Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title coordination complex, [Ni(C14H14O2PS2)2(C12H8N2)] or [Ni(pMePh-dtp)2(phen)] (phen is 1,10-phenanthroline; dtp is di­aryl­di­thio­phosphate), has a non-crystallographic twofold axis of symmetry through the Ni atom and the phen moiety. Two O,O-di-p-tolyl­di­thio­phosphate (dtp) ions act as bidentate ligands. The central metal atom is coordinated by four S atoms from two dtp groups and two N atoms from the phen ligand. The title compound displays distorted octahedral geometry around the central Ni atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101005522/sk1464sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101005522/sk1464Isup2.hkl
Contains datablock I

CCDC reference: 166977

Comment top

In recent years, the adducts of nickel(II) dithiophosphate with neutral nitrogen ligands have received increasing attention owing to their extensive applications as both antioxidants and antiwear additives in the rubber industry and lubrication engineering (Harrison & Kikabhai, 1987; Kovtun et al., 1992). Additionally, the adducts and their formation reactions have also been found useful in a wide variety of ways, such as biological application and acting as both ultraviolet absorber and antioxidants. In addition to their syntheses and various physico-chemical investigations, the crystal structures of many nickel(II) complexes and their adducts with nitrogen bases have been reported (Huang et al., 1995; You et al., 1994). Metal complexes of the type [M(LL)3] ion, where LL is either 1,10-phenanthroline (phen) or a modified phen ligand, are particularly attractive species for developing new diagnostic and therapeutic agents that can recognize and cleave DNA (Barton, 1986; Naing et al., 1995). Thus the crystal structure of [Ni{(pMePh-dtp)2}(phen)], (I), was determined. \sch

A perspective view of the title complex with the atomic numbering scheme is shown in Fig. 1. In the title complex, the NiII atom lies in the centre of the octahedral geometry of the NiN2S4 chromophore. Crystals of this compound are composed of the discrete molecules.

The Ni—S distances of the title complex (Table 1) are in good agreement with similar distances found in six-coordinate complex [Ni{(C4H9O)2PS2}2(bipy)] [2.466 (2), 2.524 (2), 2.463 (2) and 2.522 (2) Å; You et al., 1986]. However the distances are much longer than those in the four-coordinate compounds such as Ni[S2COPh-4-tBu]2 [2.219 (4), 2.213 (6) Å; Chen & Fackler, 1978], [Ni{(iso-C3H7O)2PS2}2] [2.227 (1), 2.216 (1) Å; Hoskins & Tiekink, 1985] and [Ni{(OC2H5)(4-CH3OPh)PS2}2] [2.1297 (8) and 2.2225 (8) Å; Arca et al., 1997]. This probably reflects the change from octahedral coordination in the title compound to square planar or tetrahedral complexes.

The Ni—N distances of the title compound (Table 1) are in good agreement with similar distances found in the compound [Ni{(C4H9O)2PS2}2(bipy)] [2.089 (4), 2.088 (4) Å] and [Ni{(C2H5O)CS2}2(phen)]·(H2O)3 [2.074 (4) and 2.076 (4) Å; Xiong et al., 1997].

The distances between the atom P1 and two sulfur atoms (Table 1) are nearly equal. However the distances between the atom P2 and the other two sulfur atoms are different. It is noteworthy that all the P—S bonds lengths are intermediate between the single bond (2.09 Å) and the double bond (1.87 Å) values, which results from substantial delocalization of electrons throughout the two NiS2P four-membered rings. This is similar to that found for analogous dtp complexes, [Ni{(C2H5O)2PS2}2(C5H6N2)2] [Huang et al., 1995], [Ni{(C4H9O)2PS2}2(py)2] (Liu et al., 1987), [Ni{(C4H9O)2PS2}2(bipy)] and [M2{(i-C3H7O)2PS2}4], M=Zn or Cd (Byrom et al., 2000).

The C—O distances are much shorter than those found in [Ni{(C2H5O)2PS2}2(C5H6N2)2] [1.446 (5) and 1.430 (5) Å]. This is probably a result of the electronic effect of the benzene rings.

The S—Ni—S bond angles (Table 1) are similar to those found in [Ni{(C4H9O)2PS2}2(bipy)] [81.40 (7), 81.63 (7)°]. The N1—Ni—N2 bond angle (Table 1) is also similar to that found in [Ni{(C4H9O)2PS2}2(bipy)] [79.5 (2)°].

The (phen) ligand and Ni atom are also coplanar; the mean deviation from the best plane is 0.065 (1) Å. The two planes through Ni, P and S2 form the dihedral angle of 89.18 (4) Å. The dihedral angles between the plane of phen ligand and these two NiS2P planes are 89.21 (7) and 74.92 (7) Å. This indicates that the structure of NiN2S4 is obviously a distorted octahedra.

Related literature top

For related literature, see: Arca et al. (1997); Barton (1986); Byrom et al. (2000); Chen & Fackler (1978); Harrison & Kikabhai (1987); Hoskins & Tiekink (1985); Huang, Xiong & You (1995); Huang, Xiong, Dong & You (1995); Kovtun et al. (1992); Liu et al. (1987); Naing et al. (1995); Xiong et al. (1997); You et al. (1986, 1994).

Experimental top

The title compound was prepared by mixing a solution of nickel(II) bis(O,O'-di-p-tolyldithiophosphate) (0.1 mmol) in acetone (50 ml) and phen (0.1 mmol) with heating. The solution was cooled to room temperature and was then filtered. Green prismatic single crystals suitable for X-ray analysis were obtained upon slow evaporation of the solvent.

Refinement top

After checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on their attached atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
(I) top
Crystal data top
[Ni(C14H14O2PS2)2(C12H8N2)]Z = 2
Mr = 857.60F(000) = 888
Triclinic, P1Dx = 1.401 Mg m3
a = 11.1819 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0934 (2) ÅCell parameters from 8192 reflections
c = 17.2860 (2) Åθ = 1.3–28.3°
α = 107.693 (1)°µ = 0.80 mm1
β = 96.349 (1)°T = 293 K
γ = 109.896 (1)°Prismatic slab, green
V = 2033.41 (5) Å30.40 × 0.24 × 0.16 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
7040 independent reflections
Radiation source: fine-focus sealed tube5007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 1.3°
ω scansh = 1213
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1411
Tmin = 0.739, Tmax = 0.882l = 2019
11570 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0346P)2]
where P = (Fo2 + 2Fc2)/3
7040 reflections(Δ/σ)max = 0.001
482 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Ni(C14H14O2PS2)2(C12H8N2)]γ = 109.896 (1)°
Mr = 857.60V = 2033.41 (5) Å3
Triclinic, P1Z = 2
a = 11.1819 (2) ÅMo Kα radiation
b = 12.0934 (2) ŵ = 0.80 mm1
c = 17.2860 (2) ÅT = 293 K
α = 107.693 (1)°0.40 × 0.24 × 0.16 mm
β = 96.349 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
7040 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
5007 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.882Rint = 0.055
11570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.93Δρmax = 0.40 e Å3
7040 reflectionsΔρmin = 0.77 e Å3
482 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.29533 (4)0.70430 (4)0.16483 (3)0.03391 (13)
S10.09570 (8)0.75388 (9)0.15222 (6)0.0478 (2)
S20.40427 (8)0.93569 (8)0.19900 (6)0.0461 (2)
S30.30823 (9)0.72581 (8)0.31618 (6)0.0437 (2)
S40.17047 (9)0.47849 (8)0.14194 (6)0.0444 (2)
P10.22416 (9)0.92994 (9)0.18729 (6)0.0437 (2)
P20.18567 (8)0.54798 (8)0.26329 (6)0.0363 (2)
O10.2063 (3)1.0246 (2)0.26863 (17)0.0556 (7)
O20.1939 (3)1.0043 (2)0.12992 (17)0.0575 (7)
O30.0407 (2)0.5264 (2)0.27659 (14)0.0435 (6)
O40.2121 (2)0.4583 (2)0.30985 (15)0.0443 (6)
N10.2966 (2)0.6630 (3)0.03899 (17)0.0380 (6)
N20.4784 (3)0.6947 (3)0.16719 (18)0.0398 (7)
C10.2034 (4)0.6413 (3)0.0253 (2)0.0515 (9)
H1A0.12280.64010.01570.062*
C20.2210 (5)0.6201 (4)0.1064 (3)0.0678 (12)
H2A0.15330.60550.14950.081*
C30.3370 (5)0.6210 (4)0.1218 (3)0.0707 (12)
H3A0.34960.60780.17570.085*
C40.4399 (4)0.6421 (3)0.0558 (2)0.0520 (9)
C50.5665 (5)0.6441 (4)0.0654 (3)0.0674 (12)
H5A0.58470.63020.11790.081*
C60.6587 (4)0.6656 (4)0.0002 (3)0.0690 (12)
H6A0.74010.66700.00780.083*
C70.6357 (4)0.6861 (3)0.0816 (3)0.0526 (10)
C80.7294 (4)0.7098 (4)0.1532 (3)0.0735 (13)
H8A0.81370.71650.14950.088*
C90.6952 (4)0.7225 (5)0.2267 (3)0.0766 (14)
H9A0.75600.73760.27400.092*
C100.5684 (4)0.7130 (4)0.2324 (3)0.0604 (11)
H10A0.54620.71960.28340.073*
C110.5121 (3)0.6824 (3)0.0931 (2)0.0392 (8)
C120.4133 (3)0.6617 (3)0.0230 (2)0.0375 (8)
C130.2331 (4)1.0160 (3)0.3482 (3)0.0514 (10)
C140.1318 (4)0.9501 (4)0.3750 (3)0.0673 (12)
H14A0.04730.90830.34100.081*
C150.1588 (5)0.9474 (4)0.4553 (3)0.0771 (14)
H15A0.09010.90400.47450.093*
C160.2827 (5)1.0064 (4)0.5068 (3)0.0762 (14)
C170.3817 (5)1.0745 (4)0.4778 (3)0.0785 (14)
H17A0.46611.11760.51180.094*
C180.3572 (4)1.0799 (4)0.3987 (3)0.0682 (12)
H18A0.42471.12660.38020.082*
C190.3105 (6)0.9925 (5)0.5903 (3)0.119 (2)
H19A0.39511.05500.62300.179*
H19B0.30930.90970.58130.179*
H19C0.24481.00390.61950.179*
C200.1950 (4)0.9678 (4)0.0447 (3)0.0516 (10)
C210.3091 (4)1.0147 (4)0.0216 (3)0.0660 (12)
H21A0.38701.06470.06210.079*
C220.3083 (5)0.9875 (5)0.0624 (3)0.0795 (14)
H22A0.38661.01780.07780.095*
C230.1939 (6)0.9165 (5)0.1233 (3)0.0831 (15)
C240.0817 (5)0.8697 (5)0.0982 (3)0.0899 (17)
H24A0.00400.81890.13880.108*
C250.0787 (4)0.8947 (5)0.0145 (3)0.0754 (14)
H25A0.00070.86290.00090.091*
C260.1919 (8)0.8898 (7)0.2152 (3)0.143 (3)
H26A0.10780.87810.24460.214*
H26B0.20780.81470.23820.214*
H26C0.25870.95980.22090.214*
C270.0116 (3)0.5843 (3)0.3511 (2)0.0385 (8)
C280.0737 (4)0.5969 (4)0.4288 (2)0.0547 (10)
H28A0.14250.57110.43420.066*
C290.0324 (4)0.6484 (4)0.4982 (2)0.0538 (10)
H29A0.07490.65720.55040.065*
C300.0695 (4)0.6869 (3)0.4926 (2)0.0493 (9)
C310.1304 (4)0.6740 (4)0.4138 (3)0.0563 (10)
H31A0.19930.69970.40800.068*
C320.0888 (3)0.6230 (4)0.3435 (2)0.0488 (9)
H32A0.12970.61540.29110.059*
C330.1137 (4)0.7421 (4)0.5693 (3)0.0738 (13)
H33A0.19260.75270.55270.111*
H33B0.04660.82270.60430.111*
H33C0.12990.68610.59970.111*
C340.3278 (3)0.4367 (3)0.3182 (2)0.0409 (8)
C350.4315 (4)0.5172 (4)0.3859 (3)0.0568 (10)
H35A0.42940.59050.42250.068*
C360.5393 (4)0.4866 (4)0.3982 (3)0.0672 (12)
H36A0.61000.54130.44330.081*
C370.5450 (4)0.3785 (4)0.3460 (3)0.0577 (11)
C380.4387 (4)0.2994 (4)0.2785 (3)0.0543 (10)
H38A0.44040.22570.24210.065*
C390.3303 (3)0.3279 (3)0.2643 (2)0.0471 (9)
H39A0.26000.27390.21880.057*
C400.6608 (4)0.3426 (5)0.3621 (4)0.0944 (18)
H40A0.63100.25230.34300.142*
H40B0.70080.37840.42090.142*
H40C0.72380.37460.33250.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0324 (2)0.0376 (3)0.0397 (3)0.01933 (19)0.01263 (18)0.01698 (19)
S10.0346 (5)0.0443 (5)0.0718 (7)0.0204 (4)0.0161 (4)0.0242 (5)
S20.0386 (5)0.0414 (5)0.0648 (6)0.0171 (4)0.0176 (4)0.0248 (5)
S30.0496 (5)0.0371 (5)0.0426 (5)0.0147 (4)0.0135 (4)0.0140 (4)
S40.0525 (5)0.0378 (5)0.0434 (5)0.0191 (4)0.0183 (4)0.0117 (4)
P10.0454 (5)0.0409 (5)0.0590 (6)0.0258 (4)0.0187 (5)0.0253 (5)
P20.0377 (5)0.0374 (5)0.0424 (5)0.0197 (4)0.0157 (4)0.0184 (4)
O10.0697 (17)0.0487 (15)0.0660 (18)0.0367 (14)0.0284 (14)0.0248 (13)
O20.0743 (18)0.0486 (16)0.0717 (19)0.0401 (14)0.0201 (15)0.0322 (14)
O30.0370 (12)0.0549 (15)0.0449 (14)0.0239 (12)0.0164 (11)0.0179 (12)
O40.0429 (13)0.0497 (15)0.0630 (16)0.0275 (12)0.0253 (12)0.0357 (12)
N10.0359 (15)0.0397 (16)0.0411 (17)0.0158 (13)0.0112 (13)0.0166 (13)
N20.0360 (15)0.0471 (17)0.0473 (18)0.0263 (14)0.0116 (13)0.0199 (14)
C10.048 (2)0.056 (2)0.045 (2)0.0198 (19)0.0061 (18)0.0151 (18)
C20.077 (3)0.076 (3)0.041 (2)0.030 (3)0.001 (2)0.013 (2)
C30.095 (3)0.072 (3)0.043 (3)0.028 (3)0.028 (2)0.019 (2)
C40.063 (2)0.042 (2)0.053 (2)0.021 (2)0.024 (2)0.0158 (18)
C50.084 (3)0.061 (3)0.067 (3)0.032 (3)0.051 (3)0.022 (2)
C60.060 (3)0.068 (3)0.093 (4)0.037 (2)0.048 (3)0.026 (3)
C70.047 (2)0.047 (2)0.075 (3)0.0269 (19)0.028 (2)0.023 (2)
C80.045 (2)0.081 (3)0.108 (4)0.041 (2)0.020 (3)0.034 (3)
C90.058 (3)0.106 (4)0.084 (4)0.054 (3)0.006 (3)0.036 (3)
C100.055 (2)0.081 (3)0.064 (3)0.046 (2)0.011 (2)0.031 (2)
C110.0390 (18)0.0341 (18)0.055 (2)0.0214 (16)0.0193 (17)0.0190 (16)
C120.0421 (19)0.0295 (17)0.044 (2)0.0159 (15)0.0198 (16)0.0128 (15)
C130.063 (3)0.033 (2)0.062 (3)0.0210 (19)0.027 (2)0.0140 (18)
C140.067 (3)0.052 (3)0.080 (3)0.016 (2)0.029 (2)0.024 (2)
C150.089 (3)0.058 (3)0.080 (4)0.013 (3)0.044 (3)0.028 (3)
C160.110 (4)0.046 (3)0.057 (3)0.014 (3)0.030 (3)0.013 (2)
C170.085 (3)0.063 (3)0.064 (3)0.008 (3)0.016 (3)0.017 (2)
C180.070 (3)0.057 (3)0.068 (3)0.013 (2)0.027 (2)0.021 (2)
C190.167 (6)0.093 (4)0.058 (3)0.008 (4)0.021 (4)0.024 (3)
C200.062 (3)0.044 (2)0.061 (3)0.029 (2)0.010 (2)0.029 (2)
C210.064 (3)0.061 (3)0.067 (3)0.013 (2)0.009 (2)0.031 (2)
C220.082 (3)0.085 (3)0.076 (4)0.025 (3)0.024 (3)0.042 (3)
C230.104 (4)0.084 (4)0.067 (3)0.039 (3)0.013 (3)0.037 (3)
C240.077 (4)0.097 (4)0.078 (4)0.023 (3)0.016 (3)0.032 (3)
C250.058 (3)0.082 (3)0.088 (4)0.023 (3)0.004 (3)0.043 (3)
C260.194 (7)0.178 (7)0.062 (4)0.085 (6)0.024 (4)0.039 (4)
C270.0362 (18)0.041 (2)0.045 (2)0.0169 (16)0.0168 (16)0.0203 (16)
C280.058 (2)0.075 (3)0.052 (2)0.044 (2)0.0183 (19)0.028 (2)
C290.060 (2)0.069 (3)0.048 (2)0.034 (2)0.0208 (19)0.029 (2)
C300.056 (2)0.045 (2)0.056 (2)0.0221 (19)0.0276 (19)0.0229 (18)
C310.054 (2)0.066 (3)0.074 (3)0.041 (2)0.029 (2)0.035 (2)
C320.048 (2)0.061 (2)0.053 (2)0.033 (2)0.0180 (18)0.0272 (19)
C330.089 (3)0.076 (3)0.073 (3)0.043 (3)0.047 (3)0.028 (2)
C340.0409 (19)0.046 (2)0.053 (2)0.0219 (17)0.0181 (17)0.0323 (18)
C350.057 (2)0.053 (2)0.057 (3)0.023 (2)0.011 (2)0.014 (2)
C360.053 (2)0.073 (3)0.067 (3)0.021 (2)0.002 (2)0.024 (2)
C370.044 (2)0.060 (3)0.087 (3)0.025 (2)0.016 (2)0.045 (2)
C380.054 (2)0.042 (2)0.082 (3)0.028 (2)0.026 (2)0.030 (2)
C390.047 (2)0.040 (2)0.058 (2)0.0197 (18)0.0106 (18)0.0211 (18)
C400.051 (3)0.098 (4)0.160 (6)0.041 (3)0.017 (3)0.072 (4)
Geometric parameters (Å, º) top
Ni—N12.082 (3)C16—C191.514 (6)
Ni—N22.086 (3)C17—C181.390 (6)
Ni—S22.486 (1)C17—H17A0.9300
Ni—S42.488 (1)C18—H18A0.9300
Ni—S12.505 (1)C19—H19A0.9600
Ni—S32.532 (1)C19—H19B0.9600
S1—P11.976 (1)C19—H19C0.9600
S2—P11.977 (1)C20—C211.367 (6)
S3—P21.965 (1)C20—C251.375 (5)
S4—P21.972 (1)C21—C221.386 (6)
P1—O11.602 (3)C21—H21A0.9300
P1—O21.607 (2)C22—C231.373 (6)
P2—O31.607 (2)C22—H22A0.9300
P2—O41.615 (2)C23—C241.367 (7)
O1—C131.417 (4)C23—C261.518 (7)
O2—C201.406 (4)C24—C251.392 (7)
O3—C271.398 (4)C24—H24A0.9300
O4—C341.405 (4)C25—H25A0.9300
N1—C11.330 (4)C26—H26A0.9600
N1—C121.367 (4)C26—H26B0.9600
N2—C101.334 (4)C26—H26C0.9600
N2—C111.354 (4)C27—C321.364 (5)
C1—C21.395 (5)C27—C281.380 (5)
C1—H1A0.9300C28—C291.380 (5)
C2—C31.350 (6)C28—H28A0.9300
C2—H2A0.9300C29—C301.374 (5)
C3—C41.423 (6)C29—H29A0.9300
C3—H3A0.9300C30—C311.392 (5)
C4—C121.394 (5)C30—C331.511 (5)
C4—C51.436 (6)C31—C321.392 (5)
C5—C61.340 (6)C31—H31A0.9300
C5—H5A0.9300C32—H32A0.9300
C6—C71.421 (6)C33—H33A0.9600
C6—H6A0.9300C33—H33B0.9600
C7—C111.405 (5)C33—H33C0.9600
C7—C81.417 (6)C34—C391.374 (5)
C8—C91.348 (6)C34—C351.378 (5)
C8—H8A0.9300C35—C361.389 (6)
C9—C101.399 (6)C35—H35A0.9300
C9—H9A0.9300C36—C371.371 (6)
C10—H10A0.9300C36—H36A0.9300
C11—C121.443 (5)C37—C381.389 (5)
C13—C141.364 (5)C37—C401.523 (5)
C13—C181.370 (5)C38—C391.385 (5)
C14—C151.399 (6)C38—H38A0.9300
C14—H14A0.9300C39—H39A0.9300
C15—C161.375 (6)C40—H40A0.9600
C15—H15A0.9300C40—H40B0.9600
C16—C171.382 (6)C40—H40C0.9600
N1—Ni—N279.8 (1)C15—C16—C19121.3 (4)
N1—Ni—S292.65 (8)C17—C16—C19121.3 (5)
N2—Ni—S288.45 (8)C16—C17—C18121.1 (5)
N1—Ni—S492.44 (8)C16—C17—H17A119.4
N2—Ni—S496.59 (8)C18—C17—H17A119.4
S2—Ni—S4173.40 (3)C13—C18—C17119.6 (4)
N1—Ni—S194.54 (8)C13—C18—H18A120.2
N2—Ni—S1167.94 (8)C17—C18—H18A120.2
S2—Ni—S181.13 (3)C16—C19—H19A109.5
S4—Ni—S194.27 (3)C16—C19—H19B109.5
N1—Ni—S3170.38 (8)H19A—C19—H19B109.5
N2—Ni—S393.34 (8)C16—C19—H19C109.5
S2—Ni—S393.92 (3)H19A—C19—H19C109.5
S4—Ni—S381.57 (3)H19B—C19—H19C109.5
S1—Ni—S393.42 (3)C21—C20—C25120.7 (4)
P1—S1—Ni83.94 (4)C21—C20—O2119.7 (4)
P1—S2—Ni84.42 (4)C25—C20—O2119.3 (4)
P2—S3—Ni81.58 (4)C20—C21—C22119.9 (4)
P2—S4—Ni82.60 (4)C20—C21—H21A120.1
O1—P1—O292.49 (14)C22—C21—H21A120.1
O1—P1—S1113.40 (11)C23—C22—C21121.1 (5)
O2—P1—S1113.96 (11)C23—C22—H22A119.4
O1—P1—S2112.80 (11)C21—C22—H22A119.4
O2—P1—S2112.86 (11)C24—C23—C22117.6 (5)
S1—P1—S2110.37 (6)C24—C23—C26121.0 (5)
O3—P2—O496.81 (12)C22—C23—C26121.4 (5)
O3—P2—S3112.61 (10)C23—C24—C25122.9 (5)
O4—P2—S3113.76 (10)C23—C24—H24A118.6
O3—P2—S4107.37 (10)C25—C24—H24A118.6
O4—P2—S4112.28 (10)C20—C25—C24117.8 (4)
S3—P2—S4112.81 (5)C20—C25—H25A121.1
C13—O1—P1121.3 (2)C24—C25—H25A121.1
C20—O2—P1122.7 (2)C23—C26—H26A109.5
C27—O3—P2125.1 (2)C23—C26—H26B109.5
C34—O4—P2124.30 (19)H26A—C26—H26B109.5
C1—N1—C12117.4 (3)C23—C26—H26C109.5
C1—N1—Ni129.6 (2)H26A—C26—H26C109.5
C12—N1—Ni113.0 (2)H26B—C26—H26C109.5
C10—N2—C11117.8 (3)C32—C27—C28120.1 (3)
C10—N2—Ni128.8 (3)C32—C27—O3116.2 (3)
C11—N2—Ni112.9 (2)C28—C27—O3123.5 (3)
N1—C1—C2123.0 (4)C29—C28—C27119.2 (4)
N1—C1—H1A118.5C29—C28—H28A120.4
C2—C1—H1A118.5C27—C28—H28A120.4
C3—C2—C1119.6 (4)C30—C29—C28122.1 (3)
C3—C2—H2A120.2C30—C29—H29A119.0
C1—C2—H2A120.2C28—C29—H29A119.0
C2—C3—C4120.0 (4)C29—C30—C31117.8 (4)
C2—C3—H3A120.0C29—C30—C33121.2 (4)
C4—C3—H3A120.0C31—C30—C33120.9 (4)
C12—C4—C3116.4 (4)C30—C31—C32120.5 (4)
C12—C4—C5119.0 (4)C30—C31—H31A119.8
C3—C4—C5124.6 (4)C32—C31—H31A119.8
C6—C5—C4121.0 (4)C27—C32—C31120.2 (3)
C6—C5—H5A119.5C27—C32—H32A119.9
C4—C5—H5A119.5C31—C32—H32A119.9
C5—C6—C7121.8 (4)C30—C33—H33A109.5
C5—C6—H6A119.1C30—C33—H33B109.5
C7—C6—H6A119.1H33A—C33—H33B109.5
C11—C7—C8116.8 (4)C30—C33—H33C109.5
C11—C7—C6118.9 (4)H33A—C33—H33C109.5
C8—C7—C6124.3 (4)H33B—C33—H33C109.5
C9—C8—C7119.4 (4)C39—C34—C35120.8 (3)
C9—C8—H8A120.3C39—C34—O4119.3 (3)
C7—C8—H8A120.3C35—C34—O4119.5 (3)
C8—C9—C10120.3 (4)C34—C35—C36118.7 (4)
C8—C9—H9A119.9C34—C35—H35A120.7
C10—C9—H9A119.9C36—C35—H35A120.7
N2—C10—C9122.3 (4)C37—C36—C35122.2 (4)
N2—C10—H10A118.8C37—C36—H36A118.9
C9—C10—H10A118.8C35—C36—H36A118.9
N2—C11—C7123.4 (3)C36—C37—C38117.6 (3)
N2—C11—C12117.1 (3)C36—C37—C40121.9 (4)
C7—C11—C12119.5 (3)C38—C37—C40120.5 (4)
N1—C12—C4123.6 (3)C39—C38—C37121.5 (4)
N1—C12—C11116.6 (3)C39—C38—H38A119.2
C4—C12—C11119.8 (3)C37—C38—H38A119.2
C14—C13—C18121.2 (4)C34—C39—C38119.2 (3)
C14—C13—O1118.7 (4)C34—C39—H39A120.4
C18—C13—O1120.0 (3)C38—C39—H39A120.4
C13—C14—C15118.0 (4)C37—C40—H40A109.5
C13—C14—H14A121.0C37—C40—H40B109.5
C15—C14—H14A121.0H40A—C40—H40B109.5
C16—C15—C14122.7 (4)C37—C40—H40C109.5
C16—C15—H15A118.7H40A—C40—H40C109.5
C14—C15—H15A118.7H40B—C40—H40C109.5
C15—C16—C17117.3 (4)
N1—Ni—S1—P194.46 (8)C7—C8—C9—C100.3 (7)
N2—Ni—S1—P133.1 (4)C11—N2—C10—C91.5 (6)
S2—Ni—S1—P12.49 (4)Ni—N2—C10—C9170.0 (3)
S4—Ni—S1—P1172.74 (4)C8—C9—C10—N21.8 (7)
S3—Ni—S1—P190.95 (4)C10—N2—C11—C70.9 (5)
N1—Ni—S2—P196.67 (8)Ni—N2—C11—C7173.7 (3)
N2—Ni—S2—P1176.38 (8)C10—N2—C11—C12179.5 (3)
S1—Ni—S2—P12.48 (4)Ni—N2—C11—C127.7 (4)
S3—Ni—S2—P190.37 (4)C8—C7—C11—N22.9 (5)
N2—Ni—S3—P2103.97 (8)C6—C7—C11—N2176.7 (3)
S2—Ni—S3—P2167.35 (4)C8—C7—C11—C12178.6 (3)
S4—Ni—S3—P27.80 (4)C6—C7—C11—C121.8 (5)
S1—Ni—S3—P286.02 (4)C1—N1—C12—C41.7 (5)
N1—Ni—S4—P2179.82 (8)Ni—N1—C12—C4176.9 (2)
N2—Ni—S4—P2100.17 (8)C1—N1—C12—C11178.6 (3)
S1—Ni—S4—P285.08 (4)Ni—N1—C12—C112.8 (3)
S3—Ni—S4—P27.75 (4)C3—C4—C12—N10.9 (5)
Ni—S1—P1—O1124.37 (11)C5—C4—C12—N1179.3 (3)
Ni—S1—P1—O2131.50 (12)C3—C4—C12—C11179.3 (3)
Ni—S1—P1—S23.30 (6)C5—C4—C12—C110.5 (5)
Ni—S2—P1—O1124.67 (11)N2—C11—C12—N13.3 (4)
Ni—S2—P1—O2132.12 (12)C7—C11—C12—N1178.0 (3)
Ni—S2—P1—S13.32 (6)N2—C11—C12—C4176.9 (3)
Ni—S3—P2—O3111.14 (10)C7—C11—C12—C41.7 (5)
Ni—S3—P2—O4139.98 (10)P1—O1—C13—C1496.1 (4)
Ni—S3—P2—S410.59 (5)P1—O1—C13—C1888.1 (4)
Ni—S4—P2—O3113.89 (10)C18—C13—C14—C151.3 (6)
Ni—S4—P2—O4140.89 (9)O1—C13—C14—C15177.1 (4)
Ni—S4—P2—S310.75 (5)C13—C14—C15—C161.1 (7)
O2—P1—O1—C13174.2 (3)C14—C15—C16—C172.6 (7)
S1—P1—O1—C1368.3 (3)C14—C15—C16—C19174.8 (5)
S2—P1—O1—C1358.0 (3)C15—C16—C17—C181.8 (7)
O1—P1—O2—C20179.4 (3)C19—C16—C17—C18175.5 (5)
S1—P1—O2—C2063.6 (3)C14—C13—C18—C172.1 (7)
S2—P1—O2—C2063.3 (3)O1—C13—C18—C17177.7 (4)
O4—P2—O3—C2777.9 (3)C16—C17—C18—C130.4 (7)
S3—P2—O3—C2741.4 (3)P1—O2—C20—C2188.8 (4)
S4—P2—O3—C27166.2 (2)P1—O2—C20—C2597.2 (4)
O3—P2—O4—C34179.3 (3)C25—C20—C21—C220.6 (6)
S3—P2—O4—C3462.3 (3)O2—C20—C21—C22174.5 (3)
S4—P2—O4—C3467.3 (3)C20—C21—C22—C231.7 (7)
N2—Ni—N1—C1176.4 (3)C21—C22—C23—C242.4 (7)
S2—Ni—N1—C195.7 (3)C21—C22—C23—C26178.1 (5)
S4—Ni—N1—C180.1 (3)C22—C23—C24—C252.3 (8)
S1—Ni—N1—C114.4 (3)C26—C23—C24—C25178.2 (5)
N2—Ni—N1—C125.2 (2)C21—C20—C25—C240.4 (6)
S2—Ni—N1—C1282.7 (2)O2—C20—C25—C24174.3 (4)
S4—Ni—N1—C12101.5 (2)C23—C24—C25—C201.3 (7)
S1—Ni—N1—C12164.0 (2)P2—O3—C27—C32140.0 (3)
N1—Ni—N2—C10178.8 (3)P2—O3—C27—C2843.6 (4)
S2—Ni—N2—C1085.9 (3)C32—C27—C28—C290.4 (5)
S4—Ni—N2—C1089.9 (3)O3—C27—C28—C29175.9 (3)
S1—Ni—N2—C10116.0 (4)C27—C28—C29—C300.4 (6)
S3—Ni—N2—C108.0 (3)C28—C29—C30—C310.8 (6)
N1—Ni—N2—C117.0 (2)C28—C29—C30—C33179.6 (4)
S2—Ni—N2—C1186.0 (2)C29—C30—C31—C320.3 (5)
S4—Ni—N2—C1198.3 (2)C33—C30—C31—C32180.0 (4)
S1—Ni—N2—C1155.8 (5)C28—C27—C32—C310.8 (5)
S3—Ni—N2—C11179.8 (2)O3—C27—C32—C31175.7 (3)
C12—N1—C1—C21.3 (5)C30—C31—C32—C270.5 (6)
Ni—N1—C1—C2177.1 (3)P2—O4—C34—C3999.4 (3)
N1—C1—C2—C30.2 (6)P2—O4—C34—C3588.1 (4)
C1—C2—C3—C40.6 (7)C39—C34—C35—C360.5 (6)
C2—C3—C4—C120.3 (6)O4—C34—C35—C36172.9 (3)
C2—C3—C4—C5179.5 (4)C34—C35—C36—C370.9 (6)
C12—C4—C5—C60.7 (6)C35—C36—C37—C380.8 (6)
C3—C4—C5—C6179.5 (4)C35—C36—C37—C40177.2 (4)
C4—C5—C6—C70.6 (7)C36—C37—C38—C390.3 (6)
C5—C6—C7—C110.7 (6)C40—C37—C38—C39177.8 (4)
C5—C6—C7—C8179.7 (4)C35—C34—C39—C380.0 (5)
C11—C7—C8—C92.5 (6)O4—C34—C39—C38172.5 (3)
C6—C7—C8—C9177.1 (4)C37—C38—C39—C340.1 (5)

Experimental details

Crystal data
Chemical formula[Ni(C14H14O2PS2)2(C12H8N2)]
Mr857.60
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.1819 (2), 12.0934 (2), 17.2860 (2)
α, β, γ (°)107.693 (1), 96.349 (1), 109.896 (1)
V3)2033.41 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.40 × 0.24 × 0.16
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.739, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
11570, 7040, 5007
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.120, 0.93
No. of reflections7040
No. of parameters482
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.77

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT and SADABS (Sheldrick, 1996), SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Ni—N12.082 (3)S2—P11.977 (1)
Ni—N22.086 (3)S3—P21.965 (1)
Ni—S22.486 (1)S4—P21.972 (1)
Ni—S42.488 (1)O1—C131.417 (4)
Ni—S12.505 (1)O2—C201.406 (4)
Ni—S32.532 (1)O3—C271.398 (4)
S1—P11.976 (1)O4—C341.405 (4)
N1—Ni—N279.8 (1)S1—P1—S2110.37 (6)
S2—Ni—S181.13 (3)S3—P2—S4112.81 (5)
S4—Ni—S381.57 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds