 (10)
N30.0376 (13)0.0348 (13)0.0318 (13)0.0012 (10)0.0166 (11)0.0043 (10)
C10.0350 (14)0.0351 (15)0.0309 (15)0.0119 (12)0.0183 (13)0.0070 (12)
C20.0323 (14)0.0345 (15)0.0304 (15)0.0056 (11)0.0152 (12)0.0072 (12)
C30.0368 (16)0.0479 (18)0.0404 (17)0.0018 (14)0.0164 (14)0.0105 (14)
C40.0418 (17)0.051 (2)0.061 (2)0.0037 (15)0.0285 (17)0.0189 (16)
C50.0528 (19)0.054 (2)0.052 (2)0.0145 (16)0.0350 (18)0.0224 (17)
C60.0456 (17)0.0401 (16)0.0368 (16)0.0166 (13)0.0258 (14)0.0139 (13)
C70.067 (2)0.054 (2)0.0344 (17)0.0181 (17)0.0322 (17)0.0123 (15)
C80.059 (2)0.055 (2)0.0253 (15)0.0154 (16)0.0172 (15)0.0043 (14)
C90.0463 (17)0.0417 (16)0.0259 (15)0.0099 (14)0.0140 (14)0.0013 (13)
C100.062 (2)0.059 (2)0.0343 (18)0.0093 (18)0.0113 (16)0.0050 (16)
C110.0380 (15)0.0391 (16)0.0262 (14)0.0030 (13)0.0125 (13)0.0096 (12)
C120.0401 (16)0.0414 (16)0.0310 (15)0.0065 (13)0.0168 (14)0.0092 (13)
C130.052 (2)0.050 (2)0.063 (2)0.0129 (16)0.0303 (18)0.0065 (17)
C140.049 (2)0.077 (3)0.087 (3)0.0187 (19)0.038 (2)0.008 (2)
C150.0379 (18)0.075 (3)0.066 (2)0.0042 (18)0.0214 (18)0.016 (2)
C160.0386 (16)0.054 (2)0.0366 (17)0.0011 (14)0.0138 (14)0.0111 (14)
C170.0454 (19)0.064 (2)0.051 (2)0.0170 (17)0.0156 (17)0.0038 (18)
C180.058 (2)0.0441 (19)0.060 (2)0.0130 (17)0.0244 (19)0.0063 (17)
C190.0529 (19)0.0400 (18)0.0422 (18)0.0039 (14)0.0227 (16)0.0016 (14)
C200.075 (3)0.043 (2)0.096 (3)0.0009 (18)0.049 (3)0.006 (2)
C210.0312 (13)0.0283 (14)0.0296 (14)0.0027 (11)0.0162 (12)0.0022 (11)
C220.0348 (14)0.0306 (13)0.0319 (15)0.0003 (12)0.0181 (13)0.0018 (12)
C230.0466 (17)0.0435 (17)0.0448 (18)0.0022 (14)0.0292 (16)0.0023 (14)
C240.0446 (17)0.0375 (17)0.060 (2)0.0115 (13)0.0305 (17)0.0067 (15)
C250.0421 (17)0.0422 (17)0.0441 (18)0.0092 (14)0.0195 (15)0.0150 (14)
C260.0367 (15)0.0318 (15)0.0354 (15)0.0007 (12)0.0186 (13)0.0087 (12)
C270.0495 (18)0.0437 (17)0.0295 (15)0.0009 (14)0.0165 (14)0.0106 (13)
C280.0541 (18)0.0418 (17)0.0299 (15)0.0070 (14)0.0235 (15)0.0019 (13)
C290.0432 (16)0.0326 (14)0.0313 (15)0.0058 (12)0.0233 (14)0.0001 (12)
C300.066 (2)0.050 (2)0.0468 (19)0.0103 (16)0.0357 (18)0.0005 (16)
Geometric parameters (Å, º) top
Fe—O31.934 (2)C12—C131.379 (4)
Fe—O11.939 (2)C13—C141.405 (5)
Fe—O21.947 (2)C13—H13A0.9300
Fe—N22.204 (2)C14—C151.363 (5)
Fe—N12.220 (2)C14—H14A0.9300
Fe—N32.405 (2)C15—C161.408 (5)
O1—C21.324 (3)C15—H15A0.9300
O2—C221.335 (3)C16—C171.414 (5)
O3—C121.319 (3)C17—C181.352 (5)
N1—C91.337 (3)C17—H17A0.9300
N1—C11.371 (3)C18—C191.416 (4)
N2—C291.341 (3)C18—H18A0.9300
N2—C211.369 (3)C19—C201.503 (4)
N3—C191.334 (4)C20—H20A0.9600
N3—C111.374 (3)C20—H20B0.9600
C1—C61.430 (3)C20—H20C0.9600
C1—C21.434 (4)C21—C261.420 (4)
C2—C31.377 (4)C21—C221.433 (4)
C3—C41.415 (4)C22—C231.378 (4)
C3—H3A0.9300C23—C241.404 (4)
C4—C51.353 (4)C23—H23A0.9300
C4—H4A0.9300C24—C251.377 (4)
C5—C61.409 (4)C24—H24A0.9300
C5—H5A0.9300C25—C261.402 (4)
C6—C71.406 (4)C25—H25A0.9300
C7—C81.351 (5)C26—C271.418 (4)
C7—H7A0.9300C27—C281.360 (4)
C8—C91.417 (4)C27—H27A0.9300
C8—H8A0.9300C28—C291.418 (4)
C9—C101.490 (4)C28—H28A0.9300
C10—H10A0.9600C29—C301.492 (4)
C10—H10B0.9600C30—H30A0.9600
C10—H10C0.9600C30—H30B0.9600
C11—C161.403 (4)C30—H30C0.9600
C11—C121.439 (4)
O3—Fe—O194.51 (8)O3—C12—C13123.5 (3)
O3—Fe—O2165.66 (8)O3—C12—C11118.9 (2)
O1—Fe—O299.67 (8)C13—C12—C11117.6 (3)
O3—Fe—N2103.44 (8)C12—C13—C14121.2 (3)
O1—Fe—N286.80 (8)C12—C13—H13A119.4
O2—Fe—N279.69 (8)C14—C13—H13A119.4
O3—Fe—N193.13 (8)C15—C14—C13121.7 (3)
O1—Fe—N180.01 (8)C15—C14—H14A119.1
O2—Fe—N187.20 (8)C13—C14—H14A119.1
N2—Fe—N1159.59 (8)C14—C15—C16119.0 (3)
O3—Fe—N375.36 (8)C14—C15—H15A120.5
O1—Fe—N3169.70 (8)C16—C15—H15A120.5
O2—Fe—N390.54 (8)C11—C16—C15120.2 (3)
N2—Fe—N393.73 (8)C11—C16—C17116.2 (3)
N1—Fe—N3102.04 (8)C15—C16—C17123.6 (3)
C2—O1—Fe117.27 (17)C18—C17—C16120.0 (3)
C22—O2—Fe117.16 (16)C18—C17—H17A120.0
C12—O3—Fe123.2 (2)C16—C17—H17A120.0
C9—N1—C1118.5 (2)C17—C18—C19120.7 (3)
C9—N1—Fe134.1 (2)C17—C18—H18A119.7
C1—N1—Fe107.32 (16)C19—C18—H18A119.7
C29—N2—C21118.8 (2)N3—C19—C18121.2 (3)
C29—N2—Fe132.35 (18)N3—C19—C20120.4 (3)
C21—N2—Fe108.49 (16)C18—C19—C20118.4 (3)
C19—N3—C11118.0 (2)C19—C20—H20A109.5
C19—N3—Fe135.3 (2)C19—C20—H20B109.5
C11—N3—Fe106.7 (2)H20A—C20—H20B109.5
N1—C1—C6123.3 (3)C19—C20—H20C109.5
N1—C1—C2116.7 (2)H20A—C20—H20C109.5
C6—C1—C2120.0 (3)H20B—C20—H20C109.5
O1—C2—C3123.3 (3)N2—C21—C26123.4 (2)
O1—C2—C1118.5 (2)N2—C21—C22116.1 (2)
C3—C2—C1118.2 (2)C26—C21—C22120.5 (2)
C2—C3—C4121.1 (3)O2—C22—C23123.7 (3)
C2—C3—H3A119.5O2—C22—C21118.2 (2)
C4—C3—H3A119.5C23—C22—C21118.1 (2)
C5—C4—C3121.4 (3)C22—C23—C24120.9 (3)
C5—C4—H4A119.3C22—C23—H23A119.6
C3—C4—H4A119.3C24—C23—H23A119.6
C4—C5—C6120.2 (3)C25—C24—C23121.8 (3)
C4—C5—H5A119.9C25—C24—H24A119.1
C6—C5—H5A119.9C23—C24—H24A119.1
C7—C6—C5125.0 (3)C24—C25—C26119.2 (3)
C7—C6—C1116.0 (3)C24—C25—H25A120.4
C5—C6—C1119.1 (3)C26—C25—H25A120.4
C8—C7—C6120.2 (3)C25—C26—C27124.3 (3)
C8—C7—H7A119.9C25—C26—C21119.5 (3)
C6—C7—H7A119.9C27—C26—C21116.2 (2)
C7—C8—C9121.4 (3)C28—C27—C26120.0 (3)
C7—C8—H8A119.3C28—C27—H27A120.0
C9—C8—H8A119.3C26—C27—H27A120.0
N1—C9—C8120.6 (3)C27—C28—C29120.8 (3)
N1—C9—C10119.3 (3)C27—C28—H28A119.6
C8—C9—C10120.0 (3)C29—C28—H28A119.6
C9—C10—H10A109.5N2—C29—C28120.8 (3)
C9—C10—H10B109.5N2—C29—C30119.3 (2)
H10A—C10—H10B109.5C28—C29—C30119.9 (3)
C9—C10—H10C109.5C29—C30—H30A109.5
H10A—C10—H10C109.5C29—C30—H30B109.5
H10B—C10—H10C109.5H30A—C30—H30B109.5
N3—C11—C16123.9 (3)C29—C30—H30C109.5
N3—C11—C12115.9 (2)H30A—C30—H30C109.5
C16—C11—C12120.2 (3)H30B—C30—H30C109.5
O3—Fe—O1—C296.42 (19)C1—C6—C7—C80.1 (4)
O2—Fe—O1—C281.37 (19)C6—C7—C8—C90.4 (5)
N2—Fe—O1—C2160.34 (19)C1—N1—C9—C80.1 (4)
N1—Fe—O1—C24.03 (18)Fe—N1—C9—C8179.0 (2)
N3—Fe—O1—C2106.4 (4)C1—N1—C9—C10178.9 (3)
O3—Fe—O2—C22108.7 (3)Fe—N1—C9—C102.2 (4)
O1—Fe—O2—C2280.25 (18)C7—C8—C9—N10.5 (4)
N2—Fe—O2—C224.67 (18)C7—C8—C9—C10179.3 (3)
N1—Fe—O2—C22159.61 (18)C19—N3—C11—C160.1 (4)
N3—Fe—O2—C2298.36 (18)Fe—N3—C11—C16178.3 (2)
O1—Fe—O3—C12177.9 (2)C19—N3—C11—C12179.3 (2)
O2—Fe—O3—C1211.0 (4)Fe—N3—C11—C120.9 (3)
N2—Fe—O3—C1290.1 (2)Fe—O3—C12—C13178.7 (2)
N1—Fe—O3—C12101.9 (2)Fe—O3—C12—C110.9 (3)
N3—Fe—O3—C120.3 (2)N3—C11—C12—O31.2 (4)
O3—Fe—N1—C983.5 (3)C16—C11—C12—O3178.0 (3)
O1—Fe—N1—C9177.5 (3)N3—C11—C12—C13178.4 (3)
O2—Fe—N1—C982.1 (3)C16—C11—C12—C132.3 (4)
N2—Fe—N1—C9132.0 (3)O3—C12—C13—C14179.8 (3)
N3—Fe—N1—C97.8 (3)C11—C12—C13—C140.5 (5)
O3—Fe—N1—C197.54 (16)C12—C13—C14—C150.6 (6)
O1—Fe—N1—C13.51 (16)C13—C14—C15—C160.1 (6)
O2—Fe—N1—C196.82 (16)N3—C11—C16—C15177.8 (3)
N2—Fe—N1—C147.0 (3)C12—C11—C16—C153.0 (4)
N3—Fe—N1—C1173.23 (16)N3—C11—C16—C171.2 (4)
O3—Fe—N2—C2917.2 (2)C12—C11—C16—C17178.0 (3)
O1—Fe—N2—C2976.7 (2)C14—C15—C16—C111.9 (5)
O2—Fe—N2—C29177.2 (2)C14—C15—C16—C17179.2 (3)
N1—Fe—N2—C29126.3 (3)C11—C16—C17—C182.1 (5)
N3—Fe—N2—C2993.0 (2)C15—C16—C17—C18176.8 (3)
O3—Fe—N2—C21170.47 (15)C16—C17—C18—C191.8 (5)
O1—Fe—N2—C2195.66 (16)C11—N3—C19—C180.4 (4)
O2—Fe—N2—C214.78 (16)Fe—N3—C19—C18177.4 (2)
N1—Fe—N2—C2146.1 (3)C11—N3—C19—C20179.7 (3)
N3—Fe—N2—C2194.65 (16)Fe—N3—C19—C202.5 (5)
O3—Fe—N3—C19178.4 (3)C17—C18—C19—N30.5 (5)
O1—Fe—N3—C19171.3 (4)C17—C18—C19—C20179.3 (3)
O2—Fe—N3—C191.0 (3)C29—N2—C21—C261.3 (4)
N2—Fe—N3—C1978.7 (3)Fe—N2—C21—C26174.9 (2)
N1—Fe—N3—C1988.3 (3)C29—N2—C21—C22177.8 (2)
O3—Fe—N3—C110.37 (16)Fe—N2—C21—C224.3 (3)
O1—Fe—N3—C1110.7 (5)Fe—O2—C22—C23175.5 (2)
O2—Fe—N3—C11177.00 (17)Fe—O2—C22—C213.9 (3)
N2—Fe—N3—C11103.29 (17)N2—C21—C22—O20.8 (3)
N1—Fe—N3—C1189.74 (17)C26—C21—C22—O2178.3 (2)
C9—N1—C1—C60.4 (4)N2—C21—C22—C23179.8 (2)
Fe—N1—C1—C6178.8 (2)C26—C21—C22—C231.1 (4)
C9—N1—C1—C2178.2 (2)O2—C22—C23—C24178.0 (3)
Fe—N1—C1—C22.6 (3)C21—C22—C23—C241.4 (4)
Fe—O1—C2—C3176.5 (2)C22—C23—C24—C250.4 (5)
Fe—O1—C2—C13.9 (3)C23—C24—C25—C260.9 (4)
N1—C1—C2—O10.4 (4)C24—C25—C26—C27179.7 (3)
C6—C1—C2—O1178.2 (2)C24—C25—C26—C211.1 (4)
N1—C1—C2—C3179.9 (2)N2—C21—C26—C25178.9 (2)
C6—C1—C2—C31.4 (4)C22—C21—C26—C250.1 (4)
O1—C2—C3—C4178.4 (3)N2—C21—C26—C270.3 (4)
C1—C2—C3—C41.2 (4)C22—C21—C26—C27178.8 (2)
C2—C3—C4—C50.4 (5)C25—C26—C27—C28178.7 (3)
C3—C4—C5—C60.2 (5)C21—C26—C27—C280.1 (4)
C4—C5—C6—C7178.8 (3)C26—C27—C28—C291.0 (4)
C4—C5—C6—C10.1 (4)C21—N2—C29—C282.1 (4)
N1—C1—C6—C70.5 (4)Fe—N2—C29—C28173.85 (19)
C2—C1—C6—C7178.0 (2)C21—N2—C29—C30176.2 (2)
N1—C1—C6—C5179.4 (2)Fe—N2—C29—C304.5 (4)
C2—C1—C6—C50.8 (4)C27—C28—C29—N22.0 (4)
C5—C6—C7—C8178.9 (3)C27—C28—C29—C30176.3 (3)
(II) top
Crystal data top
[Cu(C10H8NO)2(H2O)]Dx = 1.549 Mg m3
Mr = 397.90Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 3814 reflections
a = 7.5388 (2) Åθ = 1.6–28.4°
b = 9.1091 (1) ŵ = 1.30 mm1
c = 24.8514 (6) ÅT = 293 K
V = 1706.59 (6) Å3Rectangular slab, orange
Z = 40.34 × 0.16 × 0.06 mm
F(000) = 820
Data collection top
Siemens SMART CCD area detector
diffractometer
1500 independent reflections
Radiation source: fine-focus sealed tube1056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.119
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω scansh = 88
Absorption correction: empirical (using intensity measurements)
(SADABS, Sheldrick, 1996)
k = 107
Tmin = 0.666, Tmax = 0.926l = 2926
8856 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1587P)2]
where P = (Fo2 + 2Fc2)/3
1500 reflections(Δ/σ)max < 0.001
104 parametersΔρmax = 1.84 e Å3
0 restraintsΔρmin = 1.52 e Å3
Crystal data top
[Cu(C10H8NO)2(H2O)]V = 1706.59 (6) Å3
Mr = 397.90Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 7.5388 (2) ŵ = 1.30 mm1
b = 9.1091 (1) ÅT = 293 K
c = 24.8514 (6) Å0.34 × 0.16 × 0.06 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
1500 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS, Sheldrick, 1996)
1056 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.926Rint = 0.119
8856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0880 restraints
wR(F2) = 0.239H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.84 e Å3
1500 reflectionsΔρmin = 1.52 e Å3
104 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.00000.19579 (11)0.25000.0207 (5)
O10.2170 (5)0.1121 (5)0.28387 (15)0.0241 (7)
O1W0.00000.4453 (7)0.25000.0241 (7)
H1W10.09120.47530.26420.036*
N10.0870 (7)0.2030 (5)0.3267 (2)0.0241 (7)
C10.0411 (8)0.1500 (7)0.3612 (3)0.0241 (7)
C20.2016 (7)0.1002 (7)0.3374 (2)0.0230 (13)
C30.3306 (8)0.0411 (8)0.3702 (2)0.0338 (17)
H3A0.43520.00470.35550.041*
C40.3030 (9)0.0360 (8)0.4267 (2)0.0386 (18)
H4A0.39150.00330.44840.046*
C50.1539 (9)0.0858 (9)0.4500 (2)0.0372 (18)
H5A0.14090.08130.48720.045*
C60.0170 (8)0.1451 (8)0.4177 (3)0.0279 (16)
C70.1463 (10)0.2021 (9)0.4373 (3)0.0391 (19)
H7A0.16910.20260.47410.047*
C80.2676 (9)0.2552 (8)0.4029 (3)0.0360 (17)
H8A0.37300.29330.41640.043*
C90.2395 (8)0.2547 (7)0.3466 (2)0.0251 (14)
C100.3746 (9)0.3150 (8)0.3083 (3)0.0372 (18)
H10A0.33130.30640.27210.056*
H10B0.48320.26080.31180.056*
H10C0.39590.41650.31640.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0254 (7)0.0105 (7)0.0262 (7)0.0000.0005 (4)0.000
O10.0297 (15)0.0077 (14)0.0348 (15)0.0002 (12)0.0020 (11)0.0004 (13)
O1W0.0297 (15)0.0077 (14)0.0348 (15)0.0002 (12)0.0020 (11)0.0004 (13)
N10.0297 (15)0.0077 (14)0.0348 (15)0.0002 (12)0.0020 (11)0.0004 (13)
C10.0297 (15)0.0077 (14)0.0348 (15)0.0002 (12)0.0020 (11)0.0004 (13)
C20.028 (3)0.008 (3)0.033 (3)0.003 (3)0.001 (2)0.001 (3)
C30.034 (4)0.025 (4)0.043 (4)0.007 (3)0.002 (3)0.003 (3)
C40.047 (4)0.030 (5)0.038 (4)0.006 (3)0.011 (3)0.013 (3)
C50.047 (4)0.037 (5)0.027 (3)0.002 (4)0.004 (3)0.004 (3)
C60.039 (4)0.017 (4)0.028 (3)0.003 (3)0.001 (3)0.001 (3)
C70.050 (5)0.036 (5)0.031 (4)0.000 (4)0.007 (3)0.004 (3)
C80.035 (4)0.022 (4)0.051 (4)0.007 (3)0.011 (3)0.005 (3)
C90.028 (3)0.006 (3)0.041 (4)0.004 (3)0.001 (3)0.003 (3)
C100.033 (4)0.023 (4)0.055 (4)0.009 (3)0.004 (3)0.005 (3)
Geometric parameters (Å, º) top
Cu—O1i1.991 (4)C4—C51.343 (9)
Cu—O11.991 (4)C4—H4A0.9300
Cu—N12.018 (5)C5—C61.415 (9)
Cu—N1i2.018 (5)C5—H5A0.9300
Cu—O1W2.273 (6)C6—C71.421 (9)
O1—C21.339 (7)C7—C81.342 (10)
O1W—H1W10.8200C7—H7A0.9300
N1—C91.336 (8)C8—C91.417 (8)
N1—C11.377 (8)C8—H8A0.9300
C1—C61.418 (9)C9—C101.498 (9)
C1—C21.422 (9)C10—H10A0.9600
C2—C31.380 (8)C10—H10B0.9600
C3—C41.418 (8)C10—H10C0.9600
C3—H3A0.9300
O1i—Cu—O1135.0 (2)C5—C4—C3122.6 (6)
O1i—Cu—N198.4 (2)C5—C4—H4A118.7
O1—Cu—N183.1 (2)C3—C4—H4A118.7
O1i—Cu—N1i83.1 (2)C4—C5—C6119.7 (6)
O1—Cu—N1i98.4 (2)C4—C5—H5A120.2
N1—Cu—N1i176.2 (3)C6—C5—H5A120.2
O1i—Cu—O1W112.5 (1)C5—C6—C1118.7 (6)
O1—Cu—O1W112.50 (12)C5—C6—C7125.3 (6)
N1—Cu—O1W88.12 (14)C1—C6—C7116.0 (6)
N1i—Cu—O1W88.1 (1)C8—C7—C6120.2 (6)
C2—O1—Cu112.3 (3)C8—C7—H7A119.9
Cu—O1W—H1W1109.5C6—C7—H7A119.9
C9—N1—C1119.8 (6)C7—C8—C9121.8 (6)
C9—N1—Cu129.8 (4)C7—C8—H8A119.1
C1—N1—Cu110.4 (4)C9—C8—H8A119.1
N1—C1—C6122.5 (6)N1—C9—C8119.6 (6)
N1—C1—C2116.7 (6)N1—C9—C10118.7 (5)
C6—C1—C2120.8 (6)C8—C9—C10121.6 (6)
O1—C2—C3124.0 (6)C9—C10—H10A109.5
O1—C2—C1117.4 (5)C9—C10—H10B109.5
C3—C2—C1118.6 (6)H10A—C10—H10B109.5
C2—C3—C4119.6 (6)C9—C10—H10C109.5
C2—C3—H3A120.2H10A—C10—H10C109.5
C4—C3—H3A120.2H10B—C10—H10C109.5
O1i—Cu—O1—C294.3 (4)O1—C2—C3—C4178.8 (6)
N1—Cu—O1—C20.6 (4)C1—C2—C3—C42.1 (9)
N1i—Cu—O1—C2177.1 (4)C2—C3—C4—C50.6 (11)
O1W—Cu—O1—C285.7 (4)C3—C4—C5—C60.4 (12)
O1i—Cu—N1—C948.0 (5)C4—C5—C6—C10.2 (11)
O1—Cu—N1—C9177.4 (5)C4—C5—C6—C7179.6 (8)
O1W—Cu—N1—C964.5 (5)N1—C1—C6—C5178.6 (6)
O1i—Cu—N1—C1134.8 (4)C2—C1—C6—C51.8 (10)
O1—Cu—N1—C10.2 (4)N1—C1—C6—C71.6 (10)
O1W—Cu—N1—C1112.7 (4)C2—C1—C6—C7178.0 (6)
C9—N1—C1—C61.2 (9)C5—C6—C7—C8179.6 (7)
Cu—N1—C1—C6178.7 (5)C1—C6—C7—C80.6 (11)
C9—N1—C1—C2178.5 (5)C6—C7—C8—C90.9 (11)
Cu—N1—C1—C21.0 (7)C1—N1—C9—C80.3 (9)
Cu—O1—C2—C3177.8 (5)Cu—N1—C9—C8176.6 (5)
Cu—O1—C2—C11.3 (7)C1—N1—C9—C10178.5 (6)
N1—C1—C2—O11.6 (8)Cu—N1—C9—C101.6 (9)
C6—C1—C2—O1178.1 (5)C7—C8—C9—N11.4 (10)
N1—C1—C2—C3177.6 (6)C7—C8—C9—C10179.5 (7)
C6—C1—C2—C32.7 (9)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O1ii0.821.972.752 (5)159
Symmetry code: (ii) x1/2, y+1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Fe(C10H8NO)3][Cu(C10H8NO)2(H2O)]
Mr530.37397.90
Crystal system, space groupMonoclinic, C2/cOrthorhombic, Pbcn
Temperature (K)293293
a, b, c (Å)23.8220 (3), 16.0839 (3), 15.6819 (3)7.5388 (2), 9.1091 (1), 24.8514 (6)
α, β, γ (°)90, 123.571 (1), 9090, 90, 90
V3)5006.31 (15)1706.59 (6)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.641.30
Crystal size (mm)0.48 × 0.40 × 0.080.34 × 0.16 × 0.06
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Siemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(SADABS, Sheldrick, 1996)
Tmin, Tmax0.749, 0.9510.666, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
16629, 5734, 3729 8856, 1500, 1056
Rint0.0720.119
(sin θ/λ)max1)0.6500.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.142, 0.94 0.088, 0.239, 1.07
No. of reflections57341500
No. of parameters337104
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.961.84, 1.52

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT and SADABS (Sheldrick, 1996), SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) for (I) top
Fe—O31.934 (2)Fe—N22.204 (2)
Fe—O11.939 (2)Fe—N12.220 (2)
Fe—O21.947 (2)Fe—N32.405 (2)
O3—Fe—O194.51 (8)O1—Fe—N180.01 (8)
O1—Fe—O299.67 (8)O2—Fe—N187.20 (8)
O1—Fe—N286.80 (8)O3—Fe—N375.36 (8)
O2—Fe—N279.69 (8)C12—O3—Fe123.2 (2)
O3—Fe—N193.13 (8)C11—N3—Fe106.7 (2)
Selected geometric parameters (Å, º) for (II) top
Cu—O1i1.991 (4)Cu—N1i2.018 (5)
Cu—O11.991 (4)Cu—O1W2.273 (6)
Cu—N12.018 (5)
O1i—Cu—N198.4 (2)O1—Cu—N1i98.4 (2)
O1—Cu—N183.1 (2)O1i—Cu—O1W112.5 (1)
O1i—Cu—N1i83.1 (2)N1i—Cu—O1W88.1 (1)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O1ii0.821.9702.752 (5)159
Symmetry code: (ii) x1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds