Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Ni2(C8H4O4)(C10H24N4)2(H2O)2](ClO4)2, contains two independent octahedral NiII centres with trans-NiN4O2 chromophores. The bridging benzene­dicarboxyl­ate ligand is bonded to the two Ni atoms, each via one O atom of each carboxyl­ate, while the other O atom participates in an intramolecular N-H...O hydrogen bond, forming an S(6) motif. The cations are linked to the perchlorate anions via O-H...O and N-H...O hydrogen bonds [O...O 2.904 (6) and 2.898 (6) Å; O-H...O 158 (6) and 165 (6)°; N...O 3.175 (7) and 3.116 (7) Å; N-H...O 168 and 166°] to form molecular ladders. These ladders are linked by further O-H...O and N-H...O hydrogen bonds [O...O 2.717 (6) and 2.730 (5) Å; O-H...O 170 (4) and 163 (6)°; N...O 3.373 (7) and 3.253 (7) Å; N-H...O 163 and 167°] to form a continuous three-dimensional framework. The perchlorate anions both participate in three hydrogen bonds, and both are thus fully ordered.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101003857/sk1465sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003857/sk1465Isup2.hkl
Contains datablock I

CCDC reference: 166963

Comment top

The [Ni(cyclam)]2+ cation [(1,4,8,11-tetraazacyclotetradecane)nickel(II)], [Ni(C10H24N4)]2+, reacts readily with two equivalents of the 4-hydroxybenzoate anion to yield a neutral complex containing a trans octahedral NiN4O2 chromophore (Glidewell et al., 2000). In this complex, [(HOC6H4COO)2Ni(cyclam)], the square-planar [Ni(cyclam)] fragment has two axial sites available for coordination, in this case by the hydroxybenzoate ligands, and a well defined array of axial N—H bonds, two on each face of the nearly-planar macrocycle, available for hydrogen-bond formation. The [Ni(cyclam)]2+ cation is thus an attractive building block for the construction of pre-designed coordination polymer networks, using, for example, polycarboxylate anions as the axial ligands. It is reasonable to envisage that growth of coordination polymer networks proceeds in a stepwise fashion via low- and medium-molecularity intermediates. By use of the 1,4-benzenedicarboxylate (terephthalate) anion, [C6H4(COO)2]2-, we have now isolated the title anion-bridged dinuclear complex, (I), and its structure is presented here. \sch

In the cation of (I) (Fig. 1), the bridging dianionic ligand utilizes one O atom of each carboxylate group to coordinate to the Ni, while the other O atom in each group accepts a hydrogen bond, forming an S(6) motif, precisely as observed in the 4-hydroxybenzoate complex (Glidewell et al., 2000). This coordination mode, with direct Ni—O bonds to the carboxylate anion, differs from that observed with 1,3,5-benzenetricarboxylate, where the anions are simply hydrogen-bonded to trans [Ni(cyclam)(H2O)2]2+ cations (Choi et al., 1999). Each Ni atom is also coordinated by four N atoms from the cyclam ligand, which occupy the equatorial sites of an axially elongated octahedron. A water molecule occupies the second axial site of each Ni.

The cyclam ligands adopt the usual trans-III conformation (Barefield, Bianchi et al., 1986), with all torsion angles in the ring within 15° of either 180° (antiperiplanar) or ±60° (synclinal) (Table 1). The Ni—N distances are closely similar, ranging only from 2.049 (5) to 2.089 (5) Å; these distances are typical of those observed in octahedral NiII complexes of cyclam and its C-methyl derivatives (Whimp et al., 1970; Curtis et al., 1973; Hay et al., 1982; Ito et al., 1984; Barefield, Bianchi et al., 1986; Barefield, Freeman & Van Derveer, 1986; Hambley, 1986; Mochizuki & Kondo, 1995; Choi et al., 1999; Glidewell et al., 2000), although they are significantly shorter than those observed in the square-planar systems (Prasad & McAuley, 1983; Barefield, Bianchi et al., 1986; Adam et al., 1991). The mean value of the Ni—O distances, 2.161 (4) Å, is virtually identical with those observed in salts of trans [Ni(cyclam)(H2O)2]2+ cations (Mochizuki & Kondo, 1995; Choi et al., 1999). On the other hand, the C—N distances exhibit a much wider range, from 1.431 (9) to 1.524 (9) Å.

Although the two [Ni(cyclam)] fragments in the cation are fully eclipsed with respect to the Ni···Ni vector, the detailed differences in the C—N distances and in the magnitudes of the torsion angles involving corresponding sets of atoms in the two [Ni(cyclam)] fragments prevent the cation from attaining a centrosymmetric configuration. Nonetheless, the O—Ni(N4)-benzenedicarboxylato-Ni(N4)-O unit (i.e. the entire cation except for the C atoms of the cyclam ligands) is very close to being centrosymmetric. In the bridging ligand, the carboxylate groups based on C7 and C8 are rotated out of the plane of the aryl ring by 38.0 (2)° and 35.2 (2)°, respectively, with the sense of the rotations mimicking centrosymmetry (Fig. 1).

The two perchlorate anions are both fully ordered. Each participates in three hydrogen bonds (Table 2), and it is these which prevent the almost free rotation often observed with this anion. Within the selected asymmetric unit (Fig. 1), N111 and N211 act as hydrogen-bond donors to O14 and O24, respectively (Table 2).

Apart from the formation of the four N—H···O hydrogen bonds within the selected asymmetric unit, the cation of (I) has four N—H and four O—H bonds available for the formation of hydrogen bonds to other aggregates. Four of the resulting hydrogen bonds (entries 5–8 in Table 2) link the three-ion aggregates into chains running parallel to the [100] direction, while the other four (entries 9–12 in Table 2) link each [100] to four of its neighbours, so generating a continuous three-dimensional framework. Atom N14 in the cation at (x, y, z) acts as a donor to perchlorate atom O13 at (1 + x, y, z), while atom O5 at (x, y, z) acts as a donor, via H52, to O11 in the same perchlorate at (1 + x, y, z). In an entirely similar manner, atoms N24 and O6 at (x, y, z) act as donors to O23 and O21, respectively, at (-1 + x, y, z), so forming a molecular ladder parallel to [100] in which each upright is a C(8) C(8)[R22(8)] chain of rings, while the Ni-(benzenedicarboxylato)-Ni units form the rungs (Fig. 2). This ladder runs approximately along the line (x, 1/2, 1/4) and a second similar ladder runs approximately along the line (x, 0, 3/4). Each ladder is directly linked to four neighbouring ladders: atoms N18 and O5 at (x, y, z), which are components of the ladder along (x, 1/2, 1/4), both act as hydrogen-bond donors to O4 at (1 - x, 1/2 + y, 1 - z), which is a component of the ladder along (x, 1, 3/4). Similarly, atoms N28 and O6 at (x, y, z) both act as donors to O2 at (-x, y - 1/2, -z), which is a component of the ladder along (x, 0, -1/4). In this manner, the ladder along (x, 1/2, 1/4) is directly linked to the four ladders along (x, 0, 3/4), (x, 0, -1/4), (x, 1, 3/4) and (x, 1, -1/4) (Fig. 3), and propagation of these hydrogen bonds by the space group links all of the [100] ladders into a three-dimensional framework.

In addition to the O—H···O and N—H···O hydrogen bonds, there are also four significant C—H···O hydrogen bonds. Two of these (entries 13 and 14 in Table 2) reinforce the [100] chains, while the other two reinforce the links between these chains.

For the two intracation N—H···O hydrogen bonds, the short N···O distances are probably largely determined by the adjacent Ni—O coordination. The remainder of the N—H···O hydrogen bonds fall into two clear groups (Table 2): those having perchlorate O as acceptor have significantly shorter N···O distances than those having carboxylate O as acceptor. By contrast, the O—H···O hydrogen bonds with perchlorate O as acceptor have significantly longer O···O distances than those with carboxylate O acceptors. The D—H···A angles for the hard interion hydrogen bonds are all closely clustered around the mean value of 166°. Hence, the pattern of the H···A distances closely follows that of the D···A distances.

Related literature top

For related literature, see: Adam et al. (1991); Barefield, Bianchi, Billo, Connolly, Paoletti, Summers & Van Derveer (1986); Barefield, Freeman & Van Derveer (1986); Choi et al. (1999); Curtis et al. (1973); Flack (1983); Glidewell et al. (2000); Hambley (1986); Hay et al. (1982); Ito et al. (1984); Mochizuki & Kondo (1995); Prasad & McAuley (1983); Sheldrick (1997); Whimp et al. (1970).

Experimental top

A sample of compound (I) was isolated as a purple microcrystalline solid from the reaction between [Ni(cyclam)]2+·2ClO4- and the disodium salt of terephthalic acid in aqueous methanol. Crystals of (I) suitable for single-crystal X-ray diffraction were grown from solution in water.

Refinement top

Compound (I) crystallized in the monoclinic system, space group P21 or P21/m from the systematic absences. P21 was assumed and confirmed by the analysis. H atoms were treated as riding, with C—H = 0.95 (aromatic) and 0.99 Å (aliphatic CH2), and N—H = 0.93 Å. Water H atoms were clearly visible in difference maps and were initially refined isotropically using a DFIX command (SHELXL97; Sheldrick, 1997), with a free variable for the common O—H distance and a free variable for the overall Uiso value. The final refinement had the water O—H distance set to 0.85 Å. Refinement of the Flack parameter (Flack, 1983) using 3083 Friedel-related reflections suggested that the data should be treated as a racemic twin, using the TWIN and BASF commands in SHELXL97. The structure of (I) approximates closely to a centrosymmetric one, with the terephthalate moiety lying about an inversion centre in space group P21/n. There is an almost perfect fit of atoms, except for all the C and H atoms of the cyclam residues. Inspection of the reflection data shows clearly that the h0l glide reflections (h+l = 2n+1), which would be absent in P21/n, are clearly present, although many are weak.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity, except those on N atoms and in water molecules, which are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a molecular ladder parallel to [100]. H atoms bonded to C have been omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing the linking of the [100] molecular ladders into a three-dimensional framework. H atoms bonded to C have been omitted for clarity.
µ-1,4-Benzenedicarboxylato-bis[trans-aqua(1,4,8,11-tetraazacyclotetradecane) nickel(II)] diperchlorate top
Crystal data top
[Ni2(C10H24N4)2(H2O)2(C8H4O4)](ClO4)2F(000) = 964
Mr = 917.09Dx = 1.557 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.2842 (3) ÅCell parameters from 7654 reflections
b = 14.9172 (4) Åθ = 2.8–27.5°
c = 13.0621 (4) ŵ = 1.17 mm1
β = 102.5220 (11)°T = 150 K
V = 1956.21 (10) Å3Plate, purple
Z = 20.18 × 0.18 × 0.07 mm
Data collection top
Kappa-CCD
diffractometer
7654 independent reflections
Radiation source: fine-focus sealed X-ray tube5458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.817, Tmax = 0.922k = 1917
13566 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.019P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
7654 reflectionsΔρmax = 0.70 e Å3
501 parametersΔρmin = 0.44 e Å3
5 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.38 (3)
Crystal data top
[Ni2(C10H24N4)2(H2O)2(C8H4O4)](ClO4)2V = 1956.21 (10) Å3
Mr = 917.09Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.2842 (3) ŵ = 1.17 mm1
b = 14.9172 (4) ÅT = 150 K
c = 13.0621 (4) Å0.18 × 0.18 × 0.07 mm
β = 102.5220 (11)°
Data collection top
Kappa-CCD
diffractometer
7654 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
5458 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.922Rint = 0.052
13566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097Δρmax = 0.70 e Å3
S = 1.01Δρmin = 0.44 e Å3
7654 reflectionsAbsolute structure: Flack (1983)
501 parametersAbsolute structure parameter: 0.38 (3)
5 restraints
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G·C. & Holmes, K·C. (1966). Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Geometry. Mean-plane data from the final SHELXL97 refinement run:-

##########################################################################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 6.7013 (0.0061) x + 9.5657 (0.0090) y - 3.3217 (0.0164) z = 2.2537 (0.0081)

* -0.0064 (0.0046) C1 * -0.0089 (0.0046) C2 * 0.0004 (0.0049) C3 * 0.0155 (0.0047) C4 * 0.0070 (0.0047) C5 * -0.0157 (0.0048) C6 * 0.0131 (0.0047) C7 * -0.0050 (0.0049) C8

Rms deviation of fitted atoms = 0.0103

- 7.1702 (0.0237) x + 10.0577 (0.0356) y + 5.0802 (0.0341) z = 4.4222 (0.0322)

Angle to previous plane (with approximate e.s.d.) = 38.0 (2)

* 0.0009 (0.0013) C1 * -0.0031 (0.0048) C7 * 0.0011 (0.0017) O1 * 0.0011 (0.0017) O2

Rms deviation of fitted atoms = 0.0018

#########################################################################

- 6.7013 (0.0061) x + 9.5657 (0.0090) y - 3.3217 (0.0164) z = 2.2537 (0.0081)

* -0.0064 (0.0046) C1 * -0.0089 (0.0046) C2 * 0.0004 (0.0049) C3 * 0.0155 (0.0047) C4 * 0.0070 (0.0047) C5 * -0.0157 (0.0048) C6 * 0.0131 (0.0047) C7 * -0.0050 (0.0049) C8

Rms deviation of fitted atoms = 0.0103

- 7.1482 (0.0235) x + 10.3230 (0.0344) y + 4.4540 (0.0350) z = 4.4624 (0.0134)

Angle to previous plane (with approximate e.s.d.) = 35.2 (2)

* 0.0013 (0.0014) C4 * -0.0048 (0.0050) C8 * 0.0017 (0.0018) O3 * 0.0017 (0.0018) O4

Rms deviation of fitted atoms = 0.0028

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.68641 (7)0.74680 (4)0.38396 (6)0.01733 (16)
O50.8430 (4)0.8439 (3)0.4538 (3)0.0245 (11)
N110.6599 (5)0.8093 (4)0.2392 (4)0.0250 (12)
N140.8279 (5)0.6711 (4)0.3318 (4)0.0303 (12)
N180.7122 (5)0.6837 (4)0.5287 (4)0.0350 (15)
N1110.5483 (5)0.8251 (4)0.4356 (4)0.0269 (12)
C120.7696 (6)0.7819 (4)0.1918 (5)0.0360 (17)
C130.8000 (7)0.6839 (5)0.2156 (5)0.0387 (17)
C150.8343 (6)0.5766 (4)0.3604 (5)0.0384 (16)
C160.8602 (6)0.5638 (4)0.4780 (5)0.0428 (17)
C170.7421 (6)0.5838 (4)0.5264 (5)0.0405 (18)
C190.5928 (7)0.7062 (5)0.5678 (5)0.045 (2)
C1100.5683 (6)0.8045 (5)0.5502 (4)0.0395 (19)
C1120.5455 (7)0.9189 (4)0.4087 (6)0.0434 (18)
C1130.5234 (6)0.9330 (4)0.2916 (5)0.0457 (19)
C1140.6387 (7)0.9069 (4)0.2415 (5)0.0390 (18)
Ni20.18413 (7)0.25284 (4)0.11557 (6)0.01788 (16)
O60.3443 (4)0.1574 (3)0.0511 (3)0.0213 (10)
N210.1797 (5)0.2092 (3)0.2650 (4)0.0279 (12)
N240.3223 (5)0.3445 (4)0.1457 (4)0.0289 (13)
N280.1939 (5)0.2965 (4)0.0378 (4)0.0343 (14)
N2110.0487 (5)0.1595 (4)0.0875 (4)0.0355 (14)
C220.2953 (5)0.2507 (4)0.2989 (4)0.0290 (14)
C230.3099 (7)0.3447 (5)0.2595 (5)0.0391 (17)
C250.3157 (7)0.4349 (4)0.0983 (5)0.0413 (18)
C260.3261 (7)0.4280 (4)0.0201 (5)0.049 (2)
C270.2042 (7)0.3913 (4)0.0539 (5)0.0459 (19)
C290.0725 (6)0.2532 (6)0.0663 (4)0.049 (2)
C2100.0596 (6)0.1571 (5)0.0282 (5)0.0425 (18)
C2130.0479 (7)0.0740 (4)0.2502 (5)0.0476 (19)
C2120.0564 (6)0.0687 (5)0.1331 (5)0.047 (2)
C2140.1676 (6)0.1124 (4)0.2832 (5)0.0382 (17)
O10.5332 (4)0.6538 (3)0.3288 (3)0.0210 (10)
O20.4479 (4)0.6792 (3)0.1583 (3)0.0239 (11)
O30.0244 (4)0.3442 (3)0.1653 (3)0.0236 (10)
O40.0527 (4)0.3232 (3)0.3379 (3)0.0269 (11)
C10.3491 (6)0.5647 (4)0.2454 (4)0.0180 (13)
C20.3097 (6)0.5075 (4)0.1610 (4)0.0208 (14)
C30.2136 (6)0.4419 (4)0.1630 (5)0.0226 (15)
C40.1556 (6)0.4327 (4)0.2490 (4)0.0191 (14)
C50.1970 (6)0.4907 (4)0.3350 (5)0.0235 (14)
C60.2927 (6)0.5546 (4)0.3330 (5)0.0221 (15)
C70.4518 (6)0.6382 (4)0.2440 (4)0.0182 (13)
C80.0547 (6)0.3610 (4)0.2521 (5)0.0212 (14)
Cl10.17207 (15)0.80653 (12)0.39094 (11)0.0262 (4)
O110.0568 (4)0.8591 (4)0.3416 (4)0.0396 (13)
O120.2517 (4)0.8581 (3)0.4746 (3)0.0361 (11)
O130.1263 (4)0.7258 (3)0.4336 (4)0.0412 (13)
O140.2506 (4)0.7836 (3)0.3155 (3)0.0372 (12)
Cl20.33011 (15)0.19328 (12)0.11237 (11)0.0280 (4)
O210.4401 (4)0.1345 (4)0.1595 (4)0.0345 (12)
O220.2529 (4)0.1515 (4)0.0206 (3)0.0411 (12)
O230.3851 (4)0.2758 (3)0.0830 (4)0.0483 (14)
O240.2479 (4)0.2099 (4)0.1864 (3)0.0481 (15)
H110.58280.78510.19780.030*
H140.91090.69620.35950.036*
H180.78450.71080.57320.042*
H1110.46510.80230.40410.032*
H12A0.84940.81860.22030.043*
H12B0.74490.79110.11490.043*
H13A0.72300.64660.18170.046*
H13B0.87820.66540.18800.046*
H15A0.90630.54730.33310.046*
H15B0.74920.54720.32750.046*
H16A0.93510.60310.51120.051*
H16B0.88830.50100.49450.051*
H17A0.76040.56020.59900.049*
H17B0.66270.55240.48590.049*
H19A0.60690.69200.64350.054*
H19B0.51540.67130.52970.054*
H11A0.64520.83880.58990.047*
H11B0.48820.82240.57580.047*
H11C0.63100.94690.44350.052*
H11D0.47330.94880.43510.052*
H11E0.50290.99710.27660.055*
H11F0.44400.89810.25730.055*
H11G0.62110.93020.16890.047*
H11H0.72120.93570.28100.047*
H210.10400.23460.30700.033*
H240.40600.32120.11640.035*
H280.26900.27050.08000.041*
H2110.03540.18200.11700.043*
H22A0.37750.21640.27010.035*
H22B0.28030.25020.37640.035*
H23A0.38990.37230.27680.047*
H23B0.23110.38030.29350.047*
H25A0.23060.46420.13140.050*
H25B0.38940.47260.11200.050*
H26A0.40310.38930.05010.059*
H26B0.34520.48850.05090.059*
H27A0.21050.40490.12900.055*
H27B0.12320.42090.01300.055*
H29A0.08170.25470.14330.059*
H29B0.00860.28720.03370.059*
H21A0.13860.12190.06270.051*
H21B0.02070.12900.04460.051*
H21C0.03220.01290.27970.057*
H21D0.03060.11080.28180.057*
H21E0.01750.03120.11950.057*
H21F0.14140.03980.09870.057*
H21G0.24890.08240.24360.046*
H21H0.16060.10020.35870.046*
H20.34820.51300.10140.025*
H30.18750.40290.10460.027*
H50.15870.48560.39470.028*
H60.32090.59260.39200.027*
H510.869 (6)0.832 (4)0.5187 (12)0.042 (7)*
H520.904 (4)0.863 (4)0.425 (4)0.042 (7)*
H610.373 (6)0.153 (4)0.0148 (12)0.042 (7)*
H620.414 (3)0.159 (4)0.076 (4)0.042 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0159 (3)0.0199 (4)0.0154 (3)0.0029 (3)0.0015 (3)0.0011 (3)
O50.023 (2)0.028 (3)0.021 (2)0.003 (2)0.0018 (19)0.002 (2)
N110.023 (2)0.033 (3)0.016 (2)0.016 (2)0.0024 (18)0.004 (2)
N140.023 (2)0.031 (3)0.036 (3)0.007 (2)0.003 (2)0.014 (2)
N180.026 (3)0.053 (4)0.020 (2)0.018 (2)0.007 (2)0.007 (2)
N1110.013 (2)0.036 (3)0.028 (3)0.004 (2)0.0019 (19)0.012 (2)
C120.036 (3)0.053 (4)0.021 (3)0.021 (3)0.009 (2)0.004 (3)
C130.030 (3)0.062 (5)0.028 (3)0.012 (3)0.014 (2)0.020 (3)
C150.025 (3)0.028 (3)0.057 (4)0.000 (2)0.004 (3)0.011 (3)
C160.035 (3)0.025 (3)0.058 (4)0.005 (2)0.013 (3)0.014 (3)
C170.042 (4)0.030 (3)0.039 (4)0.013 (3)0.017 (3)0.023 (3)
C190.038 (4)0.079 (5)0.016 (3)0.029 (3)0.004 (2)0.002 (3)
C1100.022 (3)0.077 (5)0.022 (3)0.007 (4)0.010 (2)0.020 (4)
C1120.026 (3)0.027 (3)0.071 (5)0.009 (3)0.002 (3)0.019 (3)
C1130.033 (3)0.028 (3)0.062 (4)0.004 (3)0.021 (3)0.001 (3)
C1140.040 (4)0.023 (3)0.044 (4)0.012 (3)0.014 (3)0.017 (3)
Ni20.0163 (3)0.0205 (4)0.0158 (3)0.0026 (3)0.0011 (3)0.0002 (3)
O60.013 (2)0.031 (3)0.018 (2)0.003 (2)0.0009 (17)0.002 (2)
N210.029 (3)0.026 (2)0.024 (2)0.011 (2)0.008 (2)0.0069 (19)
N240.019 (2)0.028 (3)0.036 (3)0.001 (2)0.0023 (19)0.008 (2)
N280.027 (3)0.052 (3)0.020 (2)0.022 (2)0.004 (2)0.004 (2)
N2110.021 (2)0.049 (4)0.036 (3)0.002 (2)0.005 (2)0.016 (2)
C220.023 (3)0.050 (4)0.017 (2)0.012 (3)0.0091 (19)0.008 (3)
C230.030 (3)0.051 (4)0.037 (4)0.002 (3)0.009 (3)0.015 (3)
C250.045 (4)0.016 (3)0.056 (5)0.007 (3)0.004 (3)0.006 (3)
C260.051 (5)0.032 (4)0.049 (4)0.006 (3)0.021 (3)0.013 (3)
C270.048 (4)0.044 (4)0.036 (4)0.019 (3)0.011 (3)0.021 (3)
C290.026 (3)0.105 (6)0.018 (3)0.023 (5)0.008 (2)0.001 (5)
C2100.024 (3)0.065 (5)0.038 (4)0.005 (3)0.005 (2)0.020 (3)
C2130.054 (4)0.018 (3)0.057 (4)0.004 (3)0.018 (3)0.011 (3)
C2120.025 (3)0.025 (3)0.086 (6)0.005 (2)0.000 (4)0.014 (4)
C2140.033 (3)0.038 (4)0.036 (3)0.014 (3)0.011 (3)0.013 (3)
O10.017 (2)0.027 (3)0.016 (2)0.0088 (19)0.0052 (16)0.0041 (19)
O20.025 (2)0.028 (3)0.0166 (19)0.0109 (19)0.0006 (16)0.003 (2)
O30.021 (2)0.027 (3)0.020 (2)0.007 (2)0.0001 (18)0.0007 (19)
O40.028 (2)0.028 (3)0.021 (2)0.010 (2)0.0011 (17)0.004 (2)
C10.014 (3)0.022 (3)0.015 (3)0.000 (3)0.006 (2)0.006 (3)
C20.024 (3)0.022 (3)0.014 (3)0.006 (3)0.000 (2)0.002 (2)
C30.029 (3)0.019 (3)0.019 (3)0.005 (3)0.002 (3)0.003 (3)
C40.019 (3)0.012 (3)0.024 (3)0.002 (3)0.001 (2)0.002 (3)
C50.024 (3)0.026 (4)0.020 (3)0.001 (3)0.005 (3)0.001 (3)
C60.016 (3)0.021 (4)0.026 (3)0.004 (3)0.004 (3)0.002 (3)
C70.016 (3)0.016 (3)0.022 (3)0.000 (3)0.003 (2)0.002 (3)
C80.016 (3)0.024 (4)0.022 (3)0.001 (3)0.001 (3)0.002 (3)
Cl10.0179 (8)0.0302 (9)0.0287 (8)0.0001 (7)0.0010 (7)0.0013 (7)
O110.021 (2)0.055 (3)0.039 (2)0.012 (2)0.001 (2)0.016 (3)
O120.034 (2)0.038 (2)0.033 (2)0.006 (2)0.000 (2)0.007 (2)
O130.033 (2)0.040 (3)0.050 (3)0.005 (2)0.007 (2)0.008 (2)
O140.025 (2)0.051 (3)0.038 (3)0.004 (2)0.013 (2)0.007 (2)
Cl20.0200 (8)0.0349 (10)0.0271 (8)0.0026 (8)0.0005 (7)0.0010 (7)
O210.026 (3)0.041 (3)0.033 (2)0.004 (2)0.001 (2)0.004 (2)
O220.033 (2)0.059 (3)0.026 (2)0.009 (2)0.0068 (19)0.004 (2)
O230.031 (3)0.029 (3)0.082 (3)0.004 (2)0.005 (2)0.013 (2)
O240.025 (2)0.089 (4)0.030 (3)0.003 (3)0.005 (2)0.008 (3)
Geometric parameters (Å, º) top
Ni1—N112.072 (5)N24—C251.493 (8)
Ni1—N142.071 (5)N24—H240.93
Ni1—N182.077 (5)N28—C271.431 (9)
Ni1—N1112.062 (5)N28—C291.521 (9)
Ni1—O12.106 (4)N28—H280.93
Ni1—O52.211 (4)N211—C2101.491 (7)
O5—H510.85 (2)N211—C2121.490 (9)
O5—H520.85 (5)N211—H2110.93
N11—C1141.474 (8)C22—C231.489 (8)
N11—C121.459 (8)C22—H22A0.99
N11—H110.93C22—H22B0.99
N14—C131.494 (8)C23—H23A0.99
N14—C151.457 (8)C23—H23B0.99
N14—H140.9300C25—C261.530 (8)
N18—C171.524 (9)C25—H25A0.99
N18—C191.467 (9)C25—H25B0.99
N18—H180.93C26—C271.519 (9)
N111—C1101.499 (7)C26—H26A0.99
N111—C1121.441 (8)C26—H26B0.99
N111—H1110.93C27—H27A0.99
C12—C131.512 (9)C27—H27B0.99
C12—H12A0.99C29—C2101.514 (10)
C12—H12B0.99C29—H29A0.99
C13—H13A0.99C29—H29B0.99
C13—H13B0.99C210—H21A0.99
C15—C161.513 (8)C210—H21B0.99
C15—H15A0.99C213—C2141.503 (9)
C15—H15B0.99C213—C2121.515 (8)
C16—C171.515 (9)C213—H21C0.99
C16—H16A0.99C213—H21D0.99
C16—H16B0.99C212—H21E0.99
C17—H17A0.99C212—H21F0.99
C17—H17B0.99C214—H21G0.99
C19—C1101.497 (10)C214—H21H0.99
C19—H19A0.99O1—C71.257 (6)
C19—H19B0.99O2—C71.269 (6)
C110—H11A0.99O3—C81.268 (6)
C110—H11B0.99O4—C81.259 (7)
C112—C1131.511 (9)C1—C21.384 (7)
C112—H11C0.99C1—C61.399 (8)
C112—H11D0.99C1—C71.524 (8)
C113—C1141.524 (9)C2—C31.395 (8)
C113—H11E0.99C2—H20.95
C113—H11F0.99C3—C41.389 (8)
C114—H11G0.99C3—H30.95
C114—H11H0.99C4—C51.409 (7)
Ni2—N212.049 (5)C4—C81.496 (8)
Ni2—N242.070 (5)C5—C61.374 (8)
Ni2—N282.089 (5)C5—H50.95
Ni2—N2112.057 (6)C6—H60.95
Ni2—O32.125 (4)Cl1—O121.438 (4)
Ni2—O62.202 (4)Cl1—O141.443 (5)
O6—H610.85 (2)Cl1—O131.448 (5)
O6—H620.85 (4)Cl1—O111.451 (5)
N21—C2141.464 (8)Cl2—O221.429 (4)
N21—C221.491 (7)Cl2—O241.437 (5)
N21—H210.93Cl2—O231.441 (5)
N24—C231.463 (8)Cl2—O211.459 (5)
N111—Ni1—N14178.5 (3)C214—N21—Ni2116.8 (4)
N111—Ni1—N1194.6 (2)C22—N21—Ni2107.2 (3)
N14—Ni1—N1184.7 (2)C214—N21—H21106.0
N111—Ni1—N1885.4 (2)C22—N21—H21106.0
N14—Ni1—N1895.3 (2)Ni2—N21—H21106.0
N11—Ni1—N18179.7 (2)C23—N24—C25114.7 (5)
N111—Ni1—O188.14 (19)C23—N24—Ni2106.4 (4)
N14—Ni1—O193.19 (19)C25—N24—Ni2115.0 (4)
N11—Ni1—O192.51 (17)C23—N24—H24106.7
N18—Ni1—O187.21 (19)C25—N24—H24106.7
N111—Ni1—O589.17 (18)Ni2—N24—H24106.7
N14—Ni1—O589.54 (19)C27—N28—C29115.0 (6)
N11—Ni1—O591.24 (18)C27—N28—Ni2115.8 (5)
N18—Ni1—O589.04 (19)C29—N28—Ni2103.4 (4)
O1—Ni1—O5175.55 (17)C27—N28—H28107.4
Ni1—O5—H51109 (4)C29—N28—H28107.4
Ni1—O5—H52126 (4)Ni2—N28—H28107.4
H51—O5—H52114 (6)C212—N211—C210112.6 (5)
C12—N11—C114114.7 (5)C212—N211—Ni2116.6 (4)
C12—N11—Ni1107.5 (4)C210—N211—Ni2107.0 (4)
C114—N11—Ni1114.6 (4)C212—N211—H211106.7
C12—N11—H11106.5C210—N211—H211106.7
C114—N11—H11106.5Ni2—N211—H211106.7
Ni1—N11—H11106.5C23—C22—N21108.4 (5)
C15—N14—C13111.9 (5)C23—C22—H22A110.0
C15—N14—Ni1116.0 (4)N21—C22—H22A110.0
C13—N14—Ni1105.7 (4)C23—C22—H22B110.0
C15—N14—H14107.6N21—C22—H22B110.0
C13—N14—H14107.6H22A—C22—H22B108.4
Ni1—N14—H14107.6N24—C23—C22109.2 (5)
C19—N18—C17114.7 (6)N24—C23—H23A109.8
C19—N18—Ni1105.2 (4)C22—C23—H23A109.8
C17—N18—Ni1114.3 (4)N24—C23—H23B109.8
C19—N18—H18107.4C22—C23—H23B109.8
C17—N18—H18107.4H23A—C23—H23B108.3
Ni1—N18—H18107.4N24—C25—C26111.1 (5)
C112—N111—C110115.7 (5)N24—C25—H25A109.4
C112—N111—Ni1116.7 (5)C26—C25—H25A109.4
C110—N111—Ni1104.8 (4)N24—C25—H25B109.4
C112—N111—H111106.3C26—C25—H25B109.4
C110—N111—H111106.3H25A—C25—H25B108.0
Ni1—N111—H111106.3C27—C26—C25115.9 (5)
N11—C12—C13109.1 (5)C27—C26—H26A108.3
N11—C12—H12A109.9C25—C26—H26A108.3
C13—C12—H12A109.9C27—C26—H26B108.3
N11—C12—H12B109.9C25—C26—H26B108.3
C13—C12—H12B109.9H26A—C26—H26B107.4
H12A—C12—H12B108.3N28—C27—C26110.7 (6)
N14—C13—C12108.5 (6)N28—C27—H27A109.5
N14—C13—H13A110.0C26—C27—H27A109.5
C12—C13—H13A110.0N28—C27—H27B109.5
N14—C13—H13B110.0C26—C27—H27B109.5
C12—C13—H13B110.0H27A—C27—H27B108.1
H13A—C13—H13B108.4C210—C29—N28109.9 (5)
N14—C15—C16111.8 (5)C210—C29—H29A109.7
N14—C15—H15A109.3N28—C29—H29A109.7
C16—C15—H15A109.3C210—C29—H29B109.7
N14—C15—H15B109.3N28—C29—H29B109.7
C16—C15—H15B109.3H29A—C29—H29B108.2
H15A—C15—H15B107.9N211—C210—C29107.0 (6)
C15—C16—C17114.7 (5)N211—C210—H21A110.3
C15—C16—H16A108.6C29—C210—H21A110.3
C17—C16—H16A108.6N211—C210—H21B110.3
C15—C16—H16B108.6C29—C210—H21B110.3
C17—C16—H16B108.6H21A—C210—H21B108.6
H16A—C16—H16B107.6C214—C213—C212116.0 (5)
C16—C17—N18112.6 (5)C214—C213—H21C108.3
C16—C17—H17A109.1C212—C213—H21C108.3
N18—C17—H17A109.1C214—C213—H21D108.3
C16—C17—H17B109.1C212—C213—H21D108.3
N18—C17—H17B109.1H21C—C213—H21D107.4
H17A—C17—H17B107.8N211—C212—C213111.1 (6)
N18—C19—C110107.2 (6)N211—C212—H21E109.4
N18—C19—H19A110.3C213—C212—H21E109.4
C110—C19—H19A110.3N211—C212—H21F109.4
N18—C19—H19B110.3C213—C212—H21F109.4
C110—C19—H19B110.3H21E—C212—H21F108.0
H19A—C19—H19B108.5N21—C214—C213112.1 (6)
C19—C110—N111109.7 (6)N21—C214—H21G109.2
C19—C110—H11A109.7C213—C214—H21G109.2
N111—C110—H11A109.7N21—C214—H21H109.2
C19—C110—H11B109.7C213—C214—H21H109.2
N111—C110—H11B109.7H21G—C214—H21H107.9
H11A—C110—H11B108.2C7—O1—Ni1136.8 (4)
N111—C112—C113111.8 (5)C8—O3—Ni2134.7 (4)
N111—C112—H11C109.2C2—C1—C6118.9 (5)
C113—C112—H11C109.2C2—C1—C7121.2 (5)
N111—C112—H11D109.2C6—C1—C7119.9 (5)
C113—C112—H11D109.2C1—C2—C3120.3 (5)
H11C—C112—H11D107.9C1—C2—H2119.9
C112—C113—C114116.0 (5)C3—C2—H2119.9
C112—C113—H11E108.3C4—C3—C2121.0 (6)
C114—C113—H11E108.3C4—C3—H3119.5
C112—C113—H11F108.3C2—C3—H3119.5
C114—C113—H11F108.3C3—C4—C5118.4 (5)
H11E—C113—H11F107.4C3—C4—C8120.9 (5)
N11—C114—C113113.2 (6)C5—C4—C8120.6 (5)
N11—C114—H11G108.9C6—C5—C4120.3 (6)
C113—C114—H11G108.9C6—C5—H5119.8
N11—C114—H11H108.9C4—C5—H5119.8
C113—C114—H11H108.9C5—C6—C1121.1 (6)
H11G—C114—H11H107.8C5—C6—H6119.5
N21—Ni2—N21194.5 (2)C1—C6—H6119.5
N21—Ni2—N2484.4 (2)O1—C7—O2125.2 (5)
N211—Ni2—N24178.7 (3)O1—C7—C1116.9 (5)
N21—Ni2—N28178.5 (2)O2—C7—C1117.9 (5)
N211—Ni2—N2886.2 (2)O4—C8—O3125.2 (5)
N24—Ni2—N2894.9 (2)O4—C8—C4119.3 (5)
N21—Ni2—O393.23 (17)O3—C8—C4115.6 (5)
N211—Ni2—O388.9 (2)O12—Cl1—O14109.5 (3)
N24—Ni2—O392.03 (19)O12—Cl1—O13109.3 (3)
N28—Ni2—O388.09 (19)O14—Cl1—O13110.0 (3)
N21—Ni2—O691.10 (17)O12—Cl1—O11108.9 (3)
N211—Ni2—O688.5 (2)O14—Cl1—O11110.4 (3)
N24—Ni2—O690.69 (18)O13—Cl1—O11108.6 (3)
N28—Ni2—O687.60 (18)O22—Cl2—O24109.8 (3)
O3—Ni2—O6175.09 (16)O22—Cl2—O23109.1 (3)
Ni2—O6—H61120 (4)O24—Cl2—O23110.7 (4)
Ni2—O6—H62117 (4)O22—Cl2—O21109.3 (3)
H61—O6—H62105 (5)O24—Cl2—O21109.6 (3)
C214—N21—C22114.0 (6)O23—Cl2—O21108.3 (3)
N11—C12—C13—N1455.8 (7)C210—N211—C212—C213178.8 (5)
C12—C13—N14—C15169.6 (5)N211—C212—C213—C21471.1 (8)
C13—N14—C15—C16179.0 (5)C212—C213—C214—N2171.7 (8)
N14—C15—C16—C1773.8 (7)C213—C214—N21—C22178.7 (4)
C15—C16—C17—N1872.2 (7)C214—N21—C22—C23170.3 (5)
C16—C17—N18—C19175.7 (5)C6—C1—C2—C31.0 (7)
C17—N18—C19—C110172.1 (5)C7—C1—C2—C3178.7 (5)
N18—C19—C110—N11159.5 (7)C1—C2—C3—C40.2 (8)
C19—C110—N111—C112170.1 (6)C2—C3—C4—C50.7 (8)
C110—N111—C112—C113179.3 (5)C2—C3—C4—C8178.6 (5)
N111—C112—C113—C11470.2 (8)C3—C4—C5—C60.0 (7)
C112—C113—C114—N1170.2 (7)C8—C4—C5—C6178.0 (5)
C113—C114—N11—C12180.0 (5)C4—C5—C6—C11.2 (8)
C114—N11—C12—C13167.6 (5)C2—C1—C6—C51.7 (8)
N21—C22—C23—N2455.6 (6)C7—C1—C6—C5178.0 (5)
C22—C23—N24—C25170.7 (5)C2—C1—C7—O1142.6 (6)
C23—N24—C25—C26178.6 (5)C6—C1—C7—O137.7 (8)
N24—C25—C26—C2772.8 (7)C2—C1—C7—O238.0 (8)
C25—C26—C27—N2874.6 (7)C6—C1—C7—O2141.7 (6)
C26—C27—N28—C29178.3 (5)C3—C4—C8—O4144.1 (6)
C27—N28—C29—C210170.0 (5)C5—C4—C8—O433.8 (8)
N28—C29—C210—N21158.3 (6)C3—C4—C8—O336.8 (8)
C29—C210—N211—C212171.1 (5)C5—C4—C8—O3145.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O20.932.092.939 (6)151
N21—H21···O40.932.062.920 (7)154
N111—H111···O140.932.273.183 (7)165
N211—H211···O240.932.223.135 (7)170
N14—H14···O13i0.932.263.175 (7)168
O5—H52···O11i0.85 (5)2.10 (5)2.904 (6)158 (6)
N24—H24···O23ii0.932.203.116 (7)166
O6—H62···O21ii0.85 (4)2.07 (4)2.898 (6)165 (6)
N18—H18···O4iii0.932.473.373 (7)163
O5—H51···O4iii0.85 (2)1.88 (2)2.717 (6)170 (4)
N28—H28···O2iv0.932.343.253 (7)167
O6—H61···O2iv0.85 (2)1.91 (2)2.730 (5)163 (6)
C12—H12A···O11i0.992.443.372 (8)157
C22—H22A···O21ii0.992.433.402 (7)166
C19—H19A···O24iii0.992.413.273 (8)146
C29—H29A···O14iv0.992.563.402 (7)142
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1/2, z+1; (iv) x, y1/2, z.

Experimental details

Crystal data
Chemical formula[Ni2(C10H24N4)2(H2O)2(C8H4O4)](ClO4)2
Mr917.09
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)10.2842 (3), 14.9172 (4), 13.0621 (4)
β (°) 102.5220 (11)
V3)1956.21 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.18 × 0.18 × 0.07
Data collection
DiffractometerKappa-CCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.817, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
13566, 7654, 5458
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 1.01
No. of reflections7654
No. of parameters501
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.44
Absolute structureFlack (1983)
Absolute structure parameter0.38 (3)

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2001), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
Ni1—N112.072 (5)Ni2—N212.049 (5)
Ni1—N142.071 (5)Ni2—N242.070 (5)
Ni1—N182.077 (5)Ni2—N282.089 (5)
Ni1—N1112.062 (5)Ni2—N2112.057 (6)
Ni1—O12.106 (4)Ni2—O32.125 (4)
Ni1—O52.211 (4)Ni2—O62.202 (4)
N11—C1141.474 (8)N21—C2141.464 (8)
N11—C121.459 (8)N21—C221.491 (7)
N14—C131.494 (8)N24—C231.463 (8)
N14—C151.457 (8)N24—C251.493 (8)
N18—C171.524 (9)N28—C271.431 (9)
N18—C191.467 (9)N28—C291.521 (9)
N111—C1101.499 (7)N211—C2101.491 (7)
N111—C1121.441 (8)N211—C2121.490 (9)
N11—C12—C13—N1455.8 (7)N21—C22—C23—N2455.6 (6)
C12—C13—N14—C15169.6 (5)C22—C23—N24—C25170.7 (5)
C13—N14—C15—C16179.0 (5)C23—N24—C25—C26178.6 (5)
N14—C15—C16—C1773.8 (7)N24—C25—C26—C2772.8 (7)
C15—C16—C17—N1872.2 (7)C25—C26—C27—N2874.6 (7)
C16—C17—N18—C19175.7 (5)C26—C27—N28—C29178.3 (5)
C17—N18—C19—C110172.1 (5)C27—N28—C29—C210170.0 (5)
N18—C19—C110—N11159.5 (7)N28—C29—C210—N21158.3 (6)
C19—C110—N111—C112170.1 (6)C29—C210—N211—C212171.1 (5)
C110—N111—C112—C113179.3 (5)C210—N211—C212—C213178.8 (5)
N111—C112—C113—C11470.2 (8)N211—C212—C213—C21471.1 (8)
C112—C113—C114—N1170.2 (7)C212—C213—C214—N2171.7 (8)
C113—C114—N11—C12180.0 (5)C213—C214—N21—C22178.7 (4)
C114—N11—C12—C13167.6 (5)C214—N21—C22—C23170.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O20.932.092.939 (6)151
N21—H21···O40.932.062.920 (7)154
N111—H111···O140.932.273.183 (7)165
N211—H211···O240.932.223.135 (7)170
N14—H14···O13i0.932.263.175 (7)168
O5—H52···O11i0.85 (5)2.10 (5)2.904 (6)158 (6)
N24—H24···O23ii0.932.203.116 (7)166
O6—H62···O21ii0.85 (4)2.07 (4)2.898 (6)165 (6)
N18—H18···O4iii0.932.473.373 (7)163
O5—H51···O4iii0.85 (2)1.88 (2)2.717 (6)170 (4)
N28—H28···O2iv0.932.343.253 (7)167
O6—H61···O2iv0.85 (2)1.91 (2)2.730 (5)163 (6)
C12—H12A···O11i0.992.443.372 (8)157
C22—H22A···O21ii0.992.433.402 (7)166
C19—H19A···O24iii0.992.413.273 (8)146
C29—H29A···O14iv0.992.563.402 (7)142
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1/2, z+1; (iv) x, y1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds